
AN ALGEBRAIC CHARACTERIZATION OF COMPLETELY
REGULAR CODES IN DISTANCE-REGULAR GRAPHS∗

M. A. FIOL† AND E. GARRIGA†

SIAM J. DISCRETE MATH. c© 2001 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, pp. 1–13

Abstract. Given a vertex subset C of a distance-regular graph Γ on n vertices, it is shown
that C is a completely regular code if and only if the number of vertices at maximum distance from
C satisfies an expression in terms of the spectrum of Γ and some mean numbers computed from
the distances among the vertices of C (the so-called “inner distribution” of C). For such codes,
this result can be seen as an improvement of Delsarte’s linear programming method, since it gives
stronger necessary conditions for their existence. As an application, a purely spectral characterization
of those distance-regular graphs which are “edge-distance-regular” (that is, with every edge being a
completely regular code with the same parameters) is derived.
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1. Preliminaries. In this paper we always suppose that Γ = (V,E) is a (simple,
finite and connected) regular graph with vertex set V = {u, v, w, . . .} and edge set
E = {uv,wz, . . .}. Adjacency between vertices u and v is denoted by u ∼ v. The
eccentricity of a vertex u is ecc(u) := maxv∈V dist(u, v) and the diameter of the graph
is D := maxu∈V ecc(u). Assuming that ecc(u) = ε, the set Γk(u), 0 ≤ k ≤ ε,
represents the set of vertices at distance k from vertex u. Thus, the degree of vertex
u is just the cardinality of Γ1(u) also written, for short, as Γ(u). Similarly, the
set of vertices at distance at most k from u is denoted by Nk(u) := Γ0(u) ∪ · · · ∪
Γk(u). The cardinalities of the above two sets are represented by nk(u) := |Γk(u)|
and sk(u) := |Nk(u)|. Analogous concepts can be defined for any vertex subset C ⊂ V
and, with self-explanatory notation, they are represented by Γk(C) and Nk(C). The
characteristic vector of C will be denoted by ρC :=

∑
u∈C eu, where eu is the uth

canonical vector. Consider the adjacency matrix A of Γ, with spectrum

spΓ := spA = {λm(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d },

where the eigenvalues λi, 0 ≤ i ≤ d, are in decreasing order, λ0 > λ1 > · · · > λd, and
the superscripts denote multiplicities. The set of such eigenvalues is denoted by ev Γ,
and their corresponding eigenspaces are

Ei := Ker(A− λiI) (0 ≤ i ≤ d).

The orthogonal projection onto the eigenspace Ei is given by the polynomial

Zi :=
1

φi

∏
j �=i
(x− λj) (0 ≤ i ≤ d),(1)
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where φi :=
∏d
j=0(j �=i)(λi − λj). The corresponding matrices Ei := Zi(A) are

called the (principal) idempotents of A. For instance, in a (regular) graph on n
vertices, E0 =

1
nJ where J is the all-1 matrix. Accordingly, the idempotents satisfy

EiEj = δijEi, AEi = λiEi, and spEi = {1m(λi), 0n−m(λi)}. Moreover, since every
polynomial p ∈ Rd[x] can be written in terms of the above interpolating polynomials

as p(x) =
∑d
i=0 p(λi)Zi(x), we get

p(A) =
d∑
i=0

p(λi)Ei.(2)

(In fact, the above holds for any rational function p defined at each eigenvalue of A;
see Godsil [18].)

The (u, v)-entry of the idempotent Ei is called the crossed uv-multiplicity of
λi, and we denote it by muv(λi) (see [16]). For instance, in our case of regular-
ity, muv(λ0) = 1/n for any u, v ∈ V . Notice that from (2) we have p(A)uv =∑d
i=0 muv(λi)p(λi). An interesting case occurs when we consider the diagonal entries

muu(λi) = (Ei)uu = ‖Eieu‖2 ≥ 0,
denoted also by mu(λi), which are referred to as the (local) u-multiplicities of λi. In
[15] it was noted that when the graph is “seen” from vertex u, the u-multiplicities
play a similar role as the standard multiplicities, thus justifying the name.

Distance-regular graphs and distance polynomials. Recall that a graph
Γ with diameter D is distance-regular whenever, for any two vertices u, v ∈ V at
distance dist(u, v) = k, 0 ≤ k ≤ D, the intersection numbers ck := |Γk−1(u) ∩ Γ(v)|,
ak := |Γk(u)∩Γ(v)|, and bk := |Γk+1(u)∩Γ(v)| do not depend on the chosen vertices
u and v but only on their distance k.

For every integer k (0 ≤ k ≤ D), the distance-k matrix Ak of a graph Γ is defined
as the 01-matrix with coefficients (Ak)uv := 1 if and only if dist(u, v) = k, and it
corresponds to the adjacency matrix of the so-called distance-k graph Γk. As it is well
known (see, e.g., [23]), the distance-regularity of the graph Γ is characterized by the
existence of polynomials pk of degree exactly k such that

Ak = pk(A) (0 ≤ k ≤ D).

These are called the distance polynomials, and one of their main characteristics
is that they constitute an orthogonal system with respect to the inner product

〈p, q〉Γ := 1

n
tr(p(A)q(A)) =

d∑
i=0

m(λi)

n
p(λi)q(λi) (p, q ∈ RD[x])(3)

(with “normalized weight function” gi :=
1
nm(λi), 0 ≤ i ≤ d, since

∑d
i=0 gi = 1).

Indeed, from the definition of the distance matrices note that it must be

〈pk, pl〉Γ = 1

n
tr(AkAl) = δklnk,(4)

where nk = |Γk(u)| = ‖pk‖2Γ = pk(λ0) for any u ∈ V . Such an orthogonality relation
greatly facilitates the computation of the different parameters of Γ. (For a survey
about this, see [10].) Thus, the intersection numbers pkij , 0 ≤ i, j, k ≤ d, of the graph,
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defined by pkij := |Γi(u)∩Γj(v)|, where dist(u, v) = k (which generalize the above ak,
bk, and ck), are just the Fourier coefficients of pipj in terms of the basis {pk}0≤k≤d:

pkij =
〈pipj , pk〉Γ
‖pk‖2Γ

=
1

pk(λ0)

d∑
h=0

m(λh)

n
pi(λh)pj(λh)pk(λh) (0 ≤ i, j, k ≤ d).(5)

Also, the eigenvalues’ multiplicities can be computed by using any of the following
expressions:

m(λi) =
φ0pd(λ0)

φipd(λi)
= n


 d∑
j=0

pj(λi)
2

pj(λ0)



−1

(0 ≤ i ≤ d),(6)

where φi =
∏d
j=0(j �=i)(λi − λj) (see, e.g., Bannai and Ito [1] and Biggs [2]). The

value at λ0 of the highest degree polynomial pd can be computed, in turn, from the
spectrum using the formula

pd(λ0) = n

(
d∑
i=0

π2
0

m(λi)π2
i

)−1

,(7)

where the πi’s are moment-like parameters defined by πi := |φi| =
∏d
j=0(j �=i) |λi−λj |,

0 ≤ i ≤ d (see [11]).
In this work, we also use the fact that the distance polynomials allow us to

express the idempotents El, 0 ≤ l ≤ d, of a distance-regular graph in a way closely
related to its structure (see also [9]). Indeed, if we write the polynomials in (1) as

Zl =
∑d
k=0 mklpk, then the constants mkl are no more than the Fourier coefficients

of Zl in terms of the basis {pk}0≤k≤d:

mkl =
〈Zl, pk〉
‖pk‖2 =

1

pk(λ0)

d∑
i=0

giZl(λi)pk(λi) = gl
pk(λl)

pk(λ0)
,

which gives

El = gl

d∑
k=0

pk(λl)

pk(λ0)
pk(A) =

m(λl)

n

d∑
k=0

pk(λl)

pk(λ0)
Ak (0 ≤ l ≤ d).(8)

Thus, considering the corresponding (u, v)-entries of the above matrices, we have the
following useful result.

Lemma 1.1. Let Γ be a distance-regular graph with sp Γ := {λm(λ0)
0 , λ

m(λ1)
1 , . . . ,

λ
m(λd)
d }. Then, for any two vertices u, v ∈ V (Γ) at distance dist(u, v) = k, the crossed

uv-multiplicities of λl, 0 ≤ l ≤ d, depend only on k and l and are given by

muv(λl) = mkl =
m(λl)

n

pk(λl)

pk(λ0)
(0 ≤ l ≤ d).

The fact that the crossed uv-multiplicities depend only on dist(u, v) has been used
by various authors studying distance-regular graphs and their generalizations. (See,
e.g., Godsil [17, 18], who also gave an explicit formula for computing these entries.)
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The local spectrum of a vertex subset. The concept of local multiplicities
can be generalized to any vertex subset C. Indeed, if we consider its normalized
characteristic vector

eC :=
1√|C|ρC =

1√|C|
∑
u∈C

eu,

the C-multiplicity of the eigenvalue λi is just

mC(λi) := ‖EieC‖2 = 〈EieC , eC〉 = 1

|C|
∑
u,v∈C

〈Eieu, ev〉

=
1

|C|
∑
u,v∈C

muv(λi) (0 ≤ i ≤ d).(9)

Notice that the sequence of C-multiplicities (mC(λ0),mC(λ1), . . . ,mC(λd)) cor-
responds in fact to the so-called MacWilliams transform of the vector eC (see, e.g.,

[7]). Also note that, since eC is a unit vector, we have
∑d
i=0 mC(λi) = 1. Moreover,

we see that, for C �= ∅, the C-multiplicity of λ0 is mC(λ0) = |C|/|V | > 0. In particu-
lar, when C is a single vertex u, the {u}-multiplicities of λi correspond to the above
u-multiplicities.

These parameters are now relevant when studying the graph from vertex subset
C. Before giving an example, notice that, for any polynomial p,

〈p(A)eC , eC〉 =
〈

d∑
i=0

p(λi)EieC , eC

〉
=

d∑
i=0

p(λi)〈EieC , eC〉

=

d∑
i=0

mC(λi)p(λi),(10)

where we have used (2). As mentioned above, these expressions allow us to know
something about the structure of the graph when seen from C. For instance, using
(10) with p = xl we have that the number of walks of length l from (the vertices of)
C to itself is given by

a
(l)
CC :=

∑
u,v∈C

(Al)uv = |C|〈AleC , eC〉 = |C|
d∑
i=0

mC(λi)λ
l
i (l ≥ 0).

If µ0(= λ0) > µ1 > · · · > µdC represent the eigenvalues in ev Γ with nonzero
C-multiplicities, then the (local) C-spectrum of C is

spC := {µmC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
},

where dC(≤ d) is called the dual degree of C. Also, the strength of C is the minimum
integer t ≥ 0 such that mC(λt+1) �= 0. (In other words, λt+1 = µ1.) Now consider
the polynomial HC ∈ RdC [x] defined by HC(λ0) = n/|C| and HC(µi) = 0 for any
1 ≤ i ≤ dC . Then again using (2), and the expressions for HC and E0, we have

HC(A)eC =

dC∑
i=0

HC(µi)EieC = HC(λ0)E0eC =
1

|C|JeC =
1√|C|j.(11)
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This polynomial is unique and is called the C-Hoffman polynomial because of the
analogy with the well-known Hoffman polynomial H satisfying H(A) = J . By
considering the vth components of both vectors in (11), v ∈ V , we obtain that
dist(v, C) ≤ dgrHC = dC . Hence, the eccentricity of a vertex set C with dC + 1
distinct eigenvalues satisfies

ecc(C) ≤ dC .(12)

(This is a well-known result in coding theory, where ecc(C) := maxv∈V dist(C, v)
corresponds to the “covering radius” of code C; see, e.g., [18].)

The predistance polynomials. Given a graph Γ = (V,E), let us consider a
(nonempty) vertex subset C ⊂ V . LetMC denote the mesh of the C-eigenvalues µi
with respective local multiplicities mC(µi), 0 ≤ i ≤ dC . Now consider the following
scalar product in R[x]/(φ), where (φ) is the ideal of R[x] generated by the polynomial

φ :=
∏d
i=0(x− µi),

〈f, g〉C :=
dC∑
i=0

mC(µi)f(µi)g(µi)(13)

with weight function gi := mC(µi), which, from the definition of the local multiplic-

ities, is again normalized as follows:
∑dC
i=0 gi = 1. Then we define the predistance

polynomials pCk , 0 ≤ k ≤ dC , as the sequence of orthogonal polynomials with respect
to (13), with dgr pk = k, normalized in such a way that

‖pCk ‖2C := 〈pCk , pCk 〉C = pCk (µ0).(14)

Thus, pC0 = 1. Like any orthogonal sequence, these polynomials satisfy a three-term
recurrence of the form

xpC0 = a0p
C
0 + c1p

C
1 ,

xpCk = bk−1p
C
k−1 + akp

C
k + ck+1p

C
k+1 (1 ≤ k ≤ dC − 1),(15)

xpCdC = bdC−1p
C
dC−1 + adCpCdC .

Moreover, it can be shown that its normalization condition (14) is equivalent to any
of the following requirements (see [14]):

ak + bk + ck = µ0 (0 ≤ k ≤ dC) or qCdC :=

dC∑
k=0

pCk = HC

(where c0 = bdC = 0). Let us now consider the sum polynomials qCk :=
∑k
h=0 pCh ,

0 ≤ k ≤ dC , which, like the predistance polynomials, satisfy qCk (λ0) = ‖qCk ‖2C . The
following result corresponds to the regular case of a theorem proved in [12].

Theorem 1.2. Let C be a vertex subset of a (regular) graph Γ with predistance
polynomials pCk , 0 ≤ k ≤ d. Then, for any polynomial q ∈ Rk[x],

q(λ0)
2

‖q‖2C
≤ |Nk(C)|

|C| ,(16)

and equality is attained if and only if

1

‖q‖C q(A)eC = eNk
,(17)
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where eNk
represents the normalized characteristic vector of Nk(C). Moreover, if this

is the case, q is any multiple of qCk , whence (16) and (17) become

qCk (λ0) =
|Nk(C)|
|C| and qCk (A)ρC = ρNk(C).(18)

2. Completely regular codes in distance-regular graphs. This section is
devoted to study the results on which our characterization of a completely regular
code in a distance-regular graph Γ is based. The key point is that, in a distance-
regular graph, the local multiplicities of a vertex subset C can easily be computed
from the distance polynomials of Γ, its spectrum, and the inner distribution of C. As
a by-product, the nonnegativity of such multiplicities leads to Delsarte-like bounds for
the maximum possible number of subgraphs of a distance-regular graph isomorphic
to a given subgraph. We begin by recalling some of the main concepts and results
involved.

Distance-regularity around a set. Let C ⊂ V be a vertex subset of a graph
Γ with ecc(C) = ε. Then we say that Γ is distance-regular around C if the distance
partition V = C0 ∪C1 ∪ · · · ∪Cε, where Ck := Γk(C), is regular; that is, the numbers

ck(u) := |Γ(u) ∩ Ck−1|, ak(u) := |Γ(u) ∩ Ck|, bk(u) := |Γ(u) ∩ Ck+1|,
where u ∈ Ck, 0 ≤ k ≤ ε, depend only on the value of k but not on the chosen vertex
u. These numbers are called the (local) C-intersection numbers of Γ, and the array

ι(C) :=


 0 c1 · · · cε−1 cε

a0 a1 · · · aε−1 aε
b0 b1 · · · bε−1 0




is referred to as the C-intersection array where, by convention, c0 = bε = 0. Since
each column of such a matrix sums to λ0 (recall that Γ is regular), it is usual to write
the intersection array in its simplified form

ι(C) = {b0, b1, . . . , bε−1; c1, c2, . . . , cε}.
The set C is also referred to as a completely regular set or completely regular code.
Since their introduction in Delsarte’s thesis [6], these structures have deserved special
attention by authors such as Courteau and Montpetit [5], Godsil [18], Martin [20],
and Neumaier [22], among others. As in the case of distance-regularity, it is known
that a graph Γ = (V,E) is distance-regular around a set C ⊂ V , with eccentricity ε, if
and only if there exist a sequence of polynomials p0, p1, . . . , pε, with dgr pk = k, such
that

ρCk = pk(A)ρC (0 ≤ k ≤ ε)

(see [12]). If this is the case, such polynomials coincide with the predistance polyno-
mials defined above, and they are just called the distance polynomials. Hence, they
are orthogonal with respect to the scalar product (13) and satisfy a three-term recur-
rence like (15) with coefficients being the elements of the C-intersection array. As a
consequence of Theorem 1.2, the authors [12] obtained the following characterization
of distance-regularity around a set C in terms of its local spectrum.

Theorem 2.1. Let Γ = (V,E) be a regular graph. A vertex subset C ⊂ V , with r

vertices and local spectrum spC = {µmC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
}, is a completely
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regular code if and only if the number of vertices at distance dC from C, that is,
ndC (C) := |CdC |, satisfies

ndC (C) = rpCdC (µ0) = r

(
dC∑
l=0

mC(µ0)
2π̃2

0

mC(µl)π̃2
l

)−1

=
n2

r

(
dC∑
l=0

π̃2
0

mC(µl)π̃2
l

)−1

,(19)

where π̃l :=
∏dC
h=0(h�=l) |µl − µh|, 0 ≤ l ≤ dC .

Local multiplicities of a vertex set. First note that, from (10), the number
of ordered pairs (u, v) of vertices from C which are a distance k apart in a distance-
regular graph Γ is given by

∑
u,v∈C

(Ak)uv = |C|〈pk(A)eC , eC〉 = |C|
d∑
i=0

mC(λi)pk(λi).

From this we see that the mean number of vertices v in C at distance k (in Γ) from
a given vertex u ∈ C is

rk :=
1

|C|
∑
u∈C
|Γk(u) ∩ C| =

d∑
i=0

mC(λi)pk(λi) (0 ≤ k ≤ d).(20)

The numbers rk, 0 ≤ k ≤ d, are called the inner distribution of C and, as commented
by Godsil [18], they determine the probability that a randomly chosen pair of vertices

from C are at distance k. Notice that r0 = 1 and
∑d
k=0 rk = |C| always. The following

result shows how to use these numbers to compute the C-multiplicities of the graph.
Proposition 2.2. Let Γ be a distance-regular graph Γ with a given subset C of

r vertices and inner distribution rk, 0 ≤ k ≤ d. Then the C-multiplicities are

mC(λl) =
m(λl)

n

d∑
k=0

rk
pk(λl)

pk(λ0)
(0 ≤ l ≤ d).(21)

Proof. Let P be the square (d + 1)-matrix with entries (P )kl = pk(λl) which,
because of the orthogonality relation (4) with respect to the scalar product (3), has
inverse P−1 with entries

(P−1)lk =
1

n
m(λl)

pk(λl)

‖pk‖2 =
1

n
m(λl)

pk(λl)

pk(λ0)
.

Moreover, using the (column) vectors mC := (mC(λ0),mC(λ1), . . . ,mC(λd))
� and

r := (r0, r1, . . . , rd)
�, the system of equations in (20) is r = PmC . Thus, mC =

P−1r and yields (21).
Notice that Proposition 2.2 is essentially equivalent to Delsarte’s identity b = aQ,

which gives rise to the celebrated linear programming bound (see [7]). Let us now
consider some interesting consequences of this result:

• The C-multiplicity of λ0 is mC(λ0) =
m(λ0)
n

∑d
k=0 rk =

r
n , as we already

knew.
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• When C consists of a single vertex, say C = {u}, then r0 = r = 1 and we get

mC(λl) =
m(λl)

n

p0(λl)

p0(λ0)
=

m(λl)

n
(0 ≤ l ≤ d),

as it is also known, since any distance-regular graph is also spectrally regular;
that is, sp{u} = sp{v} for any u, v ∈ V ; see [11]. (Spectrally regular graphs
were first studied by Godsil and McKay [19] under the name of walk-regular
graphs.)
• When C is a k-clique, that is, all its vertices are at distance k from each other,
we have r0 = 1, rk = r − 1, and thus

mC(λl) =
m(λl)

n

(
1 + (r − 1) pk(λl)

pk(λ0)

)
(0 ≤ l ≤ d).

In particular, since min0≤l≤d pk(λl) < 0 for any k ≥ 1 (as pk(A) is the
adjacency matrix of Γk), the conditions mC(λl) ≥ 0, 1 ≤ l ≤ d, yield the
following upper bound for the maximum number ωk of vertices mutually at
distance k (clique number of Γk):

ωk = r ≤ 1− pk(λ0)

minl pk(λl)
.(22)

• Delsarte cliques. If in (22) we take k = 1, then pk = x and we obtain that
the clique number ω1 = ω of Γ1 = Γ satisfies the bound

ω ≤ 1− λ0

λd
.

(This bound, in fact, holds for any regular graph; see, e.g., Godsil [18].) A
clique which attains such a bound is called a Delsarte clique. Then the local
multiplicities of the vertex set C of a Delsarte clique are

mC(λi) =
m(λi)

n

(
1 + (r − 1) λi

λ0

)
=

m(λi)

n

(
1− λi

λd

)
(0 ≤ i ≤ d).

Thus, mC(λi) = 0 if and only if i = d, and hence, since dist(C, v) ≥ d− 1 for
some v ∈ V ,

d− 1 ≤ ecc(C) ≤ dC = d− 1,
so that the eccentricity of a Delsarte clique is exactly d−1. Delsarte’s cliques
are completely regular codes. What is more, a clique which is a completely
regular code is a Delsarte clique if and only if its eccentricity is d − 1 (see
Godsil [18]).
• Delsarte-like bounds. In fact, the above reasoning, based on the nonnega-
tivity of the local multiplicities, can be seen as a particular case of Delsarte’s
linear programming method to bound the size of a code C with prescribed
parameters (ε, r, δ). (As above, ε = ecc(C), r = |C|, and δ is the mini-
mum distance of C; that is, δ := min{dist(u, v) : u, v ∈ C}, which yields
r1 = · · · = rδ−1 = 0; see, e.g., [4, 7].) The same ideas can also be used
to derive bounds on the maximum number of disjoint copies of some sub-
graph of a distance-regular graph. Before giving an example, we recall that
the generic linear programming problem to be solved is the following. Given
r0 = 1 and some other (nonnegative) values of the inner distribution, say rk,
k ∈ K ⊂ {1, 2, . . . , d},
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maximize r :=
∑d
k=0 rk

subject to mC(λl) ≥ 0, l = 0, 1, . . . , d;
rk ≥ 0, k ∈ {1, 2, . . . , d} \K.

The following illustrates how to use this method to study the structure of
the possible (57, 2)-Moore graph Γ = (V,E). We shall show that the max-
imum number of independent pentagons (respectively, Petersen graphs) in
such a graph—assuming that such a “monster” exists—is 100 (respectively,
55). As it is well known, Γ should be a distance-regular graph with intersec-
tion numbers {b0, b1; c1, c2} = {57, 56; 1, 1}, order n = 572 + 1 = 3250, spec-
trum spΓ =

{
571, 71729,−81520}, and distance polynomials p0 = 1, p1 = x,

p2 = x2 − 57.
First assume that C ⊂ V is constituted by (the vertices of) m independent
pentagons (that is, without edges between them). Then r0 = 1, r1 = 2,
and the solution of the above problem gives max r2 = 497, which implies
m ≤ r/5 = 100, as claimed. Moreover, for the “extremal” inner distribution
r = (1, 2, 497) we get mC = ( 2

13 , 0,
11
13 ), so that these 100 pentagons, if they

exist, would dominate all the vertices of Γ, since ecc(C) = 1.
Similarly, if C is set up bym copies of the Petersen graph, we have r0 = 1 and
r1 = 3, yielding max r2 = 546 and m ≤ r/10 = 55. Now, the extremal inner
distribution r = (1, 3, 546) gives mC = (

11
65 , 0,

54
65 ), whence such hypothetical

55 Petersen graphs would also dominate all vertices of Γ. It is fair to warn
here that, as commented by Martin in [21], it is still an open problem to
decide whether or not our Moore graph Γ should contain a single Petersen
graph as an induced subgraph (a problem posed by Godsil).

3. Some quasi-spectral characterizations. From Theorem 2.1 and Proposi-
tion 2.2 we now have the following characterization of a completely regular code in a
distance-regular graph.

Theorem 3.1. Let Γ = (V,E) be a distance-regular graph on n vertices with

sp Γ = {λm(λ0)
0 , . . . , λ

m(λd)
d } and distance polynomials {pk}0≤k≤d. A vertex subset

C ⊂ V , with r vertices, inner distribution r0, r1, . . . , rd, and local spectrum spC =

{µmC(µ0)
0 , . . . , µ

mC(µdC
)

dC
}, is a completely regular code if and only if

ndC (C) =
n

r


 dC∑
l=0

π̃2
0

π̃2
l

(
m(µl)

d∑
k=0

pk(µl)

pk(µ0)
rk

)−1


−1

,(23)

where π̃l :=
∏dC
h=0(h�=l) |µl − µh|, 0 ≤ l ≤ dC .

When C is a set with maximum possible eccentricity in Γ, that is, ecc(C) = d,
we have dC = d, π̃l = πl, and hence we get the following corollary.

Corollary 3.2. Let Γ = (V,E) be a distance-regular graph with n vertices, spec-

trum sp Γ = {λ0, λ
m(λ1)
1 , . . . , λ

m(λd)
d }, and distance polynomials p0, p1, . . . , pd. Then,

a vertex subset C ⊂ V with r vertices, ecc(C) = d, and inner distribution r0, r1, . . . , rd
is a completely regular code if and only if the number of vertices at distance d from C
is

nd(C) =
n

r


 d∑
l=0

π2
0

π2
l

(
m(λl)

d∑
k=0

pk(λl)

pk(λ0)
rk

)−1


−1

.(24)
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Next, we give some examples of application of the above characterization results.

Codes in the odd graphs. First recall that, for a given integer k ≥ 2, the odd
graph Ok has as vertices the (k−1)-subsets of a (2k−1)-set, and adjacency is defined
by void intersection. (For a detailed description of these distance-regular graphs, see,
e.g., [2, 3]). In particular, we shall consider here some vertex subsets of the odd graph
O4, which is a 4-regular graph on n = 35 vertices, with diameter D = 3, spectrum
spO4 = {41, 214,−114,−36}, and distance polynomials p0 = 1, p1 = x, p2 = x2 − 4,
p3 =

1
2 (x

3 − 7x).
• C = uv ∈ E. (That is, C is constituted by the vertices of an edge.) r =
(1, 1, 0, 0), mC = ( 2

35 ,
3
5 ,

3
10 ,

3
70 ), and (24) gives n3(C) = 9, which is the

correct value. Thus, C is a completely regular code. (In fact, we will see later
that this observation holds for any odd graph Ok.)

• C = H (a hexagon). r = (1, 2, 2, 1). mC = ( 6
35 ,

11
15 ,

1
15 ,

1
35 ), which gives

n3(C) = 11/7, thus violating the integrality condition, and C cannot be
completely regular.

Codes in antipodal distance-regular graphs. Let us prove that any proper
subset C of a fiber (that is, the set of vertices mutually at distance d) in an s-
antipodal distance-regular graph is a completely regular code. A (quasi-) spectral
characterization of these graphs can be found in [8], where it was shown that a regular
graph Γ, with eigenvalues λ0 > λ1 > · · · > λd, is an s-antipodal distance-regular graph
if and only if the distance graph Γd is constituted by

1
2

∑d
i=0

π0

πi
disjoint copies of the

complete graph Ks.
First, we particularize the above corollary for the case when all vertices are at

distance d from each other.
Corollary 3.3. Let Γ be a distance-regular graph as above. A vertex subset

C ⊂ V , with r vertices, ecc(C) = d, and inner distribution r0 = 1, rd = r − 1, is a
completely regular code if and only if

nd(C) =
n

r

(
d∑
l=0

φ0

φl

(
pd(λ0)

pd(λl)
+ r − 1

)−1
)−1

.(25)

Proof. Using (6), the expression in the inner parentheses of (23) becomes

m(λl)

d∑
k=0

pk(λl)

pk(λ0)
rk =

φ0pd(λ0)

φlpd(λl)

(
1 + (r − 1) pd(λl)

pd(λ0)

)
=

φ0

φl

(
pd(λ0)

pd(λl)
+ r − 1

)
,

whence the result follows.
Now, if Γ is s-antipodal, pd(A) corresponds to the adjacency matrix of n/s copies

of the complete graph Ks, whence pd(λi) = s − 1 for every even i, and pd(λi) = −1
for any odd i. Then, for a vertex subset C as in the above corollary and 1 ≤ r < s,
(25) gives

n

r

(
1

r

∑
l even

π0

πl
+

1

s− r

∑
l odd

π0

πl

)−1

= s− r = nd(C),

where we have used that, in any s-antipodal distance-regular graph,∑
l even

π0

πl
=
∑
l odd

π0

πl
=

n

s
;
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see [8, 16]. Consequently, by Corollary 3.3, the proper subset C of a fiber in Γ is a
completely regular code.

Edge-distance-regularity. Inspired by the definition of a distance-regular graph,
we say that a graph Γ = (V,E) is edge-distance-regular when Γ is distance-regular
around each of its edges, C = {u, v|u ∼ v}, and it has the same C-intersection num-
bers. Thus, in an edge-distance-regular graph, every edge e = uv is a completely
regular code with parameters not depending on e. As it is readily checked, examples
of these graphs are all bipartite distance-regular graphs. Two other instances are
the (ubiquitous) Petersen graph P (= O3) and the above-mentioned O4. In this last
subsection we address the natural question of deciding which (nonbipartite) distance-
regular graphs are also edge-distance-regular. In fact, from our previous results we
can give a complete answer to this question by deriving a pure spectral characteriza-
tion of edge-distance-regularity. The result can be seen as a consequence of Theorem
3.1, and it reads as follows.

Theorem 3.4. A nonbipartite distance-regular graph Γ = (V,E) with spec-

trum sp Γ = {λm(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d } and distance polynomials {pk}0≤k≤d is edge-

distance-regular if and only if

d∑
l,h=0

(
2λl

λ0 + λh
− 1
)

1

π2
l π

2
hm(λl)m(λh)

= 0.(26)

Proof. Let C = {u, v} be the vertices of some edge e = uv in a distance-regular
graph Γ. Then, by (21), the C-multiplicities are

mC(λl) =
m(λl)

n

(
1 +

λl
λ0

)
(0 ≤ l ≤ d).(27)

Thus, the C-spectrum does not depend on the chosen edge e and, if Γ is distance-
regular around e, such an independence property also holds for the corresponding
C-intersection numbers (as they are uniquely determined from spC; see [12]). Con-
sequently, Γ is edge-distance-regular if and only if Theorem 3.1 holds. Since Γ is not
bipartite, −λ0 < λl ≤ λ0 and, from (27), mC(λl) > 0 for any 0 ≤ l ≤ d. Thus,
dC = d. Moreover, since Γ is distance-regular, the number of vertices at maximum
distance d from edge uv is just the intersection number p1

dd. Hence, using (5),

nd(C) = p1
dd =

1

nλ0

d∑
l=0

m(λl)p
2
d(λl)λl =

p2
d(λ0)

nλ0

d∑
l=0

π2
0

π2
l

λl
m(λl)

=
n

λ0

∑d
l=0

π2
0

π2
l

λl

m(λl)(∑d
l=0

π2
0

π2
l

1
m(λl)

)2 =
n

λ0π2
0

∑d
l=0

λl

π2
l
m(λl)(∑d

l=0
1

π2
l
m(λl)

)2 ,(28)

where we have used (6) and (7).

Moreover, the right-hand expression in (24), with r = r0 + r1 = 2, becomes

n

2

(
d∑
l=0

π2
0

π2
l

(
m(λl)

[
1 +

λl
λ0

])−1
)−1

=
n

2π2
0λ0

(
d∑
l=0

1

π2
l (λ0 + λl)m(λl)

)−1

.(29)
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Consequently, equating (28) and (29) we get

2
d∑
l=0

λl
π2
lm(λl)

d∑
h=0

1

π2
h(λ0 + λh)m(λh)

=

(
d∑
l=0

1

π2
lm(λl)

)2

=

d∑
l,h=0

1

π2
l π

2
hm(λl)m(λh)

,

whence the result follows.

As an application of the above result, it can be shown that the odd graphs Ok
satisfy (26). Therefore, they are all examples of edge-distance-regular graphs. (We
already mentioned the case k = 3, which corresponds to the Petersen graph, and the
case k = 4.) This gives a nontrivial, although too simple for applications, infinite
family of completely regular codes in the odd graphs, answering in the affirmative
a question posed by Martin in [21]. The same conclusion can be derived from the
combinatorial counterpart of Theorem 3.4, which is clear from the results in [3] (see
also [13]), stating that a nonbipartite distance-regular graph Γ with diameter d is
edge-distance-regular if and only if a1 = a2 = · · · = ad−1 = 0).

Acknowledgments. The authors sincerely acknowledge the referees for helpful
comments and suggestions that led to a significant improvement of the manuscript.
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DETERMINING WHEN THE ABSOLUTE STATE COMPLEXITY OF
A HERMITIAN CODE ACHIEVES ITS DLP BOUND∗
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Abstract. Let g be the genus of the Hermitian function field H/Fq2 and let CL(D,mQ∞)
be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the
dimension/length profile (DLP) lower bound on the state complexity of CL(D,mQ∞). Here we
determine when this lower bound is tight and when it is not.

For m ≤ n−2
2

or m ≥ n−2
2

+ 2g, the DLP lower bounds reach Wolf’s upper bound on state
complexity and thus are trivially tight. We begin by showing that for about half of the remaining
values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute
state complexity of CL(D,mQ∞), which improves the DLP lower bound.

Next we give a “good” coordinate order for CL(D,mQ∞). With this good order, the state
complexity of CL(D,mQ∞) achieves its DLP bound (whenever this is possible). This coordinate
order also provides an upper bound on the absolute state complexity of CL(D,mQ∞) (for those
values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity
do not meet for some of these values of m, and this leaves open the question whether our coordinate
order is best possible in these cases.

A straightforward application of these results is that if CL(D,mQ∞) is self-dual, then its state

complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n
2
− q2

4
,

and, in particular, so does its absolute state complexity.

Key words. Hermitian code, state complexity, dimension/length profile bound

AMS subject classifications. 94B27, 94B12, 14H45

PII. S0895480100376435

1. Introduction. Let C be a linear code of length n. Many soft-decision decod-
ing algorithms for C (such as the Viterbi algorithm and lower complexity derivatives
of it) take place along a minimal trellis for C. The complexity of trellis decoding
algorithms can be measured by various trellis complexities. The most common one is
the state complexity s(C) of C, which varies with the coordinate order of C. Since
the number of operations required for Viterbi decoding of C is proportional to s(C),
it is desirable that s(C) be small. A classical upper bound for s(C) is the Wolf bound
W(C) = min{dim(C), n− dim(C)} [9]. It is well known that if C is a Reed–Solomon
code, then s(C) = W(C).

Let [C] denote the set of codes equivalent to C by a change of coordinate order.
We write s[C] for the minimum of s(C) over all coordinate orders of C and call it
the absolute state complexity of C. (We note that state-complexity notation and
terminology varies in the literature. For example, state complexity is called minimal
trellis size in [2]; absolute state complexity is called absolute minimal trellis size in [2]
and minimal state complexity in [13].) Finding a coordinate order of C that achieves
s[C] is called the “art of trellis decoding” in [10] since exhaustive computation of s(C)
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over all possible coordinate orders of C is infeasible, even for quite short codes. An
important step towards attaining this goal is determining good lower bounds on s[C].

The dimension/length profile (DLP) of C is a deep property which is equivalent to
the generalized weight hierarchy (GWH) of C. (For a survey of GWH, see [15].) The
DLP of C is independent of the coordinate order of C and provides a natural lower
bound ∇(C) for s[C]. For example, if C is a Reed–Solomon code, then ∇(C) = W(C)
[9], so that s[C] is as bad as possible and uninteresting. However, determining when
∇(C) = s[C] is still important. An obvious and useful way of doing this is to find a
coordinate order of C for which s(C) = ∇(C). In particular, this provides one route
to the art of trellis decoding. It is also important to develop methods for determining
when ∇(C) < s(C) and, in these cases, to improve on ∇(C).

Geometric Goppa codes generalize Reed–Solomon codes. Hermitian codes are
widely studied geometric Goppa codes which are longer than Reed–Solomon codes
and have very good parameters for their lengths. Let q be a fixed prime power, n = q3,
and g =

(
q
2

)
. For m ∈ [0, n + 2g − 2], we write CL(D,mQ∞) for a typical Hermitian

code of length n defined over Fq2 . In [5], we determined ∇(CL(D,mQ∞)) using some
of the GWH of Hermitian codes obtained in [11, 16]. (The complete GWH of Hermi-
tian codes has subsequently appeared in [1].) From [5], we have s(CL(D,mQ∞)) =
W(CL(D,mQ∞)) for m < n−1

2 or m > n−3
2 + 2g, so we restrict ourselves to the

interesting Hermitian codes, i.e., to CL(D,mQ∞) with m ∈ I(n, g) = [n−1
2 , n−3

2 +2g].

Here we determine precisely when ∇(CL(D,mQ∞)) = s(CL(D,mQ∞)). In the
process, we exhibit a good coordinate order which often gives s(CL(D,mQ∞)) <
W(CL(D,mQ∞)). We also improve on the DLP bound (when it is strictly less than
the state complexity).

“Points of gain and fall” were introduced in [3, 4, 6, 7] to help determine the
state complexity of certain generalizations of Reed–Muller codes. For these codes,
the points of gain and fall had particularly nice characterizations. For Hermitian
codes, however, their characterization is not quite as nice, and so our approach is
slightly different. We describe a coordinate order giving Cm ∈ [CL(D,mQ∞)] and
characterize the points of gain and fall of Cm. We also characterize these points of
gain and fall in terms of runs. This has the advantage of greatly reducing (from n to
q + 1) the number of trellis depths needed to find s(Cm).

The paper is arranged as follows. Section 2 contains terminology, notation, and
some previous results that will be used throughout the paper. The paper proper begins
with section 3. Here we show that, for m ∈ I(n, g), just under half of the Hermitian
codes cannot attain their DLP bound. In these cases we give an improvement of the
DLP bound, written ∇ı(CL(D,mQ∞)).

The main goal of section 4 is to characterize the points of gain and fall of Cm in
runs. In section 5 we determine s(Cm) using section 4. We show that s(Cm) = ∇(Cm)
for just over half the m ∈ I(n, g). Thus we have determined precisely when the DLP
bound for Hermitian codes is tight. Furthermore, s(Cm) = ∇ı(Cm) for around a
further quarter (respectively, 1/q) of m ∈ I(n, g) when q is odd (respectively, even).

In conclusion, we have found s[Cm] for three quarters (respectively, one half) of
the m ∈ I(n, g) when q is odd (respectively, even). For the remaining m ∈ I(n, g),
we do not know a better coordinate order (than that described in section 4) nor a
better bound (than that given in section 3). Thus, although we have reduced the
possible range of s[Cm], some of its actual values remain open. Finally, our method
of characterizing points of gain and fall is essentially the same as the one used to
determine ∇(CL(D,mQ∞)) in [5] and may be able to be used quite generally in
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determining DLP bounds and state complexity.
The state complexity of Hermitian codes has also been studied in [13]. For a

stronger version of [13, Proposition 1] (an application of Clifford’s theorem), see [5,
Proposition 3.4]. Also, Example 5.11 below generalizes the main result of [13] to arbi-
trary self-dual Hermitian codes. An initial account of some of these results appeared
in [8].

2. Terminology, notation, and background.
State complexity. Let C be a linear code of length n and 0 ≤ i ≤ n. The state

space dimension of C at depth i is

si(C) = dim(C)− dim(Ci,−)− dim(Ci,+),(1)

where Ci,− = {c ∈ C : ci+1 = · · · = cn = 0} and Ci,+ = {c ∈ C : c1 = · · · = ci = 0}.
The state complexity of C is s(C) = max{si(C) : 0 ≤ i ≤ n}. It is well known that
s(C⊥) = s(C). A simple upper bound on s(C) (and hence on s[C]) is the Wolf bound
W(C) = min{dim(C), n− dim(C)}. We write [C] for the set of codes equivalent to C
by a change of coordinate order; i.e., C ′ ∈ [C] if and only if there exists a permutation
(l1, . . . , ln) of (1, . . . , n) such that C ′ = {(cl1 , . . . , cln) : (c1, . . . , cn) ∈ C}. Then we
define the absolute state complexity of C to be

s[C] = min{s(C ′) : C ′ ∈ [C]}.

The DLP of C is (k0(C), . . . , kn(C)), where ki(C) = max{dim(CJ) : |J | = i}.
Clearly, dim(Ci,−) ≤ ki(C) and dim(Ci,+) ≤ kn−i(C), so that si(C) ≥ dim(C) −
ki(C)− kn−i(C). The DLP bound on si(C) is

∇i(C) = dim(C)− ki(C)− kn−i(C),

and the DLP bound on s(C) is ∇(C) = max{∇i(C) : 0 ≤ i ≤ n}. We will use DLP
bound to mean ∇(C) for some C. It is well known that ∇(C⊥) = ∇(C). Since ∇(C)
is independent of the coordinate order of C, ∇(C) ≤ s[C]. If s[C] = ∇(C), we say
that C is DLP-tight; e.g., if ∇(C) = W(C), then C is DLP-tight.

Hermitian codes. Our terminology and notation for Hermitian codes for the
most part follow [14]. We write H/Fq2 for the Hermitian function field. Thus
H = Fq2 [x, y], where x is transcendental over Fq2 and yq + y = xq+1 is the mini-
mal polynomial of y over Fq2 [x]. The genus of H/Fq2 is g =

(
q
2

)
> 0. We write PH for

the set of places of H/Fq2 and DH for the divisor group of H/Fq2 . For Q ∈ PH and
z ∈ H/Fq2 , we write vQ(z) for the valuation of z at Q. Thus vQ(z) < 0 if and only if
Q is a pole of z and vQ(z) > 0 if and only if Q is a zero of z. Also, (z) ∈ DH is given
by (z) =

∑
Q∈PH

vQ(z)Q and for A ∈ DF , L(A) = {z ∈ H/Fq2 : (z) ≥ −A} ∪ {0}.
There are q3 + 1 places of degree one in PH . One of these is the place at infinity,

which we denote Q∞. We denote the others as Q1, . . . , Qq3 . For the rest of the
paper, unless otherwise stated, n = q3. We put D =

∑n
j=1Qj . For an integer m,

L(mQ∞) = {z ∈ H/Fq2 : (z) ≥ −mQ∞} ∪ {0}. The Hermitian codes over Fq2 are
CL(D,mQ∞) = {z(Ql1), . . . , z(Qln) : z ∈ L(mQ∞)} for some permutation (l1, . . . , ln)
of (1, . . . , n). Strictly speaking, the code C(D,mQ∞) depends on the permutation
(l1, . . . , ln) of (1, . . . , n) and may be better denoted CL(Ql1 , . . . , Qln ;mQ∞). However,
this notation is cumbersome and CL(D,mQ∞) is standard. Unless otherwise stated,
when we write CL(D,mQ∞) we have some fixed but arbitrary coordinate order in
mind.
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From the usual expression for the dimension of geometric Goppa codes,

dim(CL(D,mQ∞)) = dim(mQ∞)− dim(mQ∞ −D).

When m is understood, k = dim(CL(D,mQ∞)) unless stated otherwise. The
abundance of CL(D,mQ∞) is dim(mQ∞ −D). For m < n, the abundance is 0 and
the code is nonabundant. For m < 0, CL(D,mQ∞) = {0} and for m > n + 2g − 2,
CL(D,mQ∞) = F

n
q2 , so we restrict our attention to m ∈ [0, n + 2g − 2]. With

m⊥ = n+ 2g − 2−m, the dual of CL(D,mQ∞) is CL(D,m⊥Q∞).
Let Π : N −→ N ∪ {0} be the pole number sequence of Q∞. Also, for i, j ∈ Z

we put [i, j] = {k ∈ Z : i ≤ k ≤ j} and [i,∞) = {k ∈ Z : k ≥ i}. Thus Π[1,∞)
is the set of pole numbers of Q∞, Π(r) is the rth pole number, and Π−1[R1, R2] =
{r : R1 ≤ Π(r) ≤ R2}. We note that Π−1[0, R] = {r : Π(r) ≤ R} and Π−1[R1, R2] =
Π−1[0, R2] \Π−1[0, R1 − 1]. From [14, Proposition VI.4.1] we deduce that

Π[1,∞) = {iq + j : 0 ≤ i ≤ q − 2, 0 ≤ j ≤ i} ∪ [2g,∞).(2)

We note that, for m < n, dim(mQ∞−D) = 0 and k = dim(mQ∞) = |Π−1[0,m]|.
State complexity of Hermitian codes. For 0 ≤ i ≤ n we put Di,− =∑i

j=1Qlj and Di,+ =
∑n
l=i+1Qlj (where (l1, . . . , ln) is a fixed but arbitrary per-

mutation of (1, . . . , n)). We deduce that si(CL(D,mQ∞)) = k−dim(mQ∞−Di,−)−
dim(mQ∞ −Di,+) + 2 dim(mQ∞ −D). In particular, for m < n,

si(CL(D,mQ∞)) = k − dim(mQ∞ −Di,−)− dim(mQ∞ −Di,+).(3)

These identities yield s(CL(D,mQ∞) = W(CL(D,mQ∞)) for m ∈ [0, n−2
2 ] ∪

[n−2
2 + 2g, n+ 2g− 2]. Thus we will almost exclusively be interested in m ∈ I(n, g) =

[n−1
2 , n−3

2 +2g]. In fact, sincem ∈ [n−1
2 +g, n−3

2 +2g] if and only ifm⊥ ∈ [n−1
2 , n−3

2 +g],
we will often restrict our attention to m ∈ [n−1

2 , n−3
2 + g], deducing results for m ∈

[n−1
2 + g, n−3

2 + 2g] from s(C⊥) = s(C) and ∇(C⊥) = ∇(C).
It is convenient to put J(n, g) = [n−1

2 , n−2
2 + g]. Using results of [11, 16], [5,

Proposition 5.1] shows that for m ∈ I(n, g),

∇i(CL(D,mQ∞)) = k − |Π−1[0,m− i]| − |Π−1[0,m+ i− n]|,(4)

which is used to prove the following theorem.
Theorem 2.1 (see [5, Theorem 5.5]). For m ∈ J(n, g), write n−2m+4g+q−2 =

uq+ v, where 0 ≤ v ≤ q− 1. Then ∇(CL(D,mQ∞)) is attained at m− 2g+ 1 + �u2 �q
and equals

k −
(
q − �u2 �

2

)
−
(
q − �u2 �

2

)
−min

{
q −

⌈u
2

⌉
, q − v

}
.

If CL(D,mQ∞) is DLP-tight, then we just say m is DLP-tight.

3. When the DLP bound is not tight. Let m ∈ [0, n−2
2 ] ∪ [n−2

2 + 2g, n +
2g − 2]. Then by [5, Proposition 4.3, Example 4.9], we have ∇(CL(D,mQ∞)) =
W(CL(D,mQ∞)) and so

∇(CL(D,mQ∞)) = s[CL(D,mQ∞)] = s(CL(D,mQ∞)),

where CL(D,mQ∞) can have any coordinate order. Such m are therefore DLP-tight,
and we are reduced to determining which m ∈ I(n, g) are DLP-tight. We note that
n−3

3 + 2g < n, so that the codes that we are interested in are nonabundant.
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Table 1
Table of new notation.

m integer
q fixed prime power
m⊥ n+ 2g − 2−m
q2 q mod 2

I(n, g) [n−1
2

, n−3
2

+ 2g]

J(n, g) [n−1
2

, n−2
2

+ g]

M m− q2−q2
2

q if m ∈ J(n, g)
M•,M◦ M = M•(q + 1) +M◦ where 0 ≤ M◦ ≤ q
∇ı(CL(D,mQ∞)) Improved DLP bound for m ∈ I(n, g) Definition 3.11
∆(m) ∇ı(CL(D,mQ∞))−∇(CL(D,mQ∞)) (Theorem 3.9 and Corollary 3.10)
P
1
H Finite places of degree one in PH

αab Elements of Fq2 such that αq+1
ab

= a ∈ Fq

βac Elements of Fq2 such that βq
ac + βac = a ∈ Fq

Qa,b,c = Qαab,βac Element of P
1
H such that x(Qa,b,c) = αab and y(Qa,b,c) = βac

Cm Element of [CL(D,mQ∞)] with coordinate order given in section 4
Pgain(m), Pfall(m) Sets of points of gain and fall of Cm

P i,−
gain(m), P i,−

fall
(m) |Pgain(m) ∩ [1, i]| and |Pfall(m) ∩ [1, i]|

Λ Λ : [0,∞)× [0, q − 1] −→ [0,∞) given by Λ(j, l) = jq + l(q + 1)

ζgain 0, q−q2
2

, q depending on M◦ (defined before Proposition 4.8)

ζfall 0, q+q2
2

, q depending on M◦ (defined before Proposition 4.8)
θgain, θfall M• +M◦ − ζgain and M• +M◦ − ζfall
ζnorm (ζgain + ζfall)/2
η 2q − 2M• + q2 − ζnorm − 3

In this section we determine the m ∈ I(n, g) which are not DLP-tight, i.e, with
s[CL(D,mQ∞)] > ∇(CL(D,mQ∞)). The coordinate order of CL(D,mQ∞) is arbi-
trary, so it suffices to show that s(CL(D,mQ∞)) > ∇(CL(D,mQ∞)).

Our approach has three steps.
(i) We prove the key lemma, Lemma 3.2, and indicate how this can be used to

show that m is not DLP-tight (Example 3.3).
(ii) We prove a generalization of the key lemma (Lemma 3.4) and an application

of Proposition 3.5. We indicate how this can be used to improve on the DLP bound
by more than one (Example 3.6).

(iii) We prove an application of Proposition 3.5 to improve the DLP bound for
m ∈ I(n, g), Theorem 3.9, and Corollary 3.10.

We conclude section 3 with a table of the improved DLP bound for small values
of q (2) and an analysis of the proportion of those m ∈ I(n, g) for which our bound is
strictly better than the DLP bound (Proposition 3.12).

The key lemma. We begin with a clarification of (3) and (4).
Lemma 3.1. For 0 ≤ i ≤ n and m ∈ I(n, g),

(5)

dim(mQ∞ −Di,−) ≤ |Π−1[0,m− i]| and dim(mQ∞ −Di,+) ≤ |Π−1[0,m+ i− n]|

and si(CL(D,mQ∞)) = ∇i(CL(D,mQ∞)) if and only if there is equality in both.
Proof. The first part follows from [5, Lemma 4.1] and the fact that the gonality

sequence of H/Fq2 equals the pole number sequence of Q∞ by [12, Corollary 2.4].
The second part then follows from (3) and (4).

We note that Lemma 3.1 implies that a coordinate order is inefficient, in the
sense of [9], if and only if there exists an i, 0 ≤ i ≤ n, such that |Π−1[0,m − i]| >
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dim(mQ∞ −Di,−) or |Π−1[0,m+ i− n]| > dim(mQ∞ −Di,+). To show the stronger
result that s(CL(D,mQ∞)) > ∇(CL(D,mQ∞)), we require a stronger condition on
i, namely, that it satisfies

|Π−1[0,m− i]| − dim(mQ∞ −Di,−) + |Π−1[0,m+ i− n]| − dim(mQ∞ −Di,+)

> ∇(CL(D,mQ∞))−∇i(CL(D,mQ∞)),

so that si(CL(D,mQ∞)) > ∇(CL(D,mQ∞)).
This stronger condition is clearly more likely to hold if ∇i(CL(D,mQ∞)) attains

or is close to attaining ∇(CL(D,mQ∞)). For now, we concentrate on determining
when the equalities in (5) cannot hold. For these equalities to hold, dim(mQ∞−Di,−)
and dim(mQ∞ − Di,+) must change with |Π−1[0,m − i]| and |Π−1[0,m + i − n]|,
respectively. We shall see that it is possible that both |Π−1[0,m− i]| = |Π−1[0,m−
(i− 1)]| − 1 and |Π−1[0,m+ i− n]| = |Π−1[0,m+ (i− 1)− n]|+ 1 (i.e., it is possible
that both m− i+ 1 and m+ i− n are pole numbers of Q∞).

Lemma 3.2. For m ≤ n−2
2 + g, it is not possible that dim(mQ∞ − Di,−) =

dim(mQ∞ −Di−1,−)− 1 and dim(mQ∞ −Di,+) = dim(mQ∞ −Di−1,+) + 1.
Proof. We assume that dim(mQ∞ − Di,−) = dim(mQ∞ − Di−1,−) − 1 and

dim(mQ∞ − Di,+) = dim(mQ∞ − Di−1,+) + 1 and derive a contradiction. Sup-
pose we have z1, z2 ∈ H/Fq2 such that (i) (z1) ≥ −mQ∞ + Di−1,−, vQli

(z1) = 0
and (ii) (z2) ≥ −mQ∞ + Di,+, vQli

(z2) = 0. Thus (z1z2) ≥ −2mQ∞ + D −Qli and
vQli

(z1z2) = 0. Now nQ∞−D is a principal divisor of H/Fq2 (e.g., as in the proof of
[14, Proposition VII.4.2]), say nQ∞ −D = (z3). Thus (z1z2z3) ≥ (n− 2m)Q∞ −Qli
and vQli

(z1z2z3) = −1. Hence z1z2z3 ∈ L((2m − n)Q∞ + Qli) \ L((2m − n)Q∞) so
that by [14, Lemma I.4.8]

dim((2m− n)Q∞ +Qli) = dim((2m− n)Q∞) + 1.(6)

Now (2g − 2)Q∞ is a canonical divisor of H/Fq2 (e.g., by [14, Lemma VI.4.4]
or because 2g − 2 is the gth pole number of Q∞ and [14, Proposition I.6.2]). Thus
dim((2m − n)Q∞ + Qli) = 2m − n + 2 − g + dim((2g − 2 − 2m + n)Q∞ − Qli)
by the Riemann–Roch theorem, so from (6), dim((2g − 2 − 2m + n)Q∞ − Qli) =
dim((2m−n)Q∞)−2m+n+g−1. Again, by the Riemann–Roch theorem, dim((2g−
2− 2m+ n)Q∞) = g − 1− 2m+ n+ dim((2m− n)Q∞), so that

dim((2g − 2− 2m+ n)Q∞ −Qli) = dim((2g − 2− 2m+ n)Q∞),

and hence L((2g − 2− 2m+ n)Q∞ −Qli) = L((2g − 2− 2m+ n)Q∞). However, for
2g− 2− 2m+ n ≥ 0, i.e., for m ≤ n−2

2 + g, Fq2 ⊆ L((2g− 2− 2m+ n)Q∞) \ L((2g−
2− 2m+ n)Q∞ −Qli), giving the required contradiction.

Example 3.3. Let q = 3. We show m = 13 is not DLP-tight. From (2), we
have Π[1, 11] = {0, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13}, so that k = 11. From Theorem 2.1,
∇(CL(D,mQ∞)) = 10. Now, from (4),

∇13(CL(D,mQ∞)) = k − |Π−1[0, 0]| − |Π−1[0,−1]| = 10 = ∇(CL(D,mQ∞))

and, similarly, ∇14(CL(D,mQ∞)) = ∇(CL(D,mQ∞)). Thus, s(CL(D,mQ∞)) =
∇(CL(D,mQ∞)) implies that si(CL(D,mQ∞)) = ∇i(CL(D,mQ∞)) for i = 13, 14.
Lemma 3.1 then implies that dim(mQ∞ − D13,−) = |Π−1[0, 0]| = 1, dim(mQ∞ −
D13,+) = 0, dim(mQ∞−D14,−) = 0, and dim(mQ∞−D14,+) = 1, which contradicts
Lemma 3.2. Therefore s(CL(D,mQ∞)) > ∇(CL(D,mQ∞)) and since the coordinate
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order of CL(D,mQ∞) is arbitrary, m is not DLP-tight. We will see in section 5 that
14 and 15 are DLP-tight.

Generalization of the key lemma. Since dim(mQ∞−Di−1,−) ≤ dim(mQ∞−
Di,−) + 1 and dim(mQ∞ −Di,+) ≤ dim(mQ∞ −Di−1,+) + 1 by [14, Lemma I.4.8],
Lemma 3.2 can be restated as follows: for m ≤ n−2

2 +g, either dim(mQ∞−Di−1,−) ≤
dim(mQ∞−Di,−) or dim(mQ∞−Di,+) ≤ dim(mQ∞−Di−1,+). This generalizes as
the following lemma.

Lemma 3.4. For m ≤ n−2
2 + g and 0 < t ≤ i ≤ n, (i) dim(mQ∞ − Di−t,−) ≤

dim(mQ∞ −Di,−) + � t2� or (ii) dim(mQ∞ −Di,+) ≤ dim(mQ∞ −Di−t,+) + � t2�.
Proof. Suppose that dim(mQ∞ − Di,−) < dim(mQ∞ − Di−t,−) − � t2� and

dim(mQ∞ − Di,+) > dim(mQ∞ − Di−t,+) + � t2�. Therefore there are r, s > � t2�
and {i1, . . . , ir}, {j1, . . . , js} ⊆ {i − t + 1, . . . , i} such that dim(mQ∞ − Dik,−) =
dim(mQ∞ − Dik−1,−) − 1 for 1 ≤ k ≤ r and dim(mQ∞ − Djk,+) = dim(mQ∞ −
Djk−1,+) + 1 for 1 ≤ k ≤ s. However, r + s > t so that, since |{i− t+ 1, . . . , i}| = t,
{i1, . . . , ir} ∩ {j1, . . . , js} �= ∅, contradicting Lemma 3.2.

The following application of Lemmas 3.1 and 3.4 is a straightforward consequence
of (3), (4).

Proposition 3.5. For m ∈ J(n, g) and 0 < t ≤ i ≤ n,

s[CL(D,mQ∞)] ≥ ∇i(CL(D,mQ∞)) + |Π−1[m+ i− n− t+ 1,m+ i− n]| −
⌊
t

2

⌋
.

Example 3.6. Let q = 7 andm = 186. Then s[CL(D,mQ∞)] ≥ ∇(CL(D,mQ∞))
+ 2 = 159.We have k = 166 (e.g., by the Riemann–Roch theorem). From (2), the first
few pole numbers of Q∞ are Π[1, 6] = {0, 7, 8, 14, 15, 16}. From Theorem 2.1, we have
∇(CL(D,mQ∞)) = 157. For i = 173, Π−1[0,m−i] = {0, 7, 8} and Π−1[0,m+i−n] =
{0, 7, 8, 14, 15, 16}, so that, from (4), ∇i(CL(D,mQ∞)) = 157 = ∇(CL(D,mQ∞)).
Also, with t = 3, we have Π−1(m+ i− n− t) = {0, 7, 8}. Thus Proposition 3.5 gives

s[CL(D,mQ∞)] ≥ ∇i(CL(D,mQ∞)) + 2 = ∇(CL(D,mQ∞)) + 2 = 159.

We shall see in section 5 that s[CL(D,mQ∞)] = 159.
Improvement on the DLP bound. We show how Proposition 3.5 can be used

to improve on the DLP bound generally. First, we introduce some useful notation:
q2 = 0 if q is even and q2 = 1 if q is odd. For a fixed m ∈ J(n, g), we put M =

m − q2−q2
2 q and write M = M•(q + 1) + M◦, where 0 ≤ M◦ ≤ q. We easily deduce

the following lemma.
Lemma 3.7. (i) For q odd, 0 ≤ M• ≤ q−3

2 and if M• = 0, then M◦ ≥ q−1
2 ; (ii)

for q even, 0 ≤M• ≤ q−2
2 and if M• = q−2

2 , then M◦ = 0.
We begin by reinterpreting Theorem 2.1 in terms of M• and M◦.
Lemma 3.8. For m ∈ J(n, g), the DLP bound is attained at

m+ 1−M•q if 0 ≤M◦ ≤ q−2
2 −M•,

m+ 1− (M• + 1− q2)q if q−1
2 −M• ≤M◦ ≤ q −M• − 1,

m+ 1− (M• + 1)q if q −M• ≤M◦ ≤ q.

Proof. If u, v are defined as in Theorem 2.1, then

(u, v) =




(2q − 2 − 2M• + q2, q − 2M• − 2M◦ − 2) if 0 ≤ M◦ ≤ q−2
2

−M•,
(2q − 3 − 2M• + q2, 2q − 2M• − 2M◦ − 2) if q−1

2
−M• ≤ M◦ ≤ q −M• − 1,

(2q − 4 − 2M• + q2, 3q − 2M• − 2M◦ − 2) if q −M• ≤ M◦ ≤ q.
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The result now follows from the fact that the DLP bound is attained at m− 2g+
1 + �u2 �q.

Next we give our improvement on the DLP bounds for m ∈ J(n, g). The size of
the improvement is given by

∆(m) =




1 +M• +M◦ − q−q2
2 if q−q2

2 −M• ≤M◦ ≤ q−M•−1
2 ,

q+q2
2 −M◦ if q−M•

2 ≤M◦ ≤ q−2+q2
2 ,

1 +M• +M◦ − q if q −M• ≤M◦ ≤ q − M•+1
2 ,

1 + q − q2 −M◦ if q − M•
2 ≤M◦ ≤ q − q2,

0 otherwise.

We note that ∆(m) > 0 if and only if q−q2
2 −M• ≤ M◦ ≤ q−2+q2

2 or q −M• ≤
M◦ ≤ q − q2.

Theorem 3.9. For m ∈ J(n, g), s[CL(D,mQ∞)] ≥ ∇(CL(D,mQ∞)) + ∆(m).
Proof. First assume that q−q2

2 − M• ≤ M◦ ≤ q−2+q2
2 . From Lemma 3.8,

∇(CL(D,mQ∞)) is attained at i = m + 1 − (M• + 1 − q2)q. We take i = m +
1 − (M• + 1 − q2)q and t = 2M• + 2M◦ + 1 − q + q2 in Proposition 3.5. Now
m+ i− t− n = M•q − q2. We have two subcases.

(a) For q−q2
2 −M• ≤ M◦ ≤ q−M•−1

2 we have 0 < t ≤ M• + q2. Now, from (2),
M•q, . . . ,M•q + M• ∈ Π[1,∞), so that |Π−1[m + i− n− t + 1,m + i− n]| = t, and
Proposition 3.5 gives

s[CL(D,mQ∞)]−∇(CL(D,mQ∞)) ≥
⌈
t

2

⌉
= 1 +M• +M◦ − q − q2

2
.

(b) For q−M•

2 ≤ M◦ ≤ q−2+q2
2 we have M• + q2 + 1 ≤ t ≤ 2M• + 2q2 − 1 ≤

q − 1. From (2), M•q + M• + 1, . . . ,M•q + q − 1 /∈ Π(N) since M• ≤ q − 2, so that
|Π−1[m+ i− n− t+ 1,m+ i− n]| = M• + q2, and Proposition 3.5 gives

s[CL(D,mQ∞)]−∇(CL(D,mQ∞)) ≥M•+q2−
(
M• +M◦ − q − q2

2

)
=
q + q2

2
−M◦.

Now suppose that q −M• ≤ M◦ ≤ q − q2. From Lemma 3.8, ∇(CL(D,mQ∞))
is attained at m + 1 − (M• + 1)q. We take i = m + 1 − (M• + 1)q and t = 2M• +
2M◦ − 2q+ 2− q2 in Proposition 3.5. Now m+ i− t− n = (M• + 1− q2)q− (1− q2)
and again we have two subcases.

(a) For q −M• ≤ M◦ ≤ q − M•+1
2 we have 0 < t ≤ M• + 1 − q2. From (2),

(M•+1−q2)q, . . . , (M•+1−q2)q+(M•+1−q2) ∈ Π[1,∞), so that |Π−1[m+ i−n−
t+ 1,m+ i−n]| = t, and Proposition 3.5 gives s[CL(D,mQ∞)]−∇(CL(D,mQ∞)) ≥⌈
t
2

⌉
= 1 +M• +M◦ − q.
(b) For q− M•

2 ≤M◦ ≤ q− q2 we have M•+ 2− q2 ≤ t ≤ 2M•+ 2−3q2 ≤ q− q2.
From (2), (M•+ 1− q2)q+ (M•+ 2− q2), . . . , (M•+ 1− q2) + (q−1) /∈ Π[1,∞), since
M• + 1− q2 ≤ q − 2, so that |Π−1[m+ i− n− t+ 1,m+ i− n]| = M• + 2− 2q2, so
that from Proposition 3.5,

s[CL(D,mQ∞)]−∇(CL(D,mQ∞)) ≥M• + 2− 2q2 − (M• +M◦ − q + 1− q2)

= 1 + q − q2 −M◦.
For m ∈ [n−1

2 + g, n−3
2 + 2g] we put ∆(m) = ∆(m⊥) ≥ 0.

Corollary 3.10. For m ∈ I(n, g), s[CL(D,mQ∞)] ≥ ∇(CL(D,mQ∞)) +
∆(m).
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Proof. The proof is an easy consequence of Theorem 3.9, ∇(C) = ∇(C⊥), and
the definition of ∆(m).

Definition 3.11. Form ∈ I(n, g), we put ∇ı(CL(D,mQ∞)) = ∇(CL(D,mQ∞))+
∆(m).

We note that for m ∈ I(n, g),

∇ı(CL(D,mQ∞)) = ∇ı(CL(D,m⊥Q∞)).(7)

In Table 2 we have written ∇ı(m) for ∇ı(CL(D,mQ∞)), and the DLP bound is
calculated using Theorem 2.1. The bold face entries are those for which∇ı(CL(D,mQ∞))
> ∇(CL(D,mQ∞)). (The values of ∇ı(CL(D,mQ∞)) for m ∈ [n−1

2 + g, n−3
2 + 2g]

can of course be deduced from (7).)

Table 2
∇ı(CL(D,mQ∞)) for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ J(n, g).

q
2 m 4
∇ı(m) 3

3 m 13 14 15
∇ı(m) 11 11 11

4 m 32 33 34 35 36 37
∇ı(m) 26 27 27 28 28 28

5 m 62 63 64 65 66 67 68 69 70 71
∇ı(m) 53 53 54 54 55 56 56 56 56 56

7 m 171 172 173 174 175 176 177 178 179 180
∇ı(m) 151 151 152 153 153 154 155 156 156 156
m 181 182 183 184 185 186 187 188 189 190 191

∇ı(m) 157 157 157 158 159 159 159 159 159 159 159
8 m 256 257 258 259 260 261 262 263 264 265 266 267 268 269
∇ı(m) 228 229 230 231 231 232 233 234 234 234 235 236 236 236
m 270 271 272 273 274 275 276 277 278 279 280 281 282 283

∇ı(m) 237 238 238 238 238 239 239 239 239 240 240 240 240 240

We conclude this section by calculating the proportion of m ∈ I(n, g) for which
∆(m) > 0.

Proposition 3.12.

|∆−1(0,∞)|/|I(n, g)| =
{

1
2 − 1

2q if q is odd,
1
2 − 3q−5

2(q2−q−1) if q is even.

Proof. We note first that |I(n, g)| = 2g + q2 − 1. Recall from the definition of
∆(m) that

∆−1(0,∞) ∩
{
n− 1

2
, . . . ,

n− 2

2
+ g

}
=

{
m :

q − q2
2
−M• ≤M◦ ≤ q − 2 + q2

2
or

q −M• ≤M◦ ≤ q − q2
}
.

Next we note that |∆−1(0,∞)| = 2
∣∣∆−1(0,∞) ∩ J(n, g)

∣∣ . This follows from the
definition of ∆(m) for n−1

2 + g ≤ m ≤ n−3
2 + 2g when q is odd and from n−2

2 + g /∈
∆−1(0,∞) when q is even. Now, fixing 0 ≤M• ≤ q−3

2 , we have∣∣∣∣
{
M◦ :

q − q2
2
−M• ≤M◦ ≤ q − 2 + q2

2
or q −M• ≤M◦ ≤ q − q2

}∣∣∣∣ = 2M• + 1.
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We note that the restriction M◦ ≥ q−1
2 for q odd and M• = 0 from Lemma 3.7 does

not affect this. We also note that for q even and M• = q−2
2 , the restriction of M◦ = 0

in Lemma 3.7 gives |{M◦ : 1 ≤M◦ ≤ q−2
2 or q − q−2

2 ≤M◦ ≤ q}| = 0.
Thus the result follows from

|∆−1(0,∞)| =




2
∑ q−3

2

M•=0(2M• + 1) = (q − 1) + 4
( q−1

2
2

)
= (q−1)2

2

if q is odd,

2
∑ q−4

2

M•=0(2M• + 1) = (q − 2) + 4
( q−2

2
2

)
= (q−2)2

2

if q is even.

Thus, for large q at least, ∇ı(CL(D,mQ∞)) improves on ∇(CL(D,mQ∞)) for
just under half the m ∈ I(n, g). We shall see in section 5 that m is DLP-tight when
∇ı(CL(D,mQ∞)) fails to improve on ∇(CL(D,mQ∞)).

4. A good coordinate order. We describe a “good” coordinate order for Her-
mitian codes, denoting the code in [CL(D,mQ∞)] with this coordinate order by Cm.
After recalling the notions of points of gain and fall for a linear code, we give the most
natural description of the points of gain and fall of Cm in Propositions 4.2 and 4.4.
We conclude by characterizing the points of gain and fall of Cm as “runs” in Theorem
4.10 (which we will use in section 5 to derive a formula for s(Cm)).

The good coordinate order. As noted at the beginning of section 3, for
m ≤ n−2

2 or m ≥ n−2
2 + 2g, all coordinate orders of CL(D,mQ∞) are equally bad

with regard to state complexity. Thus we are interested in m ∈ I(n, g).
Recall that H/Fq2 has n + 1 places of degree one, namely Q∞, and the finite

places of degree one, Q1, . . . , Qn. We put P
1
H = {Q1, . . . , Qn}. Now

CL(D,mQ∞) = {(z(Ql1), . . . , z(Qln)) : z ∈ L(mQ∞)}
for some fixed but arbitrary ordering (Ql1 , . . . , Qln) of P

1
H . Thus the order of P

1
H

determines the coordinate order of CL(D,mQ∞). As in [14], for each (α, β) ∈ Fq2×Fq2

such that βq + β = αq+1, there exists a unique Qαβ ∈ P
1
H such that x(Qαβ) = α and

y(Qαβ) = β.
We now describe an order of P

1
H giving Cm ∈ [CL(D,mQ∞)]. First we relabel

the elements of P
1
H as Qa,b,c for certain integers a, b, c. We write {0, 1, . . . , q − 1} for

Fq, where 0 = 0Fq
. Now for each a ∈ Fq \ {0} there exist βa0, . . . , βa,q−1 ∈ Fq2 and

αa0, . . . , αaq ∈ Fq2 such that βqac + βac = αq+1
ab = a for 0 ≤ c ≤ q − 1 and 0 ≤ b ≤ q.

Thus for each a ∈ Fq \ {0}, 0 ≤ c ≤ q− 1 and 0 ≤ b ≤ q, there exists Qa,b,c ∈ P
1
H such

that x(Qa,b,c) = αa,b and y(Qa,b,c) = βa,c, giving q3 − q elements of P
1
H .

For a = 0 there exist β00, . . . , β0q and α00 = 0 such that βq0c + β0c = αq+1
00 =

0 for 0 ≤ c ≤ q − 1. Thus the remaining q elements of P
1
H , which we write as Q0,0,c

for 0 ≤ c ≤ q − 1, are such that x(Q0,0,c) = 0 and y(Q0,0,c) = β0,c. We note that
Qa,b,c = Qαab,βac

.
When a, b, or c takes any of its possible values we write Q∗,b,c, Qa,∗,c, or Qa,b,∗.

Note that for a = 0 we have b = 0 and for 1 ≤ a ≤ q − 1 we have 0 ≤ b ≤ q. Thus
there are q places of the form Q0,∗,∗ and for 1 ≤ a ≤ q − 1 there are q2 − 1 places of
the form Qa,∗,∗.

We first describe the ordering of P
1
H giving Cm ∈ [CL(D,mQ∞)] for m ∈ J(n, g).

This uses lexicographic order of t-tuples of integers: (i1, . . . , it) < (j1, . . . , jt) if and
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only if there exists u such that i1 = j1, . . . , iu−1 = ju−1 and iu < ju. For 0 ≤ M◦ ≤
q−M•−2

2 or q − M•
2 ≤M◦ ≤ q, Cm is defined by simply using the order

O1: Qa,b,c < Qa′,b′,c′ if (a, b, c) < (a′, b′, c′)

of P
1
H . For q−M•−1

2 ≤ M◦ ≤ q − M•+1
2 , Cm is defined by the “Order O2” of P

1
H :

partition P
1
H into the following three sets:

P
1
1 = {Q1,∗,c : 0 ≤ c ≤ q−q2

2 − 1},
P

1
2 = {Qa,∗,∗ : a �= 1},

P
1
3 = {Q1,∗,c : q−q22 ≤ c ≤ q − 1}.

(8)

Then Order O2 of P
1
H is given by putting P 1

1 < P 1
2 < P 1

3 , ordering P
1
1 and P

1
3 by

Q1,b,c < Q1,b′,c′ if (c, b) < (c′, b′), and ordering P
1
2 by Qa,b,c < Qa′,b′,c′ if (a, b, c) <

(a′, b′, c′).
For m ∈ [n−1

2 + g, n−3
2 + 2g], the coordinate order of Cm is defined to be that of

Cm⊥ .
From now on, Qi denotes the ith element of P

1
H ordered as above. Thus

Cm = {(z(Q1), . . . , z(Qn)) : z ∈ L(mQ∞)}.

The points of gain and fall of Cm. Points of gain and fall were introduced in
[3, 6]. For this paragraph, C is a length n linear code with dimension k. We note that
dim(Ci,−) (as defined in section 2) increases in unit steps from 0 to k and dim(Ci,+)
decreases in unit steps from k to 0 as i increases from 0 to n. If 0 ≤ i ≤ n, then

• i is a point of gain of C if dim(Ci,+) = dim(Ci,+)− 1 and
• i is a point if fall of C if dim(Ci,−) = dim(Ci,−) + 1.

These definitions are motivated by (1). We note that there are k points of gain and k
points of fall. Points of gain and fall describe the local behavior of a minimal trellis
[6], and being able to give a succinct characterization of them for particular families
of codes has been useful in calculating formulae for their state complexity; see, e.g.,
[3, 6]. The same proves to be the case here. We note that, as in [6], i is a point of
gain of Cm if and only if i is the “initial point” of a codeword of Cm, i.e., if and only
if there exists z ∈ L(mQ∞) such that

z(Q1) = · · · = z(Qi−1) = 0 and z(Qi) �= 0.

Similarly, i is a point of fall of Cm if and only if i is the “final point” of a codeword
of Cm, i.e., if and only if there exists z ∈ L(mQ∞) such that

z(Qi) �= 0 and z(Qi+1) = · · · = z(Qn) = 0.

We write Pgain(C) and Pfall(C) for the sets of points of gain and fall of C. With

P i,−gain(C) = |Pgain(C) ∩ [1, i]| and P i,−fall (C) = |Pfall(C) ∩ [1, i]| we have

si(C) = P i,−gain(C)− P i,−fall (C).(9)

We also write Pgain(m) := Pgain(Cm) and Pfall(m) := Pfall(Cm). We will need a
function Λ closely related to Π. Define Λ : [0,∞)× [0, q − 1] −→ [0,∞) by

Λ(j, l) = jq + l(q + 1).
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We have Π[1,∞) = Im(Λ) from [14]. We note that

Λ−1[0,m] = {(j, l) ∈ Z× Z : j ≥ 0, 0 ≤ l ≤ q − 1, jq + l(q + 1) ≤ m}
and for m < n, k = dim(Cm) = |Λ−1[0,m]| [14, Proposition VII.4.3]. For 0 ≤ a ≤
q − 1, we put

A(a) =

{ {α00} for a = 0,
{αab : 0 ≤ b ≤ q} for 1 ≤ a ≤ q − 1

and B(a) = {βac : 0 ≤ c ≤ q − 1}. Thus P
1
H = {Qαβ : 0 ≤ a ≤ q − 1, α ∈ A(a), β ∈

B(a)}. We also put A =
⋃q−1
a=0A(a) and B =

⋃q−1
a=0B(a). We will determine the initial

and final points of certain z ∈ H/Fq2 of the form

z = (x− α0) · · · (x− αl−1)(y − β0) · · · (y − βj−1),

where α0, . . . , αl−1 ∈ A and β0, . . . , βj−1 ∈ B. Note that (x − αab)(Qa′,b′,∗) =
0 if and only if a = a′, b = b′ and (y − βac)(Qa′,∗,c′) = 0 if and only if a = a′, c =
c′. Of course, we are interested in when (z(Q1), . . . , z(Qn)) ∈ Cm, i.e., when z ∈
L(mQ∞).

Lemma 4.1. If (j, l) ∈ Λ−1[0,m], α0, . . . , αj−1 ∈ A and β0, . . . , βl−1 ∈ B, then
(x− α0) · · · (x− αj−1)(y − β0) · · · (y − βl−1) ∈ L(mQ∞).

Proof. We put zjl = (x − α0) · · · (x − αj−1)(y − β0) · · · (y − βl−1) ∈ L(mQ∞).
Using the facts that (i) vQ∞(x) = −q and vQ∞(y) = −(q+1), (ii) for Q ∈ PH \{Q∞},
vQ(x) ≥ 0 and vQ(y) ≥ 0, and (iii) for α ∈ Fq2 and Q ∈ PH , vQ(α) = 0, we get
vQ∞(zjl) = −Λ(j, l) and vQ(zjl) ≥ 0 for all Q ∈ PH \ {Q∞}. Hence (j, l) ∈ Λ−1[0,m]
implies that zjl ∈ L(mQ∞).

Proposition 4.2 (O1 ordering of P
1
H). For m ∈ J(n, g) with 0 ≤M◦ ≤ q−M•−2

2

or q − M•
2 ≤M◦ ≤ q,

1. Pgain(m) = {jq + l + 1 : (j, l) ∈ Λ−1[0,m]} and
2. Pfall(m) = {n− jq − l : (j, l) ∈ Λ−1[0,m]} = n− Pgain(m) + 1.
Proof. We order the set A by αab < αa′b′ if and only if (a, b) < (a′, b′). Thus

αab < αa′b′ if and only if Qa,b,∗ < Qa′,b′,∗. For 0 ≤ d ≤ q2 − 1, we write αd for the
(d+1)st element of A. Thus α0 = α00, α1 = α10, . . . , αq+1 = α1q, . . . , αq2−1 = αq−1,q.
For 0 ≤ d ≤ q2 − 1, we define a(d) by αa(d)b = αd for some b. Thus a(0) = 0, a(1) =
· · · = a(q + 1) = 1, . . . , a(q2 − q − 1) = · · · = a(q2 − 1) = q − 1. Then for 1 ≤ i ≤ q3,
writing i− 1 = dq + c, where 0 ≤ d ≤ q2 − 1 and 0 ≤ c ≤ q − 1, we have

Qi = Qαd,βa(d)c
.

Thus

(x− αd)(Qi) = 0 if and only if dq + 1 ≤ i ≤ (d+ 1)q

and

(y − βac)(Qi) = 0 if and only if i = dq + c+ 1, where a(d) = a.

We begin with Pgain(m). For (j, l) ∈ Λ−1[0,m] we put

ugain
j = (x−α0) · · · (x−αj−1), vgain

jl = (y−βa(j),0) · · · (y−βa(j),l−1), zgain
jl = ugain

j vgain
jl .
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We note that jq ≤ Λ(j, l) ≤ m ≤ n−2
2 + g = q3+q2−q−2

2 , which implies that j <
q2+q−1

2 ≤ q2, so that ugain
j , vgain

jl , and zgain
jl are well-defined for all (j, l) ∈ Λ−1[0,m].

Now ugain
j (Qi) = 0 if and only if 1 ≤ i ≤ jq, vgain

jl (Qi) = 0 for jq+ 1 ≤ i ≤ jq+ l, and

vgain
jl (Qjq+l+1) �= 0. Hence the initial point of zgain

jl is jq + l + 1 so that jq + l + 1 ∈
Pgain(m). Also, by Lemma 4.1, zgain

jl ∈ L(mQ∞). Finally, each (j, l) ∈ Λ−1[0,m] gives

a different point of gain of Cm and, since |Λ−1[0,m]| = k, these are all the points of
gain, and similarly for points of fall.

We use Proposition 4.2 to determine s(Cm) for q = 2 and m ∈ [n−1
2 , n−3

2 + g]. To
do this we use (9) and so we put

P i,−gain(m) := P i,−gain(Cm) and P i,−fall (m) := P i,−fall (Cm).

Example 4.3. If q = 2, then Pgain(4) = [1, 3] ∪ {5} and Pfall(4) = {4} ∪ [6, 8],
giving s(C4) = 3. (Thus C4 is our first example of a geometric Goppa code with
s(C4) < W(C4). Also, s(C4) = ∇(C4), where the latter is given by Theorem 2.1.)

Proof. The coordinate order of C4 is Q0,0,0 < Q0,0,1 < Q1,0,0 < Q1,0,1 < Q1,1,0 <
Q1,1,1 < Q1,2,0 < Q1,2,1. In the notation of Proposition 4.2, we have α0 = α0,0, α1 =
α1,0, α2 = α1,1, α3 = α1,2. Thus a(0) = 0 and a(1) = a(2) = a(3) = 1. Also
Λ−1[0, 4] = {(0, 0), (1, 0), (0, 1), (2, 0)}, and k = 4.

Now Pgain(4) is the set of initial points of zgain
jl , where (j, l) ∈ Λ−1[0, 4]. These

are given in the table below. The third column in the table gives the “initial place,”
i.e., the Qa,b,c, such that Qa,b,c = Qi, where i is the initial point.

(j, l) zgain
jl Initial place Initial point

(0, 0) 1 Q0,0,0 1
(1, 0) (x− α0) Q1,0,0 3
(0, 1) (y − β0,0) Q0,0,1 2
(2, 0) (x− α0)(x− α1) Q1,1,0 5

Thus Pgain(4) = [1, 3]∪{5}. Also Pfall(4) is given by the final points of zfall
jl such that

(j, l) ∈ Λ−1[0, 4], as follows.

(j, l) zfall
jl Final place Final point

(0, 0) 1 Q1,2,1 8
(1, 0) (x− α3) Q1,1,1 6
(0, 1) (y − β1,1) Q1,2,0 7
(2, 0) (x− α2)(x− α3) Q1,0,1 4

Thus Pfall(4) = {4} ∪ [6, 8]. Hence, using (9) we have

i 0 1 2 3 4 5 6 7 8

P i,−gain(4) 0 1 2 3 3 4 4 4 4

P i,−fall (4) 0 0 0 0 1 1 2 3 4
si(C4) 0 1 2 3 2 3 2 1 0

giving s(C4) = 3.

For m ∈ J(n, g) such that q−M•−1
2 ≤M◦ ≤ q − M•+1

2 we put

ζgain =
q − q2

2
and ζfall =

q + q2
2

.
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Proposition 4.4 (O2 ordering of P
1
H). For m ∈ J(n, g) with q−M•−1

2 ≤ M◦ ≤
q − M•+1

2 , Pgain(m) = P 1
gain(m) ∪ P 2

gain(m) and Pfall(m) = P 1
fall(m) ∪ P 2

fall(m), where

P 1
gain(m) = {l(q + 1) + j + 1 : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζgain − 1},
P 2

gain(m) = {ζgain(q + 1) + jq + l + 1 : (j, l) ∈ Λ−1[0,m− ζgain(q + 1)]},
P 1

fall(m) = {n− l(q + 1)− j : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζfall − 1},
P 2

fall(m) = {n− ζfall(q + 1)− jq − l : (j, l) ∈ Λ−1[0,m− ζfall(q + 1)]}.
Proof. We recall that P 1

1 , P 1
2 , and P 1

3 were defined in (8). We note that
• for 1 ≤ i ≤ ζgain(q + 1), Qi ∈ P

1
1, so that writing i− 1 = c(q + 1) + b, where

0 ≤ c ≤ ζgain − 1 and 0 ≤ b ≤ q, Qi = Q1,b,c;
• for ζgain(q + 1) + 1 ≤ i ≤ ζgain(q + 1) + q3 − q2 − q, Qi ∈ P

1
2; and

• for ζgain(q + 1) + q3 − q2 − q ≤ i ≤ q3, Qi ∈ P
1
3.

We begin by showing that P 1
gain(m) ⊆ Pgain(m). For (j, l) ∈ Λ−1[0,m] such that

0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1 we exhibit an element of L(mQ∞) with initial point
l(q + 1) + j + 1. Put

ugain
j = (x−α1,0) · · · (x−α1,j−1), vgain

l = (y−β1,0) · · · (y−β1,l−1), zgain
jl = ugain

j vgain
l .

Thus vgain
l (Qa,∗,c) = 0 if and only if a = 1, and 0 ≤ c ≤ l − 1 and ugain(Qa,b,∗) = 0

if and only if a = 1, and 0 ≤ b ≤ j − 1. Therefore vgain
l (Qi) = 0 if and only

if 1 ≤ i ≤ l(q + 1), ugain
j (Qi) = 0 for l(q + 1) + 1 ≤ i ≤ l(q + 1) + j (taking

c = l ≤ ζgain), and ugain
j (Ql(q+1)+j+1) �= 0 (taking c = l and b = j ≤ q). Hence the

initial point of zgain
jl is l(q + 1) + j + 1. Also, from Lemma 4.1, zgain

jl ∈ L(mQ∞), so

that P 1
gain(m) ⊆ Pgain(m).

Next we show that P 2
gain(m) ⊆ Pgain(m). We order A \ A(1) by αab < αa′b′ if

and only if (a, b) < (a′, b′) and write αd for the (d + 1)st element of A \ A(1), where
0 ≤ d ≤ q2 − q − 2. (This is different from the labelling in the proof of Proposition
4.2 since we do not include A(1) in the relabelling.) We define a(d) by αa(d)b = αd
for some b. Then, for ζgain(q + 1) + 1 ≤ i ≤ ζgain(q + 1) + q3 − q2 − q, writing i− 1 =
ζgain(q+1)+dq+c, where 0 ≤ d ≤ q2−q−2 and 0 ≤ c ≤ q−1, we have Qi = Qαd,βa(d)c

.

We put wgain = (y − β1,0) · · · (y − β1,ζgain−1). For (j, l) ∈ Λ−1[0,m− ζgain(q + 1)], set

(ugain)′j = (x− α0) · · · (x− αj−1), (vgain)′jl = (y − βa(j),0) · · · (y − βa(j),l−1),

zgain
j,l+ζgain

= wgain(ugain)′j(v
gain)′jl.

We note that jq ≤ Λ(j, l) ≤ m − ζgain(q + 1) ≤ q3−q−1
2 , which implies that

j ≤ q2 − q − 2. Thus (ugain)′j , (vgain)′jl, and zgain
j,l+ζgain

are well-defined for all (j, l) ∈
Λ−1[0,m − ζgain(q + 1)]. Now wgain(Qi) = 0 if and only if 1 ≤ i ≤ ζgain(q + 1).
Also (ugain)′j(Qαdβa(d)c

) = 0 if and only if 0 ≤ d ≤ j − 1 and 0 ≤ c ≤ q − 1,

and (vgain)′jl(Qαdβa(d)c
) = 0 if and only if a(d) = a(j) and 0 ≤ c ≤ l − 1. Thus

(ugain)′j(Qi) = 0 if and only if ζgain(q+ 1) + 1 ≤ i ≤ ζgain(q+ 1) + jq, (vgain)′jl(Qi) = 0

for ζgain(q+1)+jq+1 ≤ i ≤ ζgain(q+1)+jq+ l and (vgain)′jl(Qζgain(q+1)+jq+l+1) �= 0.

Therefore the initial point of zgain
j,l+ζgain

is ζgain(q + 1) + jq + l + 1. Also, by Lemma

4.1, wgain ∈ L(ζgain(q + 1)Q∞) and (zgain
j,l+ζgain

/w) ∈ L((m− ζgain(q + 1))Q∞). Hence

zgain
j,l+ζgain

∈ L(mQ∞), P 2
gain ⊆ Pgain(m), and P 1

gain(m) ∪ P 2
gain(m) ⊆ Pgain(m).
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Therefore it remains to show that |P 1
gain(m)∪P 2

gain(m)| = k. To do this we exhibit

a bijection Λ−1[0,m]→ P 1
gain(m)∪P 2

gain(m). First, for (j, l) ∈ Λ−1[0,m] we map (j, l)

to l(q+ 1) + j + 1 ∈ P 1
gain(m) if 0 ≤ j ≤ q and 0 ≤ l ≤ ζgain− 1. Now we are left with

defining a bijection F

{(j, l) ∈ Λ−1[0,m] : 0 ≤ j ≤ q, ζgain ≤ l ≤ q − 1 or j ≥ q + 1} → P 2
gain(m) by

F (j, l) =

{
ζgain(q + 1) + jq + (l − ζgain) + 1 if ζgain ≤ l ≤ q − 1,
ζgain(q + 1) + (j − q − 1)q + (l + q+q2

2 ) + 1 if 0 ≤ l ≤ ζgain − 1.

It is easy to check that F maps into P 2
gain(m) and F is one-to-one since for ζgain ≤

l ≤ q − 1 and 0 ≤ l′ ≤ ζgain − 1, 0 ≤ l − ζgain ≤ q+q2
2 − 1 < q+q2

2 ≤ l′ + q+q2
2 ≤ q − 1.

Finally we prove F is onto. For i ∈ P 2
gain(m), such that i = ζgain(q + 1) + jq + l + 1

for (j, l) ∈ Λ−1[0,m− ζgain(q + 1)], we put

(j′, l′) =

{
(j, l + ζgain) if 0 ≤ l ≤ q+q2

2 − 1,
(j + q + 1, l − q+q2

2 ) if q+q2
2 ≤ l ≤ q − 1.

It is straightforward to see that (i) (j′, l′) ∈ Λ−1[0,m]; (ii) if j′ ≤ q, then ζgain ≤ l′ ≤
q − 1; and (iii) F ((j′, l′)) = i. This completes the proof for Pgain(m), and similarly
for the points of fall.

Example 4.5. If q = 3, then Pgain(13) = [1, 9] ∪ {11, 14} and Pfall(13) = {16} ∪
[18, 27], giving s(C13) = W(C13) = ∇ı(CL(D, 13Q∞)) = 11 using Theorem 3.9, but
s(C13) = ∇(C13) + 1.

Proof. The coordinate order of C13 is

Q1,0,0 < Q1,1,0 < Q1,2,0 < Q1,3,0 < Q0,0,0 < Q0,0,1 < Q0,0,2 < Q2,0,0 < Q2,0,1

< Q2,0,2 < Q2,1,0 < Q2,1,1 < Q2,1,2 < Q2,2,0 < Q2,2,1 < Q2,2,2 < Q2,3,0 < Q2,3,1

< Q2,3,2 < Q1,0,1 < Q1,1,1 < Q1,2,1 < Q1,3,1 < Q1,0,2 < Q1,1,2 < Q1,2,2 < Q1,3,2.

We use the notation of the proof of Proposition 4.4. We note that ζgain = 1. Thus
for 0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1, jq + l(q + 1) ≤ 9 ≤ 13, so that (j, l) ∈ Λ−1[0, 13].

Thus P 1
gain(13) is the set of initial points of zgain

j,0 for 0 ≤ j ≤ 3, which are as follows.

(j, l) zgain
jl Initial place Initial point

(0, 0) 1 Q1,0,0 1
(1, 0) (x− α1,0) Q1,1,0 2
(2, 0) (x− α1,0)(x− α1,1) Q1,2,0 3
(3, 0) (x− α1,0)(x− α1,1)(x− α1,2) Q1,3,0 4

Thus P 1
gain(13) = [1, 4]. Next we consider P 2

gain(13). Now we have

α0 = α0,0, α1 = α2,0, α2 = α2,1, α3 = α2,2, α4 = α2,3

so that a(0) = 0, a(1) = a(2) = a(3) = a(4) = 2. Then P 2
gain(13) is the set of initial

points of zgain
j,l+ζgain

such that (j, l) ∈ Λ−1[0, 13− ζgain(q + 1)] = Λ−1[0, 9] and

Λ−1[0, 9] = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)},
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giving the following.

(j, l + 1) zgain
j,l+1 Initial place Initial point

(0, 1) (y − β1,0) Q0,0,0 5
(1, 1) (y − β1,0)(x− α0) Q2,0,0 8
(0, 2) (y − β1,0)(y − β0,0) Q0,0,1 6
(2, 1) (y − β1,0)(x− α0)(x− α1) Q2,1,0 11
(1, 2) (y − β1,0)(x− α0)(y − β2,0) Q2,0,1 9
(0, 3) (y − β1,0)(y − β0,0)(y − β0,1) Q0,0,2 7
(3, 1) (y − β1,0)(x− α0)(x− α1)(x− α2) Q2,2,0 14

Thus P 2
gain(13) = {5, 8, 6, 11, 9, 7, 14} = [5, 9]∪{11, 14} and Pgain(13) = [1, 9]∪{11, 14},

and similarly for Pfall(13). We have Pgain(13) < Pfall(13) and so s(C13) = 11.

From Propositions 4.2 and 4.4 we have that, if (i) 0 ≤ M◦ ≤ q−M•−2
2 or (ii)

q − M•
2 ≤ M◦ ≤ q or (iii) ζgain = ζfall and q−M•−1

2 ≤ M◦ ≤ q − M•+1
2 , then

Pfall(m) = n− Pgain(m) + 1. In these cases the following useful property holds.
Remark 4.6. For a length n code C, if Pfall(C) = n − Pgain(C) + 1, then

sn−i(C) = si(C) for 0 ≤ i ≤ n. In particular, for m ∈ J(n, g), if (i) q is odd and

0 ≤ M◦ ≤ q−M•−2
2 or q − M•

2 ≤ M◦ ≤ q or (ii) q is even and 0 ≤ M◦ ≤ q, then
si(Cm) = sn−i(Cm) for 0 ≤ i ≤ n. The same holds for m ∈ [n−1

2 + g, n−3
2 + 2g] if m⊥

satisfies (i) or (ii).
Proof. The proof is similar to that of [6, Proposition 2.5] and in fact can be

modified to hold for branch complexity as in [6, Proposition 2.5]. We put P i,+gain(C) =

|Pgain(C)∩ [i+1, n]| and P i,+fall (C) = |Pfall(C)∩ [i+1, n]|. Of course, with k = dim(C),

P i,+gain(C) = k − P i,−gain(C) and P i,+fall (C) = k − P i,−fall (C)

for any linear code C. The condition Pfall(C) = n− Pgain(C) + 1 also implies that

P i,−gain(C) = Pn−i,+fall (C) and P i,−fall (C) = P i,+gain(C).

Thus, from (9), we have

si(C) = Pn−i,+fall (C)− P i,+gain(C)

= (k − Pn−i,−fall (C))− (k − Pn−i,−gain (C)) = sn−i(C).

Remark 4.7. If C ∈ [CL(D, 14Q∞)] is ordered by O1, then as in the proof
of Proposition 4.2 Pgain(C) = [1, 11] ∪ {13} and Pfall(C) = {15} ∪ [17, 27], so that
s(C) = 12. However, if C is ordered by O2, Pgain(14) = [1, 9] ∪ [11, 12] ∪ {14} and
Pfall(14) = {13, 16} ∪ [18, 27], giving s(C14) = W(C14) − 1 = ∇(C14) = 11. Thus O2
is strictly better than O1 for m=14.

If C ∈ [CL(D, 15Q∞)] is ordered by O1, then as in the proof of Proposition
4.2, Pgain(15) = [1, 11] ∪ {13, 16} and Pfall(15) = {12, 15} ∪ [17, 27], giving s(C15) =
∇(C15) = W(C15) − 2 = 11. However, if C is ordered by O2, we get Pgain(15) =
[1, 12] ∪ {14} and Pfall(15) = {13} ∪ [18, 27], giving s(C15) = 12. Thus O1 is strictly
better than O2 for m = 15.

To summarize, for q = 2, 3 andm ∈ J(n, g) ⊆ I(n, g), s(Cm) = ∇ı(CL(D,mQ∞)).
Thus, in these cases s(Cm) = s[CL(D,mQ∞)], and the coordinate order for Cm is
optimal with regard to s(Cm). In fact, except for q = 3 and m ∈ {11, 18}, s(Cm) =
∇(Cm) < W(Cm).
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Another characterization of the points of gain and fall of Cm. We now
characterize Pgain(m) and Pfall(m) as runs, i.e., as sequences of noncontiguous intervals
of integers. This is useful since s(Cm) must be attained at the end of a run of points
of gain. Thus to determine s(Cm), we need only to find the maximum of si(Cm) over
those i that end a run of points of gain, i.e. over those i such that i ∈ Pgain(m) and
i+ 1 /∈ Pgain(m).

We begin by combining Propositions 4.2 and 4.4 for a common development of the
cases (i) 0 ≤M◦ ≤ q−M•−2

2 or q− M•
2 ≤M◦ ≤ q and (ii) q−M•−1

2 ≤M◦ ≤ q− M•+1
2 .

First, we extend the definitions of ζgain and ζfall as follows:

ζgain =




0 for 0 ≤M◦ ≤ q−M•−2
2 ,

q−q2
2 for q−M•−1

2 ≤M◦ ≤ q − M•+1
2 ,

q for q − M•
2 ≤M◦ ≤ q

and

ζfall =




0 for 0 ≤M◦ ≤ q−M•−2
2 ,

q+q2
2 for q−M•−1

2 ≤M◦ ≤ q − M•+1
2 ,

q for q − M•
2 ≤M◦ ≤ q.

Proposition 4.8. For m ∈ J(n, g), Pgain(m) = P 1
gain(m) ∪ P 2

gain(m) and

Pfall(m) = P 1
fall(m) ∪ P 2

fall(m), where

P 1
gain(m) = {l(q + 1) + j + 1 : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζgain − 1},
P 2

gain(m) = {ζgain(q + 1) + jq + l + 1 : (j, l) ∈ Λ−1[0,m− ζgain(q + 1)]},
P 1

fall(m) = {n− l(q + 1)− j : (j, l) ∈ Λ−1[0,m], 0 ≤ j ≤ q, 0 ≤ l ≤ ζfall − 1},
P 2

fall(m) = {n− ζfall(q + 1)− jq − l : (j, l) ∈ Λ−1[0,m− ζfall(q + 1)]}.
Proof. From the examples above and Remark 4.7, we can assume that q ≥ 4.

For q−M•−2
2 ≤ M◦ ≤ q − M•+1

2 , the result is just a restatement of Proposition

4.4. Also, for 0 ≤ M◦ ≤ q−M•−1
2 , the result states that Pgain(m) = P 2

gain(m) =

{jq + l + 1 : (j, l) ∈ Λ−1[0,m]} and Pfall(m) = P 2
fall(m) = {n − jq − l : (j, l) ∈

Λ−1[0,m]}, in agreement with Proposition 4.2. Therefore we are reduced to m such
that q − M•

2 ≤ M◦ ≤ q for which ζgain = ζfall = q. Rewriting j′q + l′ + 1 as
q(q+ 1) + (j′ − q− 1)q+ l′ + 1 and q(q+ 1) + jq+ l+ 1 as (j + q+ 1)q+ l+ 1, we see
that P 1

gain(m) = {j′q + l′ + 1 : (j′, l′) ∈ Λ−1[0,m], 0 ≤ j′ ≤ q}.
We claim that P 2

gain(m) = {j′q + l′ + 1 : (j′, l′) ∈ Λ−1[0,m], j′ ≥ q + 1}. First, if

0 ≤ j ≤ q and 0 ≤ l ≤ q − 1, then (j, l) ∈ Λ−1[0,m] since q ≥ 4. Thus we need to
show that

{j′q+ l′+ 1 : 0 ≤ j′ ≤ q, 0 ≤ l′ ≤ q− 1} = {l(q+ 1) + j+ 1 : 0 ≤ j ≤ q, 0 ≤ l ≤ q− 1}.
If k is in the left-hand side, k = j′q + l′ + 1 for some 0 ≤ j′ ≤ q and 0 ≤ l′ ≤ q − 1.
Put

(j, l) =

{
(l′ − j′ + q + 1, j′ − 1) if 0 ≤ l′ < j′,
(l′ − j′, j′) if j′ ≤ l′ ≤ q − 1.

In either case, 0 ≤ j ≤ q, 0 ≤ l ≤ q− 1 and l(q+ 1) + j + 1 = j′q+ l′ + 1 = k, so that
k is in the right-hand side. The reverse inclusion is similar. The result now follows
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from Proposition 4.2 since for q − M•
2 ≤ M◦ ≤ q, P 1

fall(m) = n − P 1
gain(m) + 1 and

P 2
fall(m) = n− P 2

fall(m) + 1.
Lemma 4.9. If θgain = M• + M◦ − ζgain and θfall = M• + M◦ − ζfall, then

0 ≤ θgain ≤ q − 2 and −1 ≤ θfall ≤ q − 2.
Proof. The proof is straightforward using Lemma 3.7.
Theorem 4.10. For m ∈ J(n, g),
1. Pgain(m) is the union of

(a) [1,m− 2g − θgain];
(b) {m− 2g − θgain + eq + f + 1 : 0 ≤ e ≤ q − 2− θgain, 0 ≤ f ≤ q − 2− e};

and
(c) {m−2g−θgain +eq+f +1 : q−1−θgain ≤ e ≤ q−1, 0 ≤ f ≤ q−1−e};
and

2. Pfall(m) is the union of
(a) [n−m+ 2g + θfall + 1, n];
(b) {n−m+ 2g+ θfall− eq−f : 0 ≤ e ≤ q−2− θfall, 0 ≤ f ≤ q−2− e}; and
(c) {n−m+ 2g+ θfall− eq− f : q− 1− θfall ≤ e ≤ q− 1, 0 ≤ f ≤ q− 1− e}.

Proof. As in the proof of Proposition 4.8, we assume that q ≥ 4. We will use the
fact that

m− 2g − θgain = ζgain(q + 1) +

(
q2 − q2

2
+M• − q + 1− ζgain

)
q.(10)

For convenience we put R1
gain(m) = [1,m− 2g− θgain], R2

gain(m) = {m− 2g− θgain +

eq + f + 1 : 0 ≤ e ≤ q − 2 − θgain, 0 ≤ f ≤ q − 2 − e}, and R3
gain(m) = {m − 2g −

θgain + eq + f + 1 : q − 1− θgain ≤ e ≤ q − 1, 0 ≤ f ≤ q − 1− e}.
We show that R1

gain(m) ⊆ Pgain(m) in two steps. First we note that P 1
gain(m) =

[1, ζgain(q + 1)], since for q ≥ 4, 0 ≤ j ≤ q and 0 ≤ l ≤ ζgain − 1 ≤ q − 1, Λ(j, l) ≤
2q2 − 1 < n−1

2 ≤ m. Next we show that [ζgain(q + 1) + 1,m− 2g − θgain] ⊆ P 2
gain(m).

Now from (10) we have that for ζgain(q + 1) + 1 ≤ k ≤ m− 2g − θgain,

k = ζgain(q + 1) + jq + l + 1 for some 0 ≤ j ≤
(
q2 − q2

2
+M• − q − ζgain

)
and 0 ≤ l ≤ q − 1.

Also, if 0 ≤ j ≤
(
q2−q2

2 +M• − q − ζgain
)

and 0 ≤ l ≤ q − 1, then, again using (10),

Λ(j, l) ≤
(
q2 − q2

2
+M• − q − ζgain

)
q+ (q− 1)(q+ 1) = m− θgain− ζgain(q+ 1)− 1,

so that (j, l) ∈ Λ−1[0,m − ζgain(q + 1)]. Thus k ∈ P 2
gain(m). Next we show that

R2
gain(m) ∪ R3

gain(m) ⊆ P 2
gain(m). Take k = m− 2g − θgain + eq + f + 1. Then, from

(10), k = ζgain(q+1)+ jq+ l+1, where j = ( q
2−q2
2 +M•−q+1−ζgain +e) and l = f.

Also, again using (10), Λ(j, l) = m − 2g − θgain − ζgain(q + 1) + (e + f)q + f. Thus
k ∈ P 2

gain(m) if (e+f)q+f ≤ 2g+θgain. If 0 ≤ e ≤ q−2−θgain and 0 ≤ f ≤ q−2−e,
then (e + f)q ≤ (q − 2)q = 2g − q and f ≤ q − 2, so that R2

gain(m) ⊆ P 2
gain(m). If

q − 1− θgain ≤ e ≤ q − 1 and 0 ≤ f ≤ q − 1− e, then (e+ f)q ≤ 2g and f ≤ θgain, so
that R3

gain(m) ⊆ P 2
gain(m).

Thus
⋃3
i=1R

i
gain(m) ⊆ Pgain(m), and it suffices to show that |⋃3

i=1R
i
gain(m)| =

|Pgain|. We recall that |Pgain| = dim(Cm) and since 2g − 2 < m < n, dim(Cm) =
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m− g + 1. Also,∣∣∣∣∣
3⋃
i=1

Rigain(m)

∣∣∣∣∣ = (m−2g−θgain)+

q−1∑
e=0

(q−1−e)+(θgain+1) = m−2g+1+

q−1∑
e=0

e = m−g+1.

The proof for Pfall(m) is similar and we omit the details.

5. When the DLP bound is tight. Here we use Theorem 4.10 to determine
s(Cm). We know (from Corollary 3.10 and Proposition 3.12) that s[CL(D,mQ∞)] >
∇(Cm) for just under half of the m in the range I(n, g). We show that for the
remaining m in this range, s(Cm) = ∇(Cm). As a consequence, we have determined
s[CL(D,mQ∞)] and a coordinate order that achieves s[CL(D,mQ∞)] for such m.
For those m with s(Cm) > ∇(CL(D,mQ∞)) we compare the upper bound, s(Cm),
on s[CL(D,m∞)] with the lower bound ∇ı[(CL(D,mQ∞)] given in Corollary 3.10.
When q is odd, these bounds meet for over three quarters of those m in I(n, g), but
when q is even, the bounds meet for only a little over one half of those m in I(n, g).

Determining s(Cm). As discussed in section 4, it suffices to find the maximum
of si(Cm) over those i such that i ∈ Pgain(m) and i + 1 /∈ Pgain(m). From Theorem
4.10, there are only q + 1 such i. Thus concentrating on these i is significantly
simpler. Therefore we calculate si(Cm) for these q+ 1 values of i (in Proposition 5.5)
by determining P i,−gain(m) and P i,−fall (m) (in Lemmas 5.1 and 5.4). We determine which
of these i gives the largest si(Cm) (in Lemma 5.6). This enables us to write down
s(Cm) (in Theorem 5.7).

Early on we introduce a variable η = η(m) which plays a crucial role in the
proofs and statements of many of the results, and we end with a table of s(Cm) for
m ∈ [n−1

2 , n−3
2 + g] when q ∈ {2, 3, 4, 5, 7, 8}.

We begin by determining s(Cm) for m ∈ J(n, g). We note first that θgain =
M• +M◦ − ζgain and θfall = M• +M◦ − ζfall, where ζgain and ζfall were defined just
before Proposition 4.8.

As noted above, si(Cm) = s(Cm) for some i such that i ∈ Pgain(m) and i + 1 /∈
Pgain(m). From Theorem 4.10 such i are either (i) of the form m− 2g − θgain + eq +
(q−1−e) for some −1 ≤ e ≤ q−2−θgain or (ii) of the form m−2g+θgain +eq+(q−e)
for some q − 1− θgain ≤ e ≤ q − 1. Thus putting

ie =

{
m− 2g − θgain + eq + (q − 1− e) for −1 ≤ e ≤ q − 2− θgain,
m− 2g − θgain + eq + (q − e) for q − 1− θgain ≤ e ≤ q − 1,

we have

s(Cm) = max{sie(Cm) : −1 ≤ e ≤ q − 1}.(11)

From (9), sie(Cm) = P ie,−gain (m) − P ie,+gain (m), so we wish to determine P ie,−gain (m) and

P ie,−fall (m) for −1 ≤ e ≤ q − 1. The first of these is straightforward.
Lemma 5.1. For m ∈ J(n, g),

P ie,−gain (m) =

{
k − (

q−e
2

)
+ (q − 2− θgain − e) for −1 ≤ e ≤ q − 2− θgain,

k − (
q−e
2

)
for q − 1− θgain ≤ e ≤ q − 1.

Proof. Since 2g − 2 < m < n we have k = m− g + 1. For −1 ≤ e ≤ q − 2− θgain,
Theorem 4.10 gives

P ie,−gain (m) = m− 2g − θgain +

e∑
ν=0

(q − 1− ν) = k − g − (θgain + 1) +

q−1∑
ν=q−1−e

ν.
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The first case follows since
∑q−1
ν=q−1−e ν = g−(q−1−e

2

)
and

(
q−1−e

2

)
=
(
q−e
2

)−(q−1−e).
In the second case,

P ie,−gain (m) = m− g + 1−
(
q − e

2

)
− (q − 2− θgain − e)− (e− (q − 2− θgain)).

For P ie,−fall (m) it is convenient to introduce some more notation. For fixed m we put

ζnorm =
ζgain + ζfall

q
.

Thus ζnorm is 0, 1, or 2, depending on whether 0 ≤M◦ ≤ q−M•−2
2 , q−M

•−1
2 ≤M◦ ≤

q − M•+1
2 , or q − M•

2 ≤M◦ ≤ q. Also, we put

η = 2q − 2M• + q2 − ζnorm − 3.

In Lemma 5.4 and Proposition 5.5 we will see a symmetry between the roles of e in
P ie,−gain (m) and η−e in P ie,−fall (m). We will see in Lemma 5.6 that sie(Cm) is maximized
near η

2 , and hence η appears naturally in our formula for s(Cm).
Lemma 5.2. q − 1 ≤ η ≤ 2q − 3.
Proof. First, it follows from Lemma 3.7 that

η ≥



2q − (q − 3) + 1− 2− 3 = q − 1 if q is odd,
2q − (q − 4)− 2− 3 = q − 1 if q is even and M◦ > 0,
2q − (q − 2)− 3 = q − 1 if q is even and M◦ = 0


 = q − 1.(12)

Next, clearly η ≤ 2q − 2, with equality only if M• = ζnorm = 0 and q2 = 1. However,
from Lemma 3.7, if M• = 0 and q is odd, then M◦ ≥ q−1

2 so that ζnorm ≥ 1.

Now, in order to use Theorem 4.10 to calculate P ie,−fall (m), we need to write ie as
n−m+2g+θfall−e′q−f for some, preferably nonnegative, integer e′ and 0 ≤ f ≤ q−1.
We could then determine an expression for P ie,−fall (m) in terms of e′ and f in a similar
way to the proof of Lemma 5.1, except that f would add complications. This would
give us an expression for sie(Cm) in terms of e, e′, and f . To maximize this over
−1 ≤ e ≤ q−1 we would need to relate e′ and f to e. Fortunately, these relationships
are reasonably simple.

Lemma 5.3. Let m ∈ I(n, g) and −1 ≤ e ≤ q − 1. If we write

ie = n−m+ 2g + θfall − e′q − f for some 0 ≤ f ≤ q − 1,

then e′ = η − e and

f =

{
e+ 1 for −1 ≤ e ≤ q − 2− θgain,
e for q − 1− θgain ≤ e ≤ q − 1.

In particular, e′ ≥ 0. Also, if e ≤ η − q + 1 + θfall, then q − η + e− f ≤ 0.
Proof. For −1 ≤ e ≤ q−2−θgain, we have (e+e′)q+(q−1−e+f) = n−2m+4g+

θgain + θfall. Now 2m = n− q2q+ 2M•(q+ 1) + 2M◦, 4g = 2q2− 2q, and θgain + θfall =
2M• + 2M◦ − ζnormq, giving (e + e′)q + (q − 1− e + f) = (2q − 2M• + q2 − ζnorm)q
which implies that f = e + 1 (since q − 1 − e > 0 from Lemma 4.9) and e′ = η − e.
Similarly, for q− 1− θgain ≤ e ≤ q− 1 we get (e+ e′)q+ (q− e+ f) = (η+ 1)q, giving
f = e and e′ = η − e.
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For the second part we have η ≥ q − 1 (from Lemma 5.2) and f ≥ e (from the
first part). Thus q − η + e − f ≤ 1 with equality only if η = q − 1 and f = e. We
show that, for e ≤ η − q + 1 + θfall, it is not possible that η = q − 1 and f = e. First,
f = e implies that e ≥ q − 1− θgain. Also, η = q − 1 and e ≤ η − q + 1 + θfall imply
that e ≤ θfall. Thus q − 1− θgain ≤ e ≤ θfall so that, adding θgain to both sides,

2M• + 2M◦ − qζnorm ≥ q − 1.(13)

Now, as in (12), η = q − 1 implies that either (i) ζnorm = 2 and M• ≤ q−3
2 or (ii)

M• = q−2
2 and M◦ = 0. Each of these clearly contradicts (13).

Lemma 5.4. For m ∈ J(n, g),

P ie,−fall (m) =

{ (
q−η+e

2

)
for −1 ≤ e ≤ η − q + 1 + θfall,(

q−η+e
2

)− (q − 2− θfall − η + e) for η − q + 2 + θfall ≤ e ≤ q − 1.

Proof. We write ie = n−m+2g+θfall−e′q−f if 0 ≤ f ≤ q−1, as in Lemma 5.3,
and work from Theorem 4.10. First, if e′ ≥ q, i.e., if e ≤ η − q, then P ie,−fall (m) = 0.
We note also that, for e ≤ η − q, (q−η+e2

)
= 0. Next, if q − 1− θfall ≤ e′ ≤ q − 1, i.e.,

if η − q + 1 ≤ e ≤ η − q + 1 + θfall, then

P ie,−fall (m) =

q−1−e′∑
ν=1

ν + max{0, q − e′ − f}

=

(
q − η + e

2

)
+ max{0, q − η + e− f} =

(
q − η + e

2

)
,

the last equality following from the second part of Lemma 5.3. Finally (since e′ ≥ 0
by Lemma 5.3), if 0 ≤ e′ ≤ q − 2 − θfall, i.e., if η − q + 2 + θfall ≤ e ≤ q − 1 (since
η ≥ q − 1), then

P ie,−fall (m) =

q−1−e′∑
ν=1

ν − (q − 2− θfall − e′) + max{0, q − e′ − 1− f}

=

(
q − η + e

2

)
− (q − 2− θfall − η + e) + max{0, q − η + e− f − 1}

and q − η + e− f − 1 ≤ 0 since η ≥ q − 1 and f ≥ e, by Lemma 5.3.
We use the convention that, for b ≥ 0,

(
a
b

)
= 0 if a < b. In particular,(

a

1

)
=

{
a for a ≥ 0,
0 for a ≤ 0,

(
a

0

)
=

{
1 for a ≥ 0,
0 for a < 0,

(
a

b

)
−
(
a− 1

b

)
=

(
a− 1

b− 1

)
,

where b ≥ 1. Lemmas 5.1 and 5.4, together with (9), give the following proposition.
Proposition 5.5. For m ∈ J(n, g),

sie(Cm) = k−
(
q − e

2

)
−
(
q − η + e

2

)
+

(
q − 2− θgain − e

1

)
+

(
q − 2− θfall − η + e

1

)
.

Now we determine for which e, −1 ≤ e ≤ q − 1, sie(Cm) is maximized.
Lemma 5.6. For m ∈ J(n, g), sie(Cm) is maximized
1. at e = �η2 � if η ≤ 2q − 6− 2θfall or
2. at e = �η2 � if η ≥ 2q − 5− 2θfall.
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Proof. From Proposition 5.5, with

σ(e) =

(
q − e

2

)
+

(
q − η + e

2

)
−
(
q − 2− θgain − e

1

)
−
(
q − 2− θfall − η + e

1

)
,

we have sie(Cm) = k−σ(e) and maximizing sie(Cm) is equivalent to minimizing σ(e)
over −1 ≤ e ≤ q − 1. Now, for 0 ≤ e ≤ q − 1,

σ(e)− σ(e− 1) =−
(
q − e

1

)
+

(
q − η + e− 1

1

)
+

(
q − 2− θgain − e

0

)

−
(
q − 3− θfall − η + e

0

)
.

Thus, since 0 ≤ (
q−2−θgain−e

0

) ≤ 1, we have

e− q ≤ σ(e)− σ(e− 1) ≤ e− q + 1 for 0 ≤ e ≤ η − q + 1,
2e− η − 1 ≤ σ(e)− σ(e− 1) ≤ 2e− η for η − q + 2 ≤ e ≤ η − q + 2 + θfall,
2e− η − 2 ≤ σ(e)− σ(e− 1) ≤ 2e− η − 1 for η − q + 3 + θfall ≤ e ≤ q − 1.

(14)

First, for 0 ≤ e ≤ η − q + 1, (14) implies that σ(e) − σ(e − 1) ≤ η − 2q + 2 ≤ 0, so
that σ(e) is minimized over −1 ≤ e ≤ η − q + 1 at e = η − q + 1. Thus it is sufficient
to determine where σ(e) is minimized over η− q+ 1 ≤ e ≤ q− 1. We note that, since
η ≤ 2q − 3 (Lemma 5.2),

η − q + 1 ≤
⌊η

2

⌋
≤
⌈η

2

⌉
≤ q − 1.

Now, for η − q + 2 ≤ e ≤ η − q + 2 + θfall, (14) implies that if e ≤ �η2 �, then

σ(e)− σ(e− 1) ≤ 0 and if e ≥ �η2 �+ 1 ≥ η+1
2 , then σ(e)− σ(e− 1) ≥ 0. Similarly, for

η−q+3+θfall ≤ e ≤ q−1, (14) implies that if e ≤ �η+1
2 � = �η2 �, then σ(e) ≤ σ(e−1)

and if e ≥ �η2 �+ 1, then σ(e) ≥ σ(e− 1). Thus
1. if �η2 � ≤ η − q + 2 + θfall, then σ(e) is minimized over η − q + 1 ≤ e ≤ q − 1

at e = �η2 � and
2. if �η2 � ≥ η − q + 3 + θfall, then σ(e) is minimized over η − q + 1 ≤ e ≤ q − 1

at e = �η2 �.
This leaves the case �η2 � = �η2 �−1 = η−q+2+θfall, i.e., η = 2q−5−2θfall. In this case,
the above analysis implies that σ(e) is minimized at either �η2 � = η − q + 2 + θfall =
q − 3− θfall or �η2 � = η − q + 3 + θfall = q − 2− θfall. Also, we have

σ(q − 2− θfall)− σ(q − 3− θfall) = −(θfall + 2) + (θfall + 2) +

(
θfall − θgain

0

)
− 1 ≤ 0,

so that σ(e) is minimized at �η2 �.
Finally, we note that if η ≥ 2q − 3 − 2θfall, then −η ≤ −2q + 3 + 2θfall, so that

adding 2η + 1 to both sides and dividing by 2 implies⌈η
2

⌉
≤ η + 1

2
≤ η − q + 2 + θfall,

and we are in case 1 above. Also, if η = 2q − 4 − 2θfall we have �η2 � = η − q + 2 +
θfall, and again we are in case 1. Similarly for η ≤ 2q − 6 − 2θfall we are in case 2
above.
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Proposition 5.5 and Lemma 5.6 give us the following theorem.
Theorem 5.7. For m ∈ J(n, g),

s(Cm) =




k − (
q−� η2 

2

)− (
q−� η2 �

2

)
+ (2q − 4− θfall − θgain − η) for η ≤ 2q − 6− 2θfall,

k − (
q−� η2 

2

)− (
q−� η2 �

2

)
+ 1 for η = 2q − 5− 2θfall,

k − (
q−� η2 

2

)− (
q−� η2 �

2

)
for η ≥ 2q − 4− 2θfall.

Proof. The result follows since
1. for η ≤ 2q − 6− 2θfall, q − 2− θgain − �η2 � ≥ 0 and q − 2− θfall − �η2 � ≥ 1;
2. for η = 2q− 5− 2θfall, q− 2− θgain−�η2 � ≤ 0 and q− 2− θfall−�η2 � = 1; and
3. for η ≥ 2q − 4− 2θgain, q − 2− θgain − �η2 � ≤ 0 and q − 2− θfall − �η2 � ≤ 0.

For example, η ≤ 2q − 6− 2θfall implies that �η2 � ≤ q − 3− θfall, so that

q − 2− θgain −
⌊η

2

⌋
≥ 1 + θfall − θgain = 1 + ζgain − ζfall ≥ 0.

The other equalities and inequalities follow similarly.
Of course, Theorem 5.7 essentially gives the values of s(Cm) for I(n, g) since

m ∈ [n−1
2 + g, n−3

2 + 2g] implies m⊥ ∈ J(n, g) and s(Cm) = s(Cm⊥).
Table 3 gives s(Cm) for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ J(n, g). Comparing these

values of s(Cm) with the values of∇ı(CL(D,mQ∞)) given in Table 2 we have s(Cm) =
∇ı(CL(D,mQ∞)) except for q = 5 and m = 70, q = 7 and m ∈ {182, 189, 190}, and
q = 8 and m ∈ {268, 272, 276, 277, 280, 281}. In particular, s(Cm) achieves the DLP
bound for Cm for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ I(n, g) when this is not excluded by
Corollary 3.10, i.e., whenever the entry for m or m⊥ in Table 2 is not in boldface.

Table 3
s(Cm) for q ∈ {2, 3, 4, 5, 7, 8} and m ∈ J(n, g).

q
2 m 4

s(Cm) 3
3 m 13 14 15

s(Cm) 11 11 11
4 m 32 33 34 35 36 37

s(Cm) 26 27 27 28 28 28
5 m 62 63 64 65 66 67 68 69 70 71

s(Cm) 53 53 54 54 55 56 56 56 57 56
7 m 171 172 173 174 175 176 177 178 179 180

s(Cm) 151 151 152 153 153 154 155 156 156 156
m 181 182 183 184 185 186 187 188 189 190 191

s(Cm) 157 158 157 158 159 159 159 159 160 160 159
8 m 256 257 258 259 260 261 262 263 264 265 266 267 268 269

s(Cm) 228 229 230 231 231 232 233 234 234 234 235 236 237 236
m 270 271 272 273 274 275 276 277 278 279 280 281 282 283

s(Cm) 237 238 239 238 238 239 240 240 239 240 241 241 240 240

Comparing s(Cm) with ∇ı(CL(D, mQ∞)). We start by reinterpreting
∇(CL(D,mQ∞)) in terms of η in Theorem 5.8. We use this to calculate (in Proposi-
tion 5.9) and hence to show (in Corollary 5.10) that s(Cm) = ∇(CL(D,mQ∞)) when-
ever this is not excluded by Corollary 3.10 . This means that s(Cm) achieves the DLP
bound for Cm for just over half of those m in the range [n−1

2 , n−3
3 +2g]. We then com-

pare s(Cm) with ∇ı(CL(D,mQ∞)) in Table 4 and see that s(Cm) achieves the bound
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∇ı(CL(D,mQ∞)) for approximately a further quarter of those m in [n−1
2 , n−3

3 + 2g]
if q is odd but only for about a further 1/q of those m in [n−1

2 , n−3
3 + 2g] if q is even.

Previously, we partitioned J(n, g) into three subintervals, according to whether

0 ≤ M◦ ≤ q−M•−2
2 , q−M•−1

2 ≤ M◦ ≤ q − M•+1
2 , or q − M•

2 ≤ M◦ ≤ q. Now we
consider a finer partition and say that m ∈ J(n, g) satisfies (A), (B), (C), (D), or (E)

according to whether (A) 0 ≤M◦ ≤ q−2
2 −M•, (B) q−1

2 −M• ≤M◦ ≤ q−M•−2
2 , (C)

q−M•−1
2 ≤M◦ ≤ q−M•−1, (D) q−M• ≤M◦ ≤ q−M•+1

2 , or (E) q−M•
2 ≤M◦ ≤ q.

We compare s(Cm) with ∇ı(CL(D,mQ∞)) by reinterpreting Theorems 3.9 and
5.7 using (A)–(E).

Theorem 5.8. If m ∈ J(n, g), then

∇(CL(D,mQ∞)) =

{
k − (

q−� η2 
2

)− (
q−� η2 �

2

)
if m satisfies (A),(C),(E),

k − (
q−� η2 

2

)− (
q−� η2 �

2

)− (θfall + θgain − q + 2) otherwise.

Proof. Take u and v as in the statement of Theorem 2.1. It is straightforward to
show, using the characterization of (u, v) given in the proof of Lemma 3.8, that if m
satisfies (A), (C), or (E), then η = u− 1 and v = q− θgain− θfall− 2 and if m satisfies
(B) or (D), then η = u and v = 2q− θgain − θfall − 2. Thus Theorem 2.1 implies that,
for m satisfying (A), (C), or (E),

∇(CL(D,mQ∞)) = k −
(
q − �η+1

2 �
2

)
−
(
q − �η+1

2 �
2

)

−min

{
q −

⌈
η + 1

2

⌉
, θgain + θfall + 2

}

and for m satisfying (B) or (D),

∇(CL(D,mQ∞)) = k−
(
q − �η2 �

2

)
−
(
q − �η2 �

2

)
−min

{
q −

⌈η
2

⌉
, θgain + θfall + 2− q

}
.

First, for m satisfying (A), (C), or (E) we have (i) �η+1
2 � ≥ q−M•−1 if ζnorm ∈ {0, 1}

or (ii) �η+1
2 � ≥ q −M• − 2 if ζnorm = 2. Also, θgain + θfall + 2 = 2M• + 2M◦ −

ζgain − ζfall + 2 and (i) for ζnorm = 0, 2M◦ − ζgain − ζfall ≥ 0, (ii) for ζnorm = 1,
2M◦−ζgain−ζfall ≥ (q−M•−1)−q = −M•−1 or (iii) for ζnorm = 2, 2M◦−ζgain−ζfall ≥
(2q −M•) − 2q = M•. Thus, for m satisfying (A), (C), or (E), ∇(CL(D,mQ∞)) is
equal to

k−
(
q − �η+1

2 �
2

)
−
(
q − �η+1

2 �
2

)
−q−

⌈
η + 1

2

⌉
= k−

(
q − �η+1

2 �
2

)
−
(
q − �η+1

2 �+ 1

2

)

as required. Similarly, for m satisfying (B) or (D) (so that ζnorm ≤ 1) it is easy to see
that q − �η2 � ≥ M• + 1 and (by considering the cases that ζnorm = 0 and ζnorm = 1
separately) θgain + θfall + 2− q ≤M• + 1. Thus, for m satisfying (B) or (D),

∇(CL(D,mQ∞)) = k −
(
q − �η2 �

2

)
−
(
q − �η2 �

2

)
− (θgain + θfall + 2− q)

as required.
Before comparing s(Cm) with ∇ı(CL(D,mQ∞)), we compare it with

∇(CL(D,mQ∞)). To do this we refine (A)–(E) as follows: if m satisfies (C), then we
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say that m satisfies (C1), (C2), or (C3) if (C1) q−M•−1
2 ≤M◦ ≤ q−2

2 , (C2) M◦ = q−1
2 ,

or (C3) q
2 ≤M◦ ≤ q −M• − 1.

Proposition 5.9. For m ∈ J(n, g),

s(Cm)−∇(CL(D,mQ∞)) =




0 if m satisfies (A),
2M• + 2M◦ − q + 2 if m satisfies (B),
q − 2M◦ − q2 if m satisfies (C 1),
1 if m satisfies (C 2),
0 if m satisfies (C 3),
2M• + 2M◦ − 2q + 2 if m satisfies (D),
2q − 2M◦ + 1− q2 if m satisfies (E).

Proof. Using η = 2q − 2θfall + 2M◦ − 2ζfall + q2 − ζnorm − 3, it is straightforward
to see that if M◦ ≤ q − 1 and

1. if m satisfies (A), (B), (D), or (C3), then η ≥ 2q − 2θfall − 4;
2. if m satisfies (C1) or (E), then η ≤ 2q − 6− θfall; or
3. if m satisfies (C2), then η = 2q − 5− θfall.

Also, if m = q is odd, then η = 2q − 2θfall − 4. Likewise, if m = q is even, then
η = 2q − 2θfall − 5. The result then follows from Theorems 5.7 and 5.8 noting that,
for cases (B) and (D), θgain + θfall − q + 2 = 2M• + 2M◦ − (ζnorm + 1)q + 2 and for
cases (C1) and (E) with M◦ ≤ q− 1, 2q− 4− θfall − θgain − η = ζnormq− 2M◦ − q2 +
(ζnorm − 1).

It follows from Proposition 5.9 that s(Cm) achieves the DLP bound for Cm as
often as this is possible. We state this as the following corollary.

Corollary 5.10. For m ∈ I(n, g), s(Cm) = ∇(CL(D,mQ∞)) if and only if
∆(m) = 0.

Proof. Since for m ∈ [n−1
2 + g, n−3

2 + 2g], ∆(m) = ∆(m⊥), ∇(CL(D,mQ∞)) =
∇(CL(D,m⊥Q∞)), and s(Cm) = s(Cm⊥), it suffices to show the result form ∈ J(n, g).
It follows from the definition of ∆(m) for such m that ∆(m) = 0 if and only if (i) m
satisfies (A) or (ii) m satisfies (C3) or (iii) q2 = 1 and M◦ = q. These are exactly the
values of M◦ for which Proposition 5.9 gives s(Cm) = ∇(CL(D,mQ∞)).

Example 5.11. If Cm is self-dual, then ∇(Cm) = s(Cm) = n
2 − q2

4 , where Cm

has the lexicographic coordinate order. In particular, s[Cm] = n
2 − q2

4 .
Proof. We know that q is a power of 2, k = n

2 , and m = n
2 + g − 1 ∈ J(n, g) ⊆

I(n, g). From the definitions, M• = q−2
2 and M◦ = ζnorm = 0. Also, ∇(Cm) = n

2 − q2

4
by Theorem 5.8. The result now follows since ∆(m) = 0.

We remark that the main result of [13] is Example 5.11 with q ≥ 4. Corollary 5.10
and Proposition 3.12 imply that ∇(Cm) is attained for just over half the m ∈ I(n, g).
Explicitly, the proportion of these m for which the DLP bound is attained is 1

2 + 1
2q

for q odd and 1
2 + 3q−5

2(q2−q−1) for q even. Of course Corollary 5.10 implies that if m

satisfies (A), (C3) or M◦ = q is odd, then

s[CL(D,mQ∞)] = ∇(CL(D,mQ∞)) = s(Cm).

The increments on s[CL(D,mQ∞)] given by Theorem 3.9 and Proposition 5.9 for
all m in J(n, g) (and hence implicitly also for m ∈ [n−1

2 + g, n−3
2 + 2g]) are given in

Table 4. The first entry is ∆(m) and the second is s(Cm)−∇(CL(D,mQ∞)). Thus
our lower bound for s[CL(D,mQ∞)] is ∇ı(CL(D,mQ∞)) = ∇(CL(D,mQ∞))+∆(m)
and our upper bound for s[CL(D,mQ∞)] is ∇(CL(D,mQ∞)) plus the second entry,
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Table 4
Table of bounds on s[CL(D,mQ∞)] for m ∈ J(n, g).

m satisfies ∆(m) s(Cm)−∇ Range
(A) 0 0 0

(B) M• +M◦ + 1− q−q2
2

2M• + 2M◦ + 2− q M• +M◦ + 1− q+q2
2

(C1) q+q2
2

−M◦ q − q2 − 2M◦ q−q2
2

−M◦
(C2) 1 1 0
(C3) 0 0 0
(D) M• +M◦ + 1− q 2M• + 2M◦ + 2− 2q M• +M◦ + 1− q
(E) q −M◦ + 1− q2 2q − 2M◦ + 1− q2 q −M◦

i.e., s(Cm). The third entry in the table (the range of s[CL(D,mQ∞)]) is s(Cm) −
∇ı(CL(D,mQ∞)).

As well as those m for which s(Cm) = ∇(CL(D,mQ∞)), Table 4 also gives

s(Cm) = ∇ı(CL(D,mQ∞)) = s[CL(D,mQ∞)](15)

for those m ∈ J(n, g) such that

q−1
2 −M• ≤M◦ ≤ q−1

2 if q is odd,
M◦ = q if q is even.

(16)

Hence (15) also holds for those m ∈ [n−1
2 + g, n−3

2 + 2g] such that m⊥ satisfies (16).

In all these cases except M• ≥ 2 and M◦ = q−3
3 we have

s[CL(D,mQ∞)] = s(Cm) = ∇(CL(D,mQ∞)) + 1.

For M• ≥ 2 and M◦ = q−3
3 we have

s[CL(D,mQ∞)] = s(Cm) = ∇(CL(D,mQ∞)) + 2.

For q odd, this gives q2−1
4 values of m ∈ I(n, g) for which s[CL(D,mQ∞)] is de-

termined but is strictly greater than ∇(CL(D,mQ∞)). Thus, for q odd, the total
proportion of those m in I(n, g) for which we have determined s[CL(D,mQ∞)] is

1

2
+

1

2q
+

q2 − 1

4(q2 − q) =
3(q + 1)

4q
.

For q even, it gives q−2 values of m ∈ I(n, g) for which s[CL(D,mQ∞)] is determined
but is strictly greater than ∇(CL(D,mQ∞)). Thus, for q even, the total proportion
of those m ∈ I(n, g) for which we have determined s[CL(D,mQ∞)] is

1

2
+

3q − 5

2(q2 − q − 1)
+

q − 2

q2 − q − 1
=

1

2
+

5q − 9

2(q2 − q − 1)
.

Thus we have determined s[CL(D,mQ∞)] for over three quarters of those m in I(n, g)
when q is odd but only for something over one half of those m in I(n, g) when q is even.
For q odd, the first m for which s[CL(D,mQ∞)] is not determined is q = 5 and m = 70
(when it is either 56 or 57), and for q even, the first m for which s[CL(D,mQ∞)] is
not determined is q = 8 and m = 268 (when it is either 236 or 237).
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ON THE DISTRIBUTED COMPLEXITY OF COMPUTING
MAXIMAL MATCHINGS∗
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Abstract. We show that maximal matchings can be computed deterministically in O(log4 n)
rounds in the synchronous, message-passing model of computation. This is one of the very few
cases known of a nontrivial graph structure, and the only “classical” one, which can be computed
distributively in polylogarithmic time without recourse to randomization.

Key words. graph algorithms, distributed, synchronous, deterministic
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PII. S0895480100373121

1. Introduction. One of the fascinating questions of computer science is whether,
and to what extent, randomization increases the power of algorithmic procedures. It
is well known that, in general, randomization makes distributed algorithms more
powerful, for there are examples of basic coordination tasks in asynchronous systems
that cannot be solved by deterministic procedures but admit simple randomized so-
lutions. Randomization is also demonstrably more powerful in synchronous systems,
as shown by the important example of oblivious routing in the hypercube (see, for
instance, [15, 21]). In this paper, we are interested in this question in the context of
distributed graph algorithms, where a synchronous, message-passing network without
shared memory is to compute a function of its own topology, and focus on the problem
of computing maximal matchings. We show that maximal matchings can be computed
in polylogarithmically many communication rounds by deterministic distributed al-
gorithms. Therefore, as far as maximal matchings are concerned, randomization is
not necessary to go over the sublinear “divide.”

To put our work into perspective, we review some of the relevant facts and liter-
ature.

In a distributed network or architecture without shared memory, the cost of send-
ing a message between two nodes is proportional to their distance in the network.
Since sending messages to faraway nodes is expensive, it is desirable that computa-
tion be based only on information available locally. This locality constraint can be
quite severe when one is to compute a global function of input data that are spread
across the network and represents a challenge from the point of view of algorithmic
design. This communication problem is completely neglected in the popular pram
model. There, the existence of a shared memory which can be accessed in unit time
allows fast collection and dissemination of data among the processors. Once this
assumption is removed and the cost of communication is taken into consideration,
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several computational problems which were easily solvable suddenly become hard or
unsolvable efficiently, especially if one is seeking deterministic solutions.

The study of distributed graph algorithms goes back (at least) to the work of
Linial [17], where an Ω(log∗ n) lower bound for computing maximal independent sets
(MISs) in the ring is given. Together with the O(log∗ n) upper bound given by a
beautiful algorithm of Cole and Vishkin [6], this is one of the all too rare examples
in complexity theory where the complexity of a computational problem can be deter-
mined exactly (modulo constants). Interestingly, it can be shown that randomization
does not help [22].

Generalizing from rings to bounded degree graphs, one sees that several classical
graph structures of both theoretical and practical interest, including MISs, maximal
matchings, (∆+1)- and even ∆-vertex colorings, can be computed in polylogarithmic
time [1, 2, 7, 26]. (∆ denotes the maximum degree of the input network.) In fact,
many of these algorithms are very satisfactory because they are both quite simple and
really of low complexity, i.e., with small exponents and no hidden large constants.

Further generalizing from bounded degree graphs to general topologies has proven
elusive, in spite of several efforts [1, 2, 18, 23, 26, 27]. The situation here is, more or
less, as follows. For a reasonably large class of graph structures, the asymptotically
best deterministic algorithm known to date uses O(nε(n)) rounds, where ε(n) is a
function which (very slowly) goes to 0 as n, the size of the network, grows. These
solutions are mainly of theoretical interest, since the protocols are quite cumbersome,
and their implementation would probably be prohibitively expensive. On the other
hand, once randomization is allowed, the same graph structures can be computed
in polylogarithmically many rounds. Furthermore, these randomized algorithms are
usually extremely simple, and their actual complexity is very low. For instance, (∆+
1)-vertex coloring and MIS can be computed in O(log n) rounds with high probability
by exceedingly simple protocols [19, 20, 24].

Another important example of something that can be computed in polylogarith-
mic time by using randomness by distributed algorithms, while it is not known whether
the same time bounds can be attained without it, is that of (O(log n), O(log n))-
decompositions, an interesting type of graph decomposition with several applications
[1]. Using randomization, these structures can be computed in O(log2 n) rounds [18].
In fact, there exist nontrivial functions, such as nearly optimal edge colorings, that
can be computed, with high probability, by extremely simple, indeed trivial, ran-
domized algorithms in o(log n) (little-oh of n) rounds or even, under suitable degree
assumptions, in as few as O(log log n) rounds [8].

The question then is whether, in the context of distributed graph algorithms,
randomization is necessary in order to obtain protocols that run in polylogarithmically
many rounds in the size of the network.

In an attempt to gain some insight into this problem, we show that for a nontriv-
ial and important graph structure, maximal matchings, randomization is not needed.
Matchings are important structures from a theoretical point of view but might also be
of practical interest, since, in some situations, they correspond to a set of operations,
say, data transfers, that can be performed simultaneously without mutual interfer-
ences. We note that maximal matching is a special case of the difficult open problem
of determining whether MISs can be quickly computed deterministically in spite of
the locality constraint. The solution presented here takes O(log4 n) many rounds,
improving an earlier result by the same authors [9]. Although the time complexity
of our protocol is quite high, it should be remembered that even in the erew-pram
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model, where information can be distributed inexpensively via the shared memory,
the best asymptotic complexity for computing maximal matchings is O(log3 n) [11].
Our solution hinges on a distributed procedure for bipartite graphs which, for almost
all vertices in the graph, cuts the degree of a vertex almost perfectly in half. This
approximate degree splitter might be useful in other contexts.

To our knowledge, maximal matchings are one of the very few examples of nontriv-
ial graph functions which can be computed deterministically in polylogarithmically
many communication rounds in the distributed model without additional assumptions
on the input network. Other notable exceptions are the so-called ruling forests of [1]
and the k-dominating sets of [14], both of which, however, are not “classical” graph
structures.

We end this section by spelling out our model of computation, the synchronous,
message-passing distributed network. Here, a distributed network (or architecture)
is modeled as an undirected graph. The vertices of the graph correspond to pro-
cessors, and edges correspond to bidirectional communication links. The network is
synchronous in the sense that computation takes place in a sequence of rounds; in
each round, each processor reads messages sent to it by its neighbors in the graph,
does any amount of local computation, and sends messages back to each of its neigh-
bors. The time complexity of a distributed algorithm is then given by the number
of rounds needed to compute the desired function. Each node of the network has a
unique identifier (id) and knows it. We assume that the ids of the network are the
integers from 1 to n.

The problem we study is this: A distributed network is to compute a maximal
matching of its own (unknown) topology.

2. Preliminaries. We shall make use of standard graph theoretic terminology.
In particular, given a set of edges X in a graph G, G[X] denotes the subgraph of G
induced by X with vertex set V (G).

Definition 2.1. The weight of an edge uv in a graph G, denoted as wG(uv), is
equal to the number of edges incident to it.

Definition 2.2. Given a graph G and a set of edges X ⊆ E(G), touch(X)
denotes the set of edges which are “touched” by X, i.e., the set X itself union the set
of edges incident to some edge of X.

A degree-2 graph is a graph G of maximum degree 2, i.e., a collection of paths and
cycles. Let G be a degree-2 graph and suppose that it is equipped with a 3-vertex
coloring. Then a maximal matching M of G can be computed in constant many
rounds, as follows. Each vertex of color 1 selects one of its incident edges arbitrarily;
let A be the set of edges thus selected. The set A induces a graph consisting of isolated
edges and paths of length two. The middle point of each such path selects one of its
two incident A-edges arbitrarily. This leaves a set A′ ⊆ A which is a matching with
respect to G and a maximal matching with respect to (the graph induced by) A.
The edges in touch(A′) are removed from G, leaving a leftover graph G′. Now, the
same procedure is repeated with the vertices of color 2. They select a set B of edges,
and from it a matching B′ ⊆ B is computed as before. Note that B′ is disjoint
from A′. Again, touch(B′) is removed from G′, leaving a graph G′′. This graph is
itself a collection of isolated edges and paths of length two because all vertices that
have not lost their two adjacent edges have color 3, and spaces between them are
greater than 3. Therefore, a maximal matching C ′ (with respect to G′′) can again be
computed as before. Since touch(C ′) ⊇ E(G′′) there are no more edges left. The set
M := A′ ∪B′ ∪C ′ is therefore, by construction, a maximal matching with respect to
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G.

In [7] and [6] two deterministic, distributed algorithms are given to compute a
(∆+1)-vertex coloring of an input graph of maximum degree ∆, where ∆ is constant.
(The algorithm in [7] does not need this assumption.) Their time complexity is,
respectively, O(∆ log n) and O(∆∆ log∗ n) many communication rounds, where n is
the number of vertices of the input graph. Both algorithms are very simple in the
sense that they can be easily implemented in our distributed model.

Altogether, this means that maximal matchings of degree-2 graphs can be com-
puted in O(log n), or even O(log∗ n), many communication rounds. (In fact, the result
holds for any constant degree.) We record this fact for future reference.

Fact 2.3. Maximal matchings of degree-2 graphs can be computed in O(log n)
many communication rounds in the synchronous, message-passing model of computa-
tion.

3. Reducing the problem to two-colored bipartite graphs. Suppose that
we have a distributed procedure that, given a two-colored, bipartite graph, computes
a matching that matches a constant fraction of the edges in O(t(n)) many rounds.
Here and in the rest of the paper, two-colored means that the vertices know which
side of the bipartition they belong to. In this section we show that, assuming this,
there is a distributed procedure that, given any input graph, computes a maximal
matching in O(log n t(n)) many rounds.

We start with an outline of the algorithm which is meant to highlight the intuition
behind our approach and, hopefully, to pave the way for the precise analysis to follow.
The basic structure of the algorithm is standard. The maximal matching is computed
incrementally in phases. The goal of a phase is to compute a matchingM such that
|touch(M)| is a constant fraction of |E(G)|. The edges ofM are added to the partial
solution computed so far and are removed together with the edges incident to them.
The leftover graph is the input to the next phase. This takes O(log n) phases since,
by assumption, |touch(M)| is a constant fraction of the number of edges of the input
graph. The heart of the algorithm is a phase, which is as follows. A phase begins
by computing an arbitrary orientation of the edges of the input graph G; after that,
every vertex splits itself into two vertices called siblings. One sibling inherits all of
the incoming edges, while the other inherits all of the outgoing edges. We therefore
obtain a bipartite graph B whose sides of the bipartition are the “in” siblings and the
“out” siblings. Notice that G and B have the “same” edge set. In the bipartite graph
B, the orientation of the edges is ignored (or, if you prefer, removed) and, resorting
to the abovementioned procedure, a matching L is computed that matches a constant
fraction of the edges of B. Now, since the edge sets of the bipartite graph and the
input graph coincide, in actuality L matches a constant fraction of the edges of the
entire input graph. The problem is that L is a matching in B but not in G! The next
step is to select a “real” matchingM⊆ L such that |touch(M)| is a constant fraction
of |touch(L)|; i.e. M still matches a constant fraction of the edges of G, but it is a
true matching. This is achieved in the following way. A new, degree-2 graph C is
generated from L by “merging” each pair of siblings back together. C is a collection
of paths and cycles, and its edge set is exactly L. A matching M is then computed
inside C with the property that |touch(M)| is a constant fraction of |touch(E(C))|,
and therefore a constant fraction of |E(G)|, since E(C) and L are, essentially, the
same set. To compute M, a maximal matching J (as in junk) is computed in C.
This can be done in O(log n) time by Fact 2.3. The edges in J are discarded, leaving
a collection of isolated edges and paths of length two. From this, a matching M is
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computed by including into it all isolated edges and, for each path of length two, the
edge that, in G, has the highest weight. This ends the phase.

A counting argument shows that M matches a constant fraction of |touch(L)|,
thereby matching a smaller, but still constant, fraction of |E(G)|. Therefore, O(log n)
many phases suffice to compute a maximal matching in the entire graph.

After this outline, we present the algorithm more precisely and argue its correct-
ness.

Procedure Match

F := ∅ // F will be the final matching

repeat

1. Direct every edge arbitrarily.
2. Each vertex u splits into two siblings, uin and uout. All incoming edges of

u become (nonoriented) edges incident to uin, while all outgoing edges of u
become (nonoriented) edges incident to uout. The resulting bipartite graph is
denoted by B.

3. Invoke procedure BipartiteMatch, described in section 4, to compute a
matching L inside B.

4. Compute a degree-2 graph C as follows: Each pair of siblings uin and uout

is merged back into u. Edges of L that were incident to uin or uout become
edges incident to u.

5. Let D be the graph obtained from C by removing the vertices of degree one.
Compute a maximal matching J of D. Consider the set of edges E(C) − J .
This set consists of isolated edges and paths of length two. Each middle point
of every such length-2 path removes the edge incident on itself that has the
smallest weight in the current graph Gi. Let M be the set of remaining edges.

6. Add M to F , the partial solution computed so far, remove M and its neigh-
boring edges, and repeat with the leftover graph as the input to the next
phase, i.e.,

Gi+1 := Gi[E(Gi) − touch(M)].

until the graph has no more edges.

In procedure Match, each vertex keeps executing the algorithm as long as its de-
gree in the current graph Gi is at least one. Assuming that procedure BipartiteM-
atch can be implemented in the distributed model, it is apparent that procedure
Match is a distributed algorithm. We shall prove that the number of iterations of
the repeat-until loop is O(log n). We remark that the vertices must know the value of
n. The exact number of phases can be divined from Lemma 3.1, and from Lemmas 4.6
and 4.7, and is equal to 299 log2 n because touch(M) ≥ 1

216 |E(G)| in each phase of
the procedure Match where G is the input graph to that phase. In what follows,
with slight abuse of notation we will identify E(G) with E(B) and L with E(C). Now
let us argue the correctness of the algorithm. By construction, it is apparent thatM
is a matching. The maximality of F follows from the fact that, at the end of each
phase, only the edges in touch(M) are removed.

We now turn to the analysis of the running time. Since, by assumption, the
matching L returned by BipartiteMatch “touches” a constant fraction of |E(G)|,
the crux of the matter is to show that |touch(M)| is a constant fraction of |touch(L)|.
This would ensure that within O(log n) phases touch(F) = E(G); i.e., F is maximal.
We do this next.

Lemma 3.1. Let G be the graph input to the current phase of procedure Match,
and let M be the matching computed at the end of the phase. Assume that proce-
dure BipartiteMatch computes a matching L of the bipartite graph B such that
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|touch(L)| is constant fraction of |E(B)|. ThenM matches a constant fraction of the
edges of G.

Proof. Recall that E(C) = L and that J is a matching. Since, in step 5, the
graph D is obtained from C by removing vertices of degree one,

touch(L) = touch(E(C)) = touch(E(C)− J).

Then, since in step 5 each middle point selects the edge of largest weight,

|touch(M)| ≥ |touch(E(C)− J)|
2

=
|touch(L)|

2
.

The claim follows from the assumption that |touch(L)| is a constant fraction of |E(B)|
and the fact that E(G) = E(B).

The time complexity of a single phase of procedure Match can be estimated as
follows. Step 3 takes O(t(n)) = O(log3 n) many rounds, by hypothesis. Step 5 takes
O(log n) many rounds, by Fact 2.3. All remaining steps take constant many rounds.
Overall, we get

T (Match, n) = O(log n× t(n)) = O(log4 n)

many rounds for the whole of procedure Match. In the next section, we shall
prove that the number of rounds for procedure BipartiteMatch is indeed O(log3 n),
thereby proving the following theorem.

Theorem 3.2. On any given input graph G, procedure Match computes a max-
imal matching of G in O(log4 n) many communication rounds in the synchronous,
distributed model of computation. For the algorithm to work, each vertex must know
the value of n := |V (G)|.

4. Computing maximal matchings in two-colored bipartite graphs. In
this section, we show how to compute a maximal matching of a given bipartite graph
G(L,R,E), where, importantly, each vertex knows which side of the bipartition it
belongs to. (L stands for left and R for right.) That is, adopting our terminology,
G is two-colored. This assumption is verified by the bipartite graph B generated
by procedure Match. The basic idea of the algorithm is to partition the edges of
the graph into subgraphs called blocks, to be defined more precisely later, and to
compute “good” matchings inside each block, in parallel. The matchings computed
in each block are then put together to form a new graph. Since the blocks are edge
disjoint but not vertex disjoint, the new graph is not itself a matching. In order to
select a “sizable” matching inside it, we adopt a greedy strategy. Roughly speaking,
the blocks are ranked at the outset in such a way that an edge coming from a “high-
order” block will match at least half as many edges as any subset of edges coming
from any collection of “low-order” blocks. We now describe the solution in detail,
starting with some definitions. Keep in mind that we are working inside a two-colored,
bipartite graph G = (L,R,E).

Definition 4.1. Hi = {u ∈ L : n
2i+1 < d(u) ≤ n

2i }.
Remark. If we replaced n with ∆(G) in this definition, the resulting algorithm

would have an improved running time (a logn factor replaced by a log∆ factor),
but this would require the additional knowledge of ∆. Notice that the Hi’s, for
0 ≤ i ≤ �log2 n�, partition the set L of left-hand-side vertices.

Definition 4.2. The block induced by Hi, denoted as Bi, is the subgraph of G
induced by the edges incident to Hi. The vertex set of Bi is Hi ∪ N(Hi), where the
latter is the set of neighbors of Hi. Obviously, Hi ⊆ L and N(Hi) ⊆ R.
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The blocks Bi’s, for 0 ≤ i ≤ �log2 n�, partition both E(G) and the set of vertices
L. Notice that a partition of G into blocks can be generated in constant time, provided
that the value of n (or, alternatively, that of ∆(G)) is known. Two different blocks, say,
Bi and Bj , can have right-hand-side vertices in common. In the algorithm to follow,
a matching is computed simultaneously in all blocks. If a vertex of R belongs to two
or more blocks, it will virtually “duplicate” itself and participate in the computations
of the matchings in all blocks to which it belongs.

To compute a matching in a block, edges are removed in phases until we are left
with a matching. The matching has the property that if it is removed together with
the edges incident to it, a constant fraction of the edges in the block will disappear.
After these matchings are computed in parallel in all blocks, a final matching is
computed that matches a constant fraction of the edges in the whole graph. Since a
vertex v ∈ R can participate in more blocks simultaneously, it is possible that at the
end there is more than one edge incident to it, coming from matchings of different
blocks. To select a final matching for the whole graph, an edge is selected greedily;
the edge selected is the one whose insertion into the final matching would remove the
maximum number of edges; it is the edge with the maximum number of incident edges
or, in other words, the edge uv with the maximum value of d(u). This simple locally
greedy approach works; i.e., it results in a matching incident to a constant fraction of
edges overall because of the way the sets Hi are defined. Namely, consider a sequence
i < j1 < j2 < · · · < jk; then the smallest degree of a vertex in Hi is at least half the
sum of the degrees of vertices, each of which comes from Hjs , 1 ≤ s ≤ k. We now
proceed to explain how a good matching inside a given block can be computed.

Given a subgraph X ⊆ G(L,R,E), we shall use the shorthand notation l(X) :=
V (X) ∩ L and r(X) := V (X) ∩ R. The degree of a vertex u inside X is denoted by
dX(u). The next definition is pivotal.

Definition 4.3. An (a, d)-spanner of a block B = (Hi, N(Hi), EB) is a subgraph
S ⊆ B such that

• |l(S)| ≥ a|Hi|; i.e., S contains a constant fraction of the vertices of Hi;
• for every u ∈ l(S), dS(u) ∈ [1, d]; i.e., the degree of left-hand-side vertices is

constant; and,
• for every vertex v ∈ r(S), dS(v) ≤ 2−k(B)dB(v)+1, where k(B) := �log2 n�−

i− 4.

A spanner is a subgraph of “small” degree that spans a “large” fraction of vertices
in Hi. As we shall see, given a spanner in a block it is easy and inexpensive to compute
a matching inside the spanner that “touches” a constant fraction of the edges of the
block.

Roughly speaking, a spanner in a block is computed by repeatedly slashing the
vertex degrees. In the process, we want to ensure that “almost all” of the vertices of
Hi have their degree “almost perfectly” cut in half at each iteration of the algorithm.
For vertices in Hi we ensure that the two conditions hold simultaneously: The number
of edges lost is at least a half and, at the same time, for almost all of the vertices, it is
not much less than that. For vertices in N(Hi), on the other hand, we care only that
the first requirement is satisfied. The third condition of the definition of a spanner
states that all vertices, whether in Hi or N(Hi), lose at least half of the edges at each
iteration, so that after k(B) := �log2 D� − 4 many iterations, where D := n/2i is the
upper bound on the maximum degree of vertices in Hi, the degree of every vertex in
the spanner is at most 16.

In the next section, we shall see how to compute ( 1
2 , 16)-spanners in O(log3 n)
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many rounds. In this section, we assume that this can be done by means of a procedure
Spanner. The algorithm for computing a matching in a block first computes a
spanner in the block and then a matching by means of a simple two step procedure;
each vertex of the left-hand side proposes one edge, and then every vertex of the
right-hand side selects one among the proposed edges incident to itself.

Definition 4.4. The proposal graph of a spanner S, denoted by P , is any graph
defined by the following procedure: Every vertex v ∈ l(S) selects one of its incident
edges arbitrarily. The graph P is the subgraph induced by the edges thus selected.

Vertices in r(S) which have no proposed edge incident to them do not belong to
P . Therefore, l(P ) = l(S) and r(P ) ⊆ r(S). The latter inclusion can be strict. Note
that P is a set of “stars” with the high degree on the right side.

Definition 4.5. The matching graph of a proposal graph P , denoted by M , is
any graph defined by the following procedure: Every vertex v ∈ r(P ) selects one of
its incident edges arbitrarily. The graph M is the subgraph induced by the edges thus
selected.

Clearly M is a matching. Also note that r(M) = r(P ) and l(M) ⊆ l(P ). The last
inclusion can be strict. To summarize, here is the algorithm for selecting a matching
M in a block B = (H,N(H), EB). The blocks are generated at the outset in constant
time. For this to happen, every left-hand-side vertex needs to determine which set Hi

it belongs to. This takes constant time, provided that every vertex knows the value
of n (or, equivalently, the value of ∆). Recall that a right-hand-side vertex might
participate to many blocks.

Procedure Matchblock

1. Let i be the input parameter. Compute a spanner S in Bi, the block defined by Hi,
by invoking procedure Spanner.

2. Compute a proposal graph P ⊆ S as follows: Every v ∈ l(S) selects one incident
edge arbitrarily. Vertices of r(S) with no selected edges incident to them do not
belong to P .

3. Compute a matching M ⊆ P as follows: Every vertex u ∈ r(P ) selects one incident
edge arbitrarily.

The running time of procedure MatchBlock is dominated by the number of
rounds needed to compute a spanner; everything else takes constant time. Therefore,
MatchBlock takes

T (MatchBlock, n) = T (Spanner, n) = O(log3 n)

many rounds. The bound on the running time of Spanner will be established in the
next section.

After executing MatchBlock in parallel in all blocks, we have a collection of
matchings {Mi : 0 ≤ i ≤ �log2 n�} with one matching in every block. Their union
is not necessarily a matching, for vertices on the right-hand side might participate
in more blocks and end up having degree higher than one. The final matching is
determined by the following procedure.

Procedure GLOBALMATCH

Every vertex on the right-hand side selects, among the edges incident to
itself, the edge of greatest weight wG(e).
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To summarize, here is the overall algorithm for computing a matching that “touches”
a constant fraction of the edges of a given two-colored, bipartite graph. (The proof
of correctness will follow shortly.) Given two graphs X and Y , X ⊕ Y is the graph
whose vertex and edge sets are, respectively, V (X) ∪ V (Y ) and E(X) ∪ E(Y ).

Procedure BipartiteMatch

1. Generate a partition of G = (L,R,E) into blocks, where block Bi is induced by the
set Hi.

2. Compute a matching Mi inside every block Bi by invoking procedure MatchBlock.

3. Compute a matching M inside the graph ⊕iMi by invoking procedure Global-
Match.

The overall running time of the procedure is dominated by the time needed by pro-
cedure MatchBlock and is

T (BipartiteMatch, n) = T (MatchBlock, n) = O(log3 n).

The correctness of the procedure—that indeedM is a matching in G—is straightfor-
ward. The next two lemmas show that touch(M) contains a constant fraction of the
edges of G.

Lemma 4.6. For every matching M computed by step 2 of procedure Bipar-
titeMatch, touch(M) is a constant fraction of the edges of its block B.

Proof. Let m := |E(B)| and

D := max
u∈l(B)

degB(u).

Fix any b ∈ (0, 1) and let us consider two cases: Either

∑
v∈r(P )

dB(v) ≥ bm

or ∑
v∈r(P )

dB(v) < bm.

For the first case, we know that r(M) = r(P ); therefore

|touch(M)| ≥ bm.

For the second case, note that any proposal graph P satisfies the following conditions:

• |l(P )| ≥ a|l(B)|.
• For every u ∈ l(P ), dP (u) = 1.
• For every v ∈ r(P ), dP (v) ≤ 1

2k(B) dB(v) + 1, where k(B) := �log2 D� − 4

and also

|l(B)|D
2
≤ m ≤ |l(B)|D,
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since B is a block. Therefore, we can bound the set of left-hand-side matched vertices
as follows:

|l(M)| = |l(P )| −
∑

v∈r(P )

(dP (v)− 1)

≥ a|l(B)| −
∑

v∈r(P )

(dP (v)− 1)

≥ a|l(B)| −
∑

v∈r(P )

1

2k(B)
dB(v)

≥ a|l(B)| − 1

2k(B)
bm

≥ a|l(B)| − 1

2k(B)
bD|l(B)|

≥ (a− 16b)|l(B)|.

Recalling that for all u ∈ l(B)

D

2
≤ dB(u) ≤ D,

we get the bound

|touch(M)| ≥ |l(M)|D
2

≥ a− 16b

2
D|l(B)|

≥ a− 16b

2
m.

Lemma 4.7. The set touch(M), whereM is the matching computed by step 3 of
procedure BipartiteMatch, contains a constant fraction of edges of the input graph
G.

Proof. This follows from two observations. Recall that we are operating inside a
bipartite graph G = (L,R,E) whose left-hand side L is partitioned by the sets Hi,
which are defined as the sets of vertices u such that n/2i+1 < dG(u) ≤ n/2i for i ≥ 0.
It follows that for every set of indices i < j1 < j2 < · · · < jm, and no matter how we
pick elements u ∈ l(Bi) = Hi and vk ∈ Hjk ,

dG(u) ≥ 1

2

∑
j∈J

dG(vj),

where J := {j1, j2, . . . , jm}. Note that in the above summation there is a unique, but
arbitrary, vj for every Hj . The second observation is that procedure GlobalMatch
selects the edge of biggest weight wG(·).

Therefore, we obtain the following lemma.

Lemma 4.8. Procedure BipartiteMatch, given in input a two-colored, bipartite
graph G, produces a matchingM in O(log3 n) many communication rounds such that
|touch(M)| is a constant fraction of the number of edges of G.
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5. How to compute a spanner. In this section, we shall show how to compute
an (a, d)-spanner in a given block B = (H,N(H), E). The basic intuition was outlined
in section 4, but we repeat it here. The spanner is computed by approximately halving
the degree of vertices of B. Recall that, by definition, in a block Bi the vertices of the
left-hand side Hi have degree between n/2i and n/2i+1. Consider the ideal situation
in which the degree of every vertex is cut perfectly in half. Then there exists a k, with
k = O(log n), such that after k iterations, we have a subgraph of B in which every
left-hand vertex has degree between, say, 1 and 4. Israeli and Shiloach accomplish
this much in the pram model of computation by resorting to Euler circuits [10].
Unfortunately, in our distributed model of computation the computation of Euler
circuits requires a time proportional to the diameter of the network [25]. Therefore,
a completely different approach is called for.

We start with some preliminaries. Given a set of edges F , consider a decomposi-
tion of G[F ] into a collection of cycles and paths, computed as follows. Each vertex
of G[F ], in parallel, splits itself into vertices of degree two (pairing any two adjacent
edges) and perhaps one vertex of degree one (if the degree of the original vertex is
odd). The new vertices are called siblings and the original vertex is called the par-
ent. A new graph is obtained with at least |F | vertices and exactly |F | edges. Such
a decomposition is called here a 2-decomposition. Note that a 2-decomposition can
be generated in constant time in the distributed model of computation and that it
consists solely of paths and cycles.

Now consider the problem of halving the degree of a parent. If we could re-
move exactly one edge incident to every sibling, parents whose degree is even would
lose exactly half of their edges, while parents of odd degree would have their degree
split almost perfectly in half. A possible approach to achieve this could be the fol-
lowing. Compute perfect or near perfect matchings in the paths and cycles of the
2-decomposition and remove the edges thus matched. In what follows, we will refer
to both perfect and near perfect matchings with the acronym nPMs. Unfortunately,
computing nPMs in a 2-decomposition requires linear time in the worst case [25]. To
circumvent the problem, we “chop up” (partition) the 2-decomposition into smaller
pieces and compute nPMs inside every piece, deleting the edges that are matched.
This approach introduces errors because of “border” vertices, that is, vertices that
belong to two adjacent pieces. The problem arises because a border vertex may be
matched or unmatched from each “side” at the same time. If we decide to remove
only matched edges, a parent that has many siblings as border vertices will not lose
enough edges. Conversely, if we decide to remove all edges incident on border ver-
tices, a parent might lose too many of them. This conundrum can be solved by a
judicious choice of the length of the pieces with which the 2-decomposition is parti-
tioned. These pieces should be neither too long for efficiency reasons, nor too short,
so that the number of border vertices can be bounded. If we can do this, overall
“most” parents will have their degree “almost perfectly” cut in half.

The above discussion motivates the following definitions. Given a partition of a
2-decomposition into connected components, the components are called segments. A
segment is long if its length is at least

, := 100 log2 n

and short otherwise. The length of a segment is given by the number of edges it
contains. A segment can be only an even cycle or a path. A vertex can possibly
belong to two (adjacent) segments. Such vertices are called border vertices.
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An edge adjacent to a border vertex is a bad edge. All other edges are good. Notice
that edges adjacent to ends of paths are good.

Definition 5.1. A parent v is called pliable if it is adjacent to at most d(v)/p
bad edges. The value of p, the coefficient of pliability, is

p := logn.

All parents that are not pliable are called nasty.
Remark. We can now see why it is necessary to operate inside bipartite graphs.

In an odd cycle, there is always going to be one sibling whose edges are unmatched.
Conceivably, the 2-decomposition could consist entirely of triangles and, as a conse-
quence, almost all parents would be nasty; i.e., after removal of matched and bad
edges they would lose all of their incident edges. In a bipartite graph, on the other
hand, cycles create no problems. When a cycle is short, a perfect matching can be
computed inside it, while when it is partitioned into long segments it cannot create
too many nasty parents.

We are ready to present our main procedure, called Spanner, together with
subroutines Splitter and LongArrows. Spanner acts on a block, defined by the
input parameter D. The block is the two-colored, bipartite graph B = (H,N(H), E)
defined by the set of left-hand vertices

H =

{
u :

D

2
< deg(u) ≤ D

}
.

Clearly, given D, vertices can decide whether they belong to H locally. A bird’s eye
view of the algorithm is as follows. Starting with B0 := B and P0 := l(B0) = H,
the algorithm generates a 2-decomposition of the block B0 and partitions it into long
segments. After computing nPMs inside the segments, both matched and bad edges
are marked (removed).

Let P1, P1 ⊆ P0, be the set of pliable vertices. These are the vertices whose
degree has been split well. Next, both marked edges and nasty vertices (the set
P0 \ P1) are removed from B0, yielding a new leftover block B1. Then a new 2-
decomposition of B1 is generated and partitioned into long segments. Again nPMs
are computed inside the segments, and both matched and bad edges are marked. This
defines a new set P2 ⊆ P1 of vertices that have been pliable twice in a row, and so
on. Therefore, we obtain a sequence of subgraphs B0, B1, . . . , Bi and a sequence of
subsets P0 ⊇ P1 ⊃ · · · ⊇ Pi of pliable vertices, where Pj = l(Bj).

Let us denote the degree of vertex v in Bj by dj(v). We will show that after k
stages, where k = O(logD),

(a) the size of Pk is a constant fraction of that of P0, and
(b) for all u ∈ Pk, dk(u) = (1± o(1))d0(u)/2

k.
Procedure Spanner is as follows.

Procedure Spanner

1. Let B0 := B, P0 := l(B0).

2. For j := 0 to k = O(logD) do:

(a) invoke procedure Splitter to mark edges of Bj ;
(b) each vertex of Pj , in parallel, enters the set Pj+1 if it has less than dj(u)/p

incident bad edges;
(c) remove marked edges and vertices Pj \ Pj+1 from Bj in order to get Bj+1.
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The running time of Spanner is

T (Spanner, n) = O(logD × T (Splitter, n)).(5.1)

Procedure Splitter acts on Bj , the current subgraph, by computing nPMs in the
segments of the 2-decomposition in Bj and marking the resulting matched and bad
edges. The segments, which are computed by procedure LongArrows (described
below), will be directed: Each edge in the segment is given an orientation, and the
orientation inside each segment is consistent; i.e., each segment is either a directed
path or a directed cycle. The procedure to achieve this is described below. Here we
notice that given an orientation in a two-colored graph, a nPM can be computed in
constant time as follows: Let red and blue be the two colors; an edge enters the nPM
if and only if its head points to a red vertex.

Procedure Splitter

1. Let B be the current subgraph. Each vertex of B, in parallel, generates its siblings,
giving rise to a 2-decomposition of B.

2. Procedure LongArrows(�) is invoked to compute oriented segments in the 2-
decomposition.

3. In each segment, a nPM is computed using the given 2-vertex-coloring of B as
follows: Let red and blue be the colors of the bipartition. Then each edge enters
the matching if and only if its head points to a red vertex.

4. Edges incident to border vertices, i.e., vertices separating two adjacent segments,
enter the set of bad edges.

5. All matched and bad edges are marked.

The running time of Splitter is

T (Splitter, n) = T (LongArrows, n).(5.2)

Now let us turn to procedure LongArrows, the one responsible for partitioning
the 2-decomposition into segments and computing nPMs inside them. We remark
that such a partitioning could be computed by resorting to ruling sets [1], but the
procedure given here is both simpler and more efficient.

Initially, each edge is given an arbitrary orientation. Each oriented edge is an
elementary arrow. An arrow is a sequence of elementary arrows pointing to the same
direction. Therefore, adjacent arrows always have contradictory directions. Given a
path or an even cycle P of length k, procedure LongArrows(,) partitions P into
arrows of length at least ,. More specifically, if , ≥ k, the whole of P becomes an
arrow of length k; otherwise, P is partitioned into arrows of length at least ,. This
can be done optimally in time O(,).

We distinguish two types of borders between arrows: “head to head” and “tail to
tail.”
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Procedure LongArrows

1. Let � be the input parameter. At the beginning, all elementary arrows are set
arbitrarily.

2. For i:=1 to �log �� do
In parallel, for every border of type “head to head” do:
(a) if both arrows (touching the border) have length < 2i, then choose one of

them and reverse it (i.e., all of its elementary arrows are reversed).
(b) If an arrow has length < 2i, then reverse it.

Note that we can check if an arrow has length < 2i in time O(2i) and we can reverse
that arrow in time O(2i). It means that the whole algorithm takes

log �∑
i=1

O(2i) = O(,)

rounds.
Fact 5.2. Let C be a connected component of a 2-decomposition of a graph

G. After LongArrows(,) terminates, either C is an arrow or it is partitioned into
arrows of length at least ,.

Proof. Let k be the length of C and denote by S(i) the sentence “at the end of
the ith iteration all arrows have length ≥ 2i.” S(0) is true. Let us assume S(i) and
prove S(i + 1) for i < log k. At the beginning of iteration i + 1, there are only “long
arrows” of length ≥ 2i+1 and “short arrows” of length ≥ 2i , < 2i+1. We have to
prove that at the end of the current iteration all arrows are long. Every short arrow
has to be in one of the following situations:

(a) Its head touches the head of another short or long arrow; in both cases it will
disappear.

(b) Its head touches the end of the path; in this case, step 2(b) of procedure
LongArrows will reverse it.

Therefore, after �log ,� iterations either C is an arrow, if k ≤ 2,, or it is partitioned
into arrows of length at least ,.

We now proceed to analyze the behavior of procedure Splitter. In the next two
facts, we shall describe the behavior of degrees of pliable vertices and the cardinality of
the set of such vertices in a single call of the subroutine Splitter. In what follows,
we shall keep the same notation as in the above procedures and use the following
notation: By ∆j and δj we denote the maximum and minimum degree in Bj of
vertices from Pj = l(Bj). The first fact says that the degree of pliable vertices is
split almost perfectly. Essentially, it establishes conditions 2 and 3 of the definition
of (a, d)-spanner. (The formal proof is given in Theorem 5.5.)

Fact 5.3. For all v ∈ Pj+1,

1

2

((
1− 2

log n

)
dj(v)− 1

)
≤ dj+1(v) ≤ 1

2
(dj(v) + 1) ,

where j is any iteration of the for-loop of procedure Spanner. The right-hand-side
inequality holds for all v ∈ V (Bj).

Proof. Let e+ and e− denote the number of good and bad edges, respectively,
incident to a parent v. To bound dj(v) from above, note that the worst case occurs
when v has no bad edges incident to itself. Therefore, when the dj(v) is odd and its
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unique degree-1 sibling has no marked edge,

dj+1(v) ≤ 1

2
(e+ + 1) =

1

2
(dj(v) + 1).

This holds for all v ∈ V (Bj).
For the lower bound, notice that a pliable parent v loses the largest number of

edges if all of its siblings incident to bad edges have just one bad edge incident to
them and have the other edge marked, so that both edges will be lost. Then, when v
has odd degree,

dj+1(v) ≥ 1

2
(e+ − e− − 1) ≥ 1

2

((
1− 2

log n

)
dj(v)− 1

)
,

since e− ≤ dj(v)/ log n by definition of pliable parent.
The next fact says that most vertices remain pliable from one iteration to the

next, thereby establishing condition 1 of the definition of (a, d)-spanner. (Again, the
formal proof of this claim is given in Theorem 5.5.)

Fact 5.4. For all iterations j = 0, . . . , k − 1 of procedure Spanner,

|Pj+1| ≥ |Pj |
(

1− 2/100

log n

∆j

δj

)
.

Proof. Let Nj+1 be the set of nasty vertices at the end of iteration j, and let
be[Nj+1] be the number of bad edges incident to Nj+1. Notice that |Pj+1| = |Pj | −
|Nj+1|.

A lower bound for be[Nj+1] follows from the fact that vertices in Nj+1 have, by
definition, at least δj/ log n bad edges. Hence,

be[Nj+1] ≥ |Nj+1| δj
log n

.

Recall that our graph is bipartite and so all cycles (and in particular the short
ones) of the 2-decomposition are of even length. Therefore, all bad edges arise from
nPMs in long components (paths and cycles) only.

We can bound the number of bad edges incident to Nj+1 by the total number of
bad edges in Bj . Since |E(Bj)| ≤ ∆j |Pj |, and since each nPM has length at least
, = 100 log2 n and contributes at most two bad edges,

be[Nj+1] ≤ 2|Pj |∆j

100 log2 n
,

and the fact follows.
Finally, we shall present the analysis of procedure Spanner.
Theorem 5.5. An invocation of procedure Spanner with parameter D and with

input graph G = (V,E) computes an ( 1
2 , 16)-spanner with respect to G and the set

H := {v ∈ V (G) : D/2 ≤ degG(v) ≤ D}.
Proof. We shall check whether the output graph of our procedure fulfills the three

conditions it has to satisfy to be a spanner (Definition 4.3); that is, for k := �logD�−4,
• |Pk| ≥ 1

2 |P0|;
• for every u ∈ Pk, dk(u) ∈ [1, 16];
• for every v ∈ r(Bk), dk(v) ≤ 2−kd0(v) + 1.
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Fix k ≥ 1 and note that D/2 ≤ d0(v) ≤ D. By an easy induction, using Fact 5.3,
we have that, for all v ∈ Pk,

qk
(

D

2
+ 1

)
− 1 ≤ dk(v) ≤

(
1

2

)k
(D − 1) + 1,

where q = (1 − 2/log n)/2. The upper bound, which also holds for v ∈ r(Bk),
establishes condition 3 of the definition of a spanner. For condition 2, if we set
k = �logD� − c, we obtain

qk
(

D

2
+ 1

)
− 1 > 2c−1e−2(1+ 2

log n ) − 1

and (
1

2

)k
(D − 1) + 1 < 2c + 1.

Hence, choosing c = 4, vertices from the set Pk all have degrees belonging to the
interval [1, 16] for large enough n. This establishes the second condition.

Finally, we have to show that the first condition which determines the spanner
also holds. That is,

|Pk| ≥ 1

2
|P0|.

Repeatedly applying the inequality established in Fact 5.4, we get

|Pk| ≥ |P0|
k−1∏
j=0

(
1− 2/100

log n

∆j

δj

)
.

However,

∆j

δj
≤ 2−j(D − 1) + 1

qj(D/2 + 1)− 1
≤ 16,

since the last fraction is an increasing function of j for j ≤ k. Therefore, for n large
enough,

|Pk| ≥ |P0|
(

1− 32/100

log n

)logn

≥ e−33/100|P0| ≥ 1

2
|P0|.
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Abstract. Semidefinite programming based approximation algorithms, such as the Goemans
and Williamson approximation algorithm for the MAX CUT problem, are usually shown to have
certain performance guarantees using local ratio techniques. Are the bounds obtained in this way
tight? This problem was considered before by Karloff [SIAM J. Comput., 29 (1999), pp. 336–350]
and by Alon and Sudakov [Combin. Probab. Comput., 9 (2000), pp. 1–12]. Here we further extend
their results and show, for the first time, that the local analyses of the Goemans and Williamson
MAX CUT algorithm, as well as its extension by Zwick, are tight for every possible relative size of
the maximum cut in the sense that the expected value of the solutions obtained by the algorithms
may be as small as the analyses ensure. We also obtain similar results for a related problem. Our
approach is quite general and could possibly be applied to some additional problems and algorithms.
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1. Introduction. MAX CUT is one of the most natural combinatorial opti-
mization problems. An instance of MAX CUT is a graph. The goal is to partition
the vertices of the graph into two sets such that the number, or the total weight, of
the edges that cross the cut formed by this partition is maximized. Goemans and
Williamson [GW95] describe an elegant approximation algorithm for the MAX CUT
problem and show that its performance guarantee is at least α = min 0<θ≤π 2

π
θ

1−cos θ =
0.87856 . . . . No polynomial time approximation algorithm for MAX CUT can have
a performance ratio of more than 16

17 , unless P=NP (H̊astad [H̊as97], Trevisan et
al. [TSSW96]).

The MAX CUT approximation algorithm of Goemans and Williamson [GW95]
uses a semidefinite programming relaxation of the problem. In this relaxation, every
vertex i of the graph has a unit vector vi ∈ Rn associated with it. The algorithm solves
this relaxation and then uses a simple randomized rounding technique to convert the
constellation of unit vectors obtained into a cut. To get a lower bound on the perfor-
mance ratio of the algorithm, Goemans and Williamson consider the worst possible
ratio between the probability that a given edge is in the cut and the contribution of
that edge to the optimal value of the semidefinite program. This worst case local ratio
is attained when the angle θ between the two vectors vi and vj that correspond to
the two endpoints of the edge is equal to θ0 = argmin0<θ≤π

2
π

θ
1−cos θ � 2.331122 . . . .
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Is the local analysis of the MAX CUT approximation algorithm of Goemans and
Williamson [GW95] globally tight? In other words, are there graphs for which the
optimal value of the relaxation is equal to the size of the maximum cut and for which
there is an optimal solution of the relaxation in which the angle between every two
vectors that correspond to vertices in the graph that are connected by an edge is
exactly, or very close to, θ0? Karloff [Kar99] was the first to construct graphs that
satisfy these conditions and therefore show that the local analysis of the MAX CUT
approximation algorithm of Goemans and Williamson is indeed tight. Karloff’s result
was simplified by Alon and Sudakov [AS00].

Goemans and Williamson [GW95] give a better lower bound on the performance
guarantee of their algorithm for graphs that have relatively large cuts. More specifi-
cally, for a graph G = (V,E), let A be the relative size of the maximum cut of G, i.e.,
the ratio between the size (or weight) of the maximum cut and the number of edges
(or total weight of the edges) of G. Note that 1/2 < A ≤ 1. It is shown in [GW95] that
if A > t0 � 0.84458, where t0 = argmin 0<t≤1 h(t)/t and h(t) = arccos(1−2t)/π, then
the performance ratio of the MAX CUT algorithm is at least α(A) = h(A)/A > α.
Karloff [Kar99] and Alon and Sudakov [AS00] show that this lower bound is again
tight for every t0 ≤ A ≤ 1.

What happens on graphs with 1/2 < A < t0? Goemans and Williamson [GW95]
can show only that the performance ratio of their algorithm on such graphs is at
least α. Zwick [Zwi99] presents a modification of the algorithm of Goemans and
Williamson [GW95] that has a performance guarantee α′(A) strictly larger than α �
0.87856 for any 1/2 < A < t0. Furthermore, α′(A) approaches 1 as A decreases
towards 1/2.

In this paper we show, among other things, that the local analysis of the al-
gorithms of Goemans and Williamson [GW95] and of Zwick [Zwi99] in the range
1/2 < A ≤ t0 is again tight. Showing that the analysis of the MAX CUT algorithm
is tight in the range 1/2 < A ≤ t0 is a more challenging task than the corresponding
task for the range t0 ≤ A ≤ 1. To accomplish this task we construct, for any rational
−1 < η < 0 and any rational 1

2 < a ≤ 1−η
2 , a graph G = (V,E) for which the size

of the maximum cut is exactly a|E|, for which the optimal value of the relaxation
is also equal to a|E|, and for which there is an optimal solution v1, v2, . . . , vn of the
relaxation such that for every {i, j} ∈ E we have either vi · vj = η or vi · vj = 1.
(Note that the requirement that the value of the relaxation be a|E| determines the
proportion of the edges for which the inner product should be vi · vj = η.)

The graphs used by Alon and Sudakov [AS00] to show that the analysis of the
MAX CUT algorithm is tight in the range t0 ≤ A ≤ 1 are graphs arising from
Hamming association schemes over the binary alphabet. (Karloff [Kar99] uses the
related Kneser graphs.) The graphs we use here to show that the analysis is also
tight in the range 1

2 < A ≤ t0 are obtained by composing Hamming graphs and
expander graphs. More specifically, if H is an appropriate Hamming graph and B is
an appropriate bipartite expander with b vertices on each of its sides, then the graph
that we use is obtained by replacing each vertex of H by a clique on b vertices and
replacing each edge of H by a copy of B.

We believe that the technique developed in this paper could be used to construct
worst case instances for other semidefinite programming based approximation algo-
rithms. To demonstrate it, we use our technique to show that local analysis of the
MAX NAE-{3}-SAT algorithm of Zwick [Zwi99] is also tight. This is an even more
demanding task, as will be explained later.
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An instance of MAX NAE-{3}-SAT in the variables x1, x2, . . . , xn is a weighted
collection of triplets of the form 〈z1, z2, z3〉, where each zi is a literal, i.e., one of
the variables x1, x2, . . . , xn or a negation of one of the variables, and the weights are
nonnegative. The three literals appearing in a triplet must be distinct. A triplet
(z1, z2, z3) is satisfied by an assignment of 0-1 values to the variables x1, x2, . . . , xn
if at least one of the literals in the triplet is assigned the value 0 and at least one is
assigned the value 1. MAX NAE-{3}-SAT is an interesting problem as it can be seen
as a generalization of both MAX CUT and of the problem of finding a maximum cut
in 3-uniform hypergraphs.

The rest of this paper is organized as follows. In the next section we quickly
review the MAX CUT approximation algorithm of Goemans and Williamson [GW95]
and its extension by Zwick [Zwi99]. In section 3 we present the construction of the
graphs that show that the local analysis of the MAX CUT algorithms of [GW95]
and [Zwi99] are tight. In section 4 we review the MAX NAE-{3}-SAT approximation
algorithm of Zwick [Zwi99]. In section 5 we modify the construction of section 3 to
show that the local analysis of the MAX NAE-{3}-SAT approximation algorithm is
again tight. We end in section 6 with some concluding remarks and open problems.

It is worth noting that our results here merely show that the analyses of the al-
gorithms discussed are tight and do not exclude the possibility that these algorithms
(or some variants of them) may have a better performance either by showing that
with nonnegligible probability the rounding will output a solution that exceeds the
expectation significantly or by proving that one can obtain other solutions to the cor-
responding semidefinite programs, solutions that may behave better in the rounding
phase. Yet, the results here do show that some essentially novel ideas will be needed
in order to improve the performance guarantees of the algorithms discussed.

2. Approximation algorithms for the MAX CUT problem. Let G =
(V,E) be a graph, where V = {1, . . . , n}. We let OPT (G) denote the size of the
maximum cut of G. The Goemans and Williamson approximation algorithm for
MAX CUT starts by solving the following semidefinite programming relaxation of
the problem:

max
‖vi‖2=1

∑
{i,j}∈E

1− vtivj
2

,

where each vi ranges over all n-dimensional unit vectors. (All our vectors are consid-
ered to be column vectors, and hence vtu is simply the inner product of v and u.) It is
easy to see that the optimal value z∗ of this program is at least as large as OPT (G),
the size of the maximum cut of G.

The algorithm of Goemans and Williamson [GW95] then rounds an optimal so-
lution v1, . . . , vn of the semidefinite program by choosing a random unit vector r and
defining S = {i | rtvi ≤ 0}. This supplies a cut (S, V−S) of the graph G. Let W
denote the size of the random cut produced in this way and let E[W ] be its expec-
tation. By linearity of expectation, the expected size is the sum, over all {i, j} ∈ E,
of the probabilities that the vertices i and j lie in opposite sides of the cut. This
last probability is precisely arccos(vtivj)/π. Thus the expected value of the weight of

the random cut is exactly
∑
{i,j}∈E

arccos(vtivj)
π . However, the optimal value z∗ of the

semidefinite program is equal to z∗ =
∑
{i,j}∈E

1−vtivj
2 . Therefore the ratio between
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E[W ] and the optimal value z∗ satisfies

E[W ]

z∗
=

∑
{i,j}∈E arccos(vtivj)/π∑
{i,j}∈E(1− vtivj)/2

≥ min
{i,j}∈E

arccos(vtivj)/π

(1− vtivj)/2
.

Denote α = min0<θ≤π 2
π

θ
1−cos θ . An easy computation shows that the minimum α

is attained at θ = θ0 = 2.3311.., the nonzero root of cos θ + θ sin θ = 1, and that
α ∈ (0.87856, 0.87857). Thus, E[W ] ≥ α · z∗, and since the value of z∗ is at least as
large as the weight OPT of the maximum cut, we conclude that E[W ] ≥ α · OPT .
It follows that the Goemans–Williamson algorithm supplies an α-approximation for
MAX CUT. Moreover, by the above discussion, the expected size of the cut produced
by the algorithm is not better than α · OPT if OPT = z∗ and if v1, . . . , vn is an

optimal solution of the semidefinite program that satisfies
arccos(vtivj)/π

(1−vt
i
vj)/2

= α for every

{i, j} ∈ E.
If the value of the semidefinite program is a large fraction of the total number

of edges of G, the above reasoning, together with a simple convexity argument, is
used in [GW95] to show that the performance of the algorithm is better. Let h(t) =
arccos(1−2t)/π and let t0 be the value of t for which h(t)/t attains its minimum in the
interval (0, 1]. Then t0 is approximately 0.84458. Define a = z∗/|E|. If a ≥ t0, then,

as shown in [GW95], E[W ] ≥ h(a)
a z∗ ≥ h(a)

a OPT . Note that A = OPT/|E| ≤ a. As

h(a)/a is an increasing function of a, for A ≥ t0, we have also that E[W ] ≥ h(A)
A OPT .

Here, as before, the actual expected size of the cut produced by the algorithm is not

better than h(a)
a OPT if OPT = z∗ and if v1, . . . , vn is an optimal solution of the

semidefinite programming problem that satisfies vtivj = 1− 2a for every {i, j} ∈ E.
Karloff [Kar99] and Alon and Sudakov [AS00] showed that the analysis of the

algorithm of Goemans and Williamson [GW95] is tight for every t0 ≤ a ≤ 1. More
precisely, for any rational t0 ≤ a ≤ 1, there are infinitely many graphs for which
the size of the maximum cut OPT is equal to z∗ and also E[W ] = (h(a)/a)z∗ =
(h(a)/a)OPT . In the next section we extend this result even further and show that
the analysis of the algorithm of Goemans and Williamson is tight for all 1/2 ≤ a ≤ 1.

To show that the analysis of Goemans and Williamson [GW95] is also tight in
the range 1/2 ≤ a ≤ t0, we construct, for every rational a in this range, an infinite
sequence of graphs for which the size OPT of the maximum cut and the optimal
value z∗ of the relaxation are both a|E| and for which the relaxation has an optimal
solution v1, v2, . . . , vn such that for every {i, j} ∈ E we have either vtivj = cos θ0
or vtivj = 1. Indeed, the randomized rounding for such a solution satisfies E[W ] =
h(t0)
t0

z∗ = h(t0)
t0

OPT , as for any edge ij for which
1−vtivj

2 �= 0 we have vtivj = cos θ0.

Zwick [Zwi99] describes a modification of the algorithm of Goemans and William-
son [GW95] that has a better performance guarantee in the range 1/2 ≤ a ≤ t0. His
algorithm works as follows. After solving the relaxation and obtaining a, which is
assumed to satisfy a < t0, the algorithm finds the unique solutions c = c(a) and
t = t(a) of the following two equations:

arccos(c(1− 2t))− arccos(c)

t
=

2c√
1− c2(1− 2t)2

,
1− t

a√
1− c2 =

1− 2t√
1− c2(1− 2t)2

.

The algorithm then constructs a sequence of unit vectors w1, w2, . . . , wn such that
wtiwj = c(vtivj) for every i �= j. The vectors w1, w2, . . . , wn, and not the vectors
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v1, v2, . . . , vn, are then rounded using a random hyperplane. It is shown in [Zwi99],
using local analysis, that the performance ratio achieved by this algorithm is at least

α′(a) =

(
1

a
− 1

t(a)

)
hc(a)(0) +

hc(a)(t(a))

t(a)
,

where hc(t) = arccos(c(1− 2t))/π. It is also shown there that this analysis is tight if
the size of the maximum cut in the graph is a|E| and if for every {i, j} ∈ E we have
either vtivj = 1 − 2t(a) or vtivj = 1. It is not difficult to see that a < t(a) for every
1/2 < a < t0.

3. Worst case instances for the MAX CUT algorithms. In this section
we prove the following theorem.

Theorem 3.1. Let −1 < η < 0 and 1
2 < a ≤ 1−η

2 be rational numbers. Then,
for infinitely many values of n there exists a graph G = (V,E), V = {1, . . . , n} and
a sequence u1, u2, . . . , un of unit vectors such that either utiuj = η or utiuj = 1 for all
{i, j} ∈ E, and the size of maximum cut in G is equal to

max
‖vi‖2=1,vi∈Rn

∑
{i,j}∈E

1− vtivj
2

=
∑
{i,j}∈E

1− utiuj
2

= a|E| .

By the discussion in the previous section, it follows that the analyses of the
algorithms of Goemans and Williamson [GW95] and of Zwick [Zwi99] are tight also
in the range 1/2 ≤ a ≤ t0.

To prove Theorem 3.1 we first need to establish a connection between the smallest
eigenvalue of a graph and the semidefinite relaxation of the MAX CUT problem. This
is done in the following well-known lemma, whose proof we include here for the sake
of completeness.

Lemma 3.2. Let G be a multigraph on the set V = {1, 2, . . . , n}, with adjacency
matrix A = (aij), where aij corresponds to the multiplicity of the edge between i and j.
Let λ1 ≥ · · · ≥ λn be the eigenvalues of A = (aij). Then

∑
i<j

aij
1− vtivj

2
≤ 1

2
|E(G)| − 1

4
λn · |V (G)| = 1

2
|E(G)| − 1

4
λn · n

for any set v1, . . . , vn of unit vectors in Rk, k > 0. In addition let B = (bij) be the
n× k matrix whose rows are the vectors vt1, . . . , v

t
n. Then equality holds if and only if

each column of B is an eigenvector of A with eigenvalue λn.
Note that for every loopless graph G with edges, λn < 0, as the sum of the

eigenvalues is the trace of A, which is 0.
Proof. Let y1, . . . , yk be the columns of B. By definition we have

∑k
i=1 ‖yi‖2 =∑

ij b
2
ij =

∑n
i=1 ‖vi‖2 = n. Therefore

∑
i<j

aij
1− vtivj

2
=

1

2
|E| − 1

2

∑
i<j

aijv
t
ivj =

1

2
|E| − 1

4

k∑
i=1

ytiAyi .

By the variational definition of the eigenvalues of A, for any vector z ∈ Rn, ztAz ≥
λn‖z‖2 and equality holds if and only if Az = λnz. This implies that

∑
i<j

aij
1− vtivj

2
≤ 1

2
|E| − 1

4
λn

k∑
i=1

‖yi‖2 =
1

2
|E| − 1

4
λn · n .
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Equality holds in the last expression if and only if each yi is an eigenvector of A with
eigenvalue λn.

The main ingredient of our constructions are graphs arising from the Hamming
association scheme over the binary alphabet. Let V = {v1, v2, . . .} be the set of all
vectors of length m over the alphabet {−1,+1}. For any two vectors x, y ∈ V denote
by d(x, y) their Hamming distance, that is, the number of coordinates in which they
differ. The Hamming graph H = H(m, b) is the graph whose vertex set is V and in
which two vertices x, y ∈ V are adjacent if and only if d(x, y) = b. Here we consider
only even values of b which are greater than m/2. We may and will assume, whenever
this is needed, that m is sufficiently large.

Consider any two adjacent vertices of H(m, b), vi, and vj . By the definition of
H, the inner product vtivj is m− 2b. Choose m and b such that b > m/2 is even and
m−2b
m = η. This is always possible since η is a rational number, −1 < η < 0. Let

wi =
1√
m
vi for all i; thus ‖wi‖2 = 1 and wtiwj = η for any pair of adjacent vertices.

Note that by definition, H(m, b) is the Cayley graph of the multiplicative group
Zm

2 = {−1,+1}m with respect to the set U of generators formed by all vectors with
exactly b coordinates equal to −1, where vectors in the group multiply coordinate-
wise. Therefore (see, e.g., [Lov93], Problem 11.8 and the hint to its solution) the
eigenvectors of the adjacency matrix of H(m, b) are the multiplicative characters χI
of Zm

2 , where χI(x) =
∏
i∈I xi, and I ranges over all subsets of {1, . . . ,m}. The

eigenvalue corresponding to χI is
∑

x∈U χI(x). The eigenvalues of H are thus equal
to the so-called binary Krawtchouk polynomials (see [CHLL97])

Pm
b (k) =

k∑
j=0

(−1)j
(
k

j

)(
m− k
b− j

)
, 0 ≤ k ≤ m .(3.1)

The eigenvalue Pm
b (k) corresponds to the characters χI with |I| = k and thus has

multiplicity
(
m
k

)
. Since H(m, b) is a regular graph with degree d =

(
m
b

)
, its largest

eigenvalue is equal to d and its corresponding eigenvector is (1, 1, . . . , 1). In addition it
was proved in [AS00] that if m is big enough, then the smallest eigenvalue of H(m, b)
is λ = Pm

b (1) = m−2b
m

(
m
b

)
. By the above discussion this eigenvalue has multiplicity(

m
1

)
= m and eigenvectors y1, . . . , ym with ±1 coordinates, where for each vertex

vj = (vj1, . . . , vjm), yi(vj) = vji. Therefore the columns of the matrix, whose rows
are the vectors wi, are the eigenvectors

1√
m
yi of A(H) corresponding to the eigenvalue

λ.
Let A = (aij) be an s× s matrix and B = (bpq) be a t× t matrix; then the tensor

product of A and B is the st× st matrix

A⊗B =




a11B a12B . . . a1sB
a21B a22B . . . a2sB
...

...
. . .

...
as1B as2B . . . assB


 .

We need the following well-known properties of eigenvalues and eigenvectors of tensor
products of matrices.

Lemma 3.3. Let A be a square matrix of order s with eigenvalues α1, . . . , αs
and eigenvectors e1, . . . , es and let B be a square matrix of order t with eigenvalues
β1, . . . , βt and eigenvectors f1, . . . , ft. Then the eigenvalues of the matrix A ⊗ B
are equal to αiβj , i = 1, . . . , s, j = 1, . . . , t, and their corresponding eigenvectors are
ei ⊗ fj .
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We also need the following result.

Lemma 3.4. For every two integers 0 < Y < X and every integer L > 0, there
is an integer g such that L divides the binomial coefficient

(
gX
gY

)
.

Proof. If S, T are two positive integers and R is their sum, then for every prime
p the maximum power of p that divides

(
R
S

)
= R!

S!T ! is p
h, where h =

∑
i≥1(�R/pi� −

�S/pi� − �T/pi�). For each i, the ith term in the sum above is either 0 or 1, and
it is 1 if and only if there is a carry in the ith rightmost digit when S and T are
represented in base p and are being added to get R. Therefore in order to prove the
lemma it suffices to show that for every finite collection of primes P and for every
positive integer u the following holds. There is an integer g such that for Z = X −Y ,
and for every p ∈ P , when gY and gZ are being added in base p there is a carry in
at least u places. We proceed with a proof of this fact.

Fix a prime p ∈ P and consider the representations of Y and Z in base p. If
the rightmost nonzero digit in both of them appears at the same place, then there is
some g1 > 0 such that the rightmost nonzero digit of g1Y is p− 1, and as the digit of
g1Z in the same place is nonzero as well, there will be a carry in this position while
the two numbers will be added. Otherwise assume, without loss of generality, that
the rightmost nonzero digit of Y is to the right of the rightmost nonzero digit of Z.
Choose g1 > 0 such that the rightmost nonzero digit of g1Z is p − 1. If the digit of
g1Y in this position is nonzero, then when adding g1Y and g1Z there will be a carry
here. Otherwise, by defining g′1 = g1(1 + ps), where s is chosen so that the rightmost
nonzero digit of g1Y p

s is at the same place as the rightmost nonzero digit of g1Z, we
conclude that when adding g′1Y and g′1Z we have a carry in this place. We have thus
shown that in all cases there is some positive g1 such that when adding g1Y and g1Z
there is a carry in at least one position. To get a carry in at least u positions we now
take a sufficiently large integer m and define gp = g1(1 + pm + p2m + · · ·+ p(u−1)m).
If m is sufficiently large (as a function of Y,Z, g1), then the representation of gpY
in base p consists of u pairwise disjoint blocks separated by zeros, where each block
contains the representation of g1Y . As the same description applies to gZ as well, we
conclude that indeed when adding gpY and gpZ in base p there will be a carry in at
least u places.

It remains to combine all the different numbers gp and obtain the required g. For
each p ∈ P , let ptp be a power of p satisfying ptp > max{gpY, gpZ}. Note that if
g ≡ gp (mod p

tp), then the right part of the representation of gY in base p is identical
to the representation of gpY in base p, and the same holds for gZ. By the Chinese
remainder theorem there is an integer g satisfying g ≡ gp (mod ptp) for all p ∈ P . It
follows that pu divides

(
gX
gY

)
for all p ∈ P , completing the proof.

Having finished all necessary preparations, we are now ready to complete the
proof of Theorem 3.1.

Proof of Theorem 3.1. Let H = H(m, b) with m−2b
m = η and adjacency matrix

A(H). By the above discussion this is a d =
(
m
b

)
regular graph on 2m vertices, and the

smallest eigenvalue of A(H) is equal to λ = m−2b
m

(
m
b

)
= ηd. Choose an appropriate m

such that 1−2a−η
2a

(
m
b

)
is an even, nonnegative integer. This is always possible, by

Lemma 3.4, since a and η are rational numbers and a ≤ (1 − η)/2. Pick H1 to be
any d1 regular graph on n1 = 1−2a−η

2a dd1 + 1 vertices such that if µ1 ≤ µ2 ≤ · · · ≤
µn1−1 ≤ µn1 = d1 are all eigenvalues of A(H1) and µ = max{|µ1|, |µn1−1|}, then
µ ≤ 2a−1

2a d1. There are several known constructions of such expander graphs. In
particular, a random d1 regular graph on n1 vertices with high probability satisfies
that µ = O(

√
d1) (see, e.g., [Fri91] and [FKS89]). By taking d1 and n1 sufficiently
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large we obtain a graph with the desired properties. Denote by I the identity matrix
of order 2m and by Kn1 a complete graph on n1 vertices. It is easy to see that the
eigenvalues of the adjacency matrix A(Kn1) are equal to n1 − 1 and −1 (the latter
with multiplicity n1 − 1) and the corresponding eigenvectors are the all one vector
1n1 and any maximal set of independent vectors in Rn1 whose sums of coordinates
equal zero. This implies that the adjacency matrices of H1 and Kn1

have a common
basis of eigenvectors.

Finally, let G be a graph on n = 2mn1 vertices with the following adjacency
matrix:

A(G) = A(H)⊗A(H1) + I ⊗A(Kn1).

In other words, G is obtained by replacing each vertex of H by a copy of Kn1
and

replacing each edge of H by (the double cover of) a copy of H1. By the definition,
A(G) is a symmetric matrix with all entries equal to either 1 or 0 and for every row of
A(G) the sum of its entries is equal to d′ = dd1+(n1−1). Therefore it is an adjacency
matrix of a d′ regular graph. The matrices A(H) and I and also the matrices A(H1)
and Kn1 have a common basis of eigenvectors. Thus by Lemma 3.3 we obtain that
the same is true for A(G), A(H)⊗A(H1), and I⊗A(Kn1). Next, we need to compute
the smallest eigenvalue of A(G). By Lemma 3.3 it is easy to see that the only two
possibilities for its value are λd1+(n1−1) or −µd−1. Since −1 < η < 0 and d =

(
m
b

)
is large enough, an easy computation shows that

λd1 + (n1 − 1) = ηdd1 +
1− 2a− η

2a
dd1 =

(1− 2a)(1− η)
2a

dd1

<
(1− 2a)

2a
dd1 − 1 < −µd− 1 ,

where in the penultimate inequality we used the fact that 1−2a
2a ηdd1 > 1 for all suf-

ficiently large d1, and in the last inequality we used that µ ≤ 2a−1
2a d1. Therefore we

conclude that the smallest eigenvalue of A(G) is λd1 + (n1 − 1). Furthermore, by
Lemma 3.3 and the properties of H(m, b) this eigenvalue has multiplicity m and its
corresponding eigenvectors are equal to z1 = y1 ⊗ 1n1

, . . . , zm = ym ⊗ 1n1
.

Clearly zi = (zi1, . . . , zin) is a vector with ±1 coordinates. Thus the coordinates
of zi correspond to a cut in G of size equal to

∑
k<j

akj(G)
1− zikzij

2
=

1

2
|E(G)| − 1

4
ztiA(G)zi =

1

4
d′n− 1

4
(λd1 + (n1 − 1))‖zi‖2

=
1

4

(
dd1 +

1− 2a− η
2a

dd1

)
n− 1

4

(
ηdd1 +

1− 2a− η
2a

dd1

)
n

=
1

2

1− η
2

dd1n = a
1

2
d′n = a|E(G)| ,

where here we used the fact that d′ = dd1 + n1 − 1 = 1−η
2a dd1. Thus the size of a

maximum cut in G is equal to the optimal value of the semidefinite program (see
Lemma 3.2). On the other hand, let B be the 2m × m matrix whose rows are the
vectors wi and thus its columns are equal to 1√

m
yi. Denote by u1, . . . , un the rows

of the matrix B ⊗ 1n1 . By definition, ‖ui‖2 = 1 and the columns of this matrix are
the eigenvectors 1√

m
yi⊗1n1 =

1√
m
zi of A(G) corresponding to its smallest eigenvalue
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λd1 + (n1 − 1). Therefore by Lemma 3.2 it follows that

max
‖vl‖2=1

∑
i<j

aij(G)
1− vtivj

2
=

1

2
|E(G)| − 1

4

(
λd1 + (n1 − 1)

)
n = a|E(G)|

=
∑
i<j

aij
1− utiuj

2
.

To finish the proof of the theorem note that by definition each ui is equal to one
of the vectors wk. In addition, if i and j are adjacent vertices in G, then ui, uj are
equal either to the same vector wk, and then utiuj = 1, or are equal to wk, wl which
correspond to adjacent vertices in H, and in that case utiuj = η.

4. Approximation algorithms for the MAX NAE-{3}-SAT problem.
An instance of the MAX 2-XOR (or MAX NAE-{2}-SAT) problem in the variables
x1, x2, . . . , xn is composed of a (weighted) collection of pairs of the form 〈z1, z2〉,
where the zi’s are literals. A clause 〈z1, z2〉 is satisfied by a 0-1 assignment to the
variables x1, x2, . . . , xn if and only if z1 �= z2 under this assignment. It is easy to see
that instances of MAX CUT are just instances of MAX 2-XOR with no negations.
The approximation algorithms of [GW95] and [Zwi99] are, in fact, approximation
algorithms for MAX 2-XOR, not just for MAX CUT. The performance guarantees
obtained by these algorithms on MAX 2-XOR instances are the same as those obtained
on MAX CUT instances.

An instance of MAX NAE-{3}-SAT is easily converted into an instance of MAX
2-XOR. Simply replace each triplet 〈z1, z2, z3〉 by the three pairs 〈z1, z2〉, 〈z1, z3〉, and
〈z2, z3〉, giving each one of them a weight of 1/2. It is easy to check that the total
weight of the triplets/pairs satisfied by this transformation is unchanged. Thus, the
algorithm of [GW95] is also an approximation algorithm for MAX NAE-{3}-SAT with
a performance ratio of at least α � 0.87856.

A better performance guarantee for the MAX NAE-{3}-SAT problem can be
obtained as follows. It is convenient to adopt the notation xn+i = x̄i for 1 ≤ i ≤ n. If
we let wijk ≥ 0 be the weight attached to the triplet 〈xi, xj , xk〉 in a MAX NAE-{3}-
SAT instance, then we can write the following semidefinite programming relaxation
corresponding to the instance:

max
∑

i<j<k wijk
3−vtivj−vtivk−vtjvk

4

such that vtivi = 1 , vtivn+i = −1 for 1 ≤ i ≤ n ,
vtivj + vtivk + vtjvk ≥ −1 for 1 ≤ i, j, k ≤ 2n .

If we round an optimal solution v1, v2, . . . , vn of the above relaxation using a random
hyperplane, then we still get a performance guarantee of only α � 0.87856. However,
for satisfiable instances of MAX NAE-{3}-SAT a performance guarantee of at least
β1 =

3
2π arccos(− 1

3 ) � 0.91226 is obtained (see [AKMR96], [Zwi98]). The performance
ratio obtained is no better than β1 if there exist unit vectors v1, v2, . . . , vn such that
vtivj = vtivk = vtjvk = − 1

3 for every triplet 〈xi, xj , xk〉 of the instance with nonzero
wijk. (Due to the constraint vtivj + vtivk + vtjvk ≥ −1, such a collection of vectors is
automatically an optimal solution of the relaxation.) We show in the next sections
that such solutions do exist.

Zwick [Zwi99] obtains a performance guarantee of at least β � 0.908718 for gen-
eral, not necessarily satisfiable, instances of the problem by constructing a sequence of
vectors w1, w2, . . . , wn such that wtiwj = c(vtivj), for every i �= j, where c � 0.9789916,
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and then rounding w1, w2, . . . , wn, and not v1, v2, . . . , vn, using a random hyperplane.
More specifically, the constants β � 0.908718, c � 0.9789916, and η � −0.74335866
are the solutions of the three equations

c2
(
η2 +

4

β2π2

)
= 1,

2 arccos(cη) + arccos(c)

π
= β(1− η), 3

2π
arccos

(
− c
3

)
= β.

It is further shown in [Zwi99] that the performance ratio achieved by this algorithm
on a given instance is no better than β if the optimal value of the relaxation is
equal to the optimal value of the instance (no integrality gap) and if for every triplet
〈xi, xj , xk〉 that appears in the instance either vtivj = vtivk = vtjvk = − 1

3 or two of the
inner products vtivj , v

t
ivk, and v

t
jvk are η and the third is 1. Furthermore, a fraction of

about r � 0.278797 of the triplets should be of the second type; otherwise an improved
ratio may be obtained by varying c. (We omit the exact equation defining r.) We are
again able to show that such instances do exist, and hence the analysis is again tight.

5. Worst case instances for the MAX NAE-{3}-SAT algorithms. Let
H = (V,E) be a 3-uniform hypergraph. (Every e ∈ E satisfies e ⊆ V and |e| = 3.) A
cut of H is again a partition of V into two sets S and V −S. A cut (S, V −S) is said
to cut a hyperedge e ∈ E if and only if 0 < |e∩S| < 3. A maximum cut of H is a cut
that cuts the largest number of edges. It is easy to see that the problem of finding a
maximum cut of H corresponds to a MAX NAE-{3}-SAT instance with no negations.
We show that the analyses of the MAX NAE-{3}-SAT algorithms described in the
previous section are tight even on such instances.

A hypergraph H = (V,E) has a cut of size |E| if and only if it is 2-colorable. The
MAX NAE-{3}-SAT instance corresponding to it is then satisfiable. The following
theorem shows that the bound of β1 = 3

2π arccos(− 1
3 ) � 0.91226 on the performance

ratio achieved by the MAX NAE-{3}-SAT approximation algorithm described in the
previous section on satisfiable instances is tight.

Theorem 5.1. For infinitely many values of n, there exists a 2-colorable 3-
uniform hypergraph H = (V,E), such that V = {1, 2, . . . , n}, and a sequence of unit
vectors w1, w2, . . . , wn such that wtiwj = wtiwk = wtjwk = − 1

3 for every {i, j, k} ∈ E.

Proof. It is easy to construct such an example for n = 4. Simply let E be
composed of all subsets of V = {1, 2, 3, 4} of size 3. It is easy to check that S = {1, 2}
is a cut that cuts all the edges. Let w1, w2, w3, and w4 be four unit vectors such that
wtiwj = − 1

3 for every 1 ≤ i < j ≤ 4. This can be done, for example, by taking w1 =
1√
3
(1, 1, 1)t, w2 =

1√
3
(1,−1,−1)t, w3 =

1√
3
(−1, 1,−1)t, and w4 =

1√
3
(−1,−1, 1)t.

This example is a special case of the following more general construction which
supplies an infinite family of satisfiable instances of a MAX NAE-{3}-SAT problem
for which the analysis from [Zwi98] is tight. Let H = H(m, b) with b = 2m/3. The
vertex set {v1, v2, . . .} of H consists of all ±1 vectors of length m, and two vectors
are adjacent if the number of coordinates in which they differ is equal to 2m/3. Let
wi = 1√

m
vi for all i; thus ‖wi‖2 = 1 and wtiwj = m−2b

m = −1/3 for any pair of

adjacent vertices in H. Let H be the 3-uniform hypergraph whose edges are triples
of the vertices in H that form a cycle of length 3. By definition, it is easy to see
that three vectors which form a triangle in the graph H cannot have the same first
coordinate. By partitioning vertices into two parts according to their first coordinate,
we therefore obtain a 2-coloring of H, as required.

We next show that the analysis of the performance of the MAX NAE-{3}-SAT
algorithm of Zwick [Zwi99] on general, not necessarily satisfiable, instances is also
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tight. By the discussion in the previous section, this follows from the following theo-
rem. Given a 3-uniform hypergraph H, we let OPT (H) be the size of the maximum
cut of H, and we let z∗(H) be the optimal value of the semidefinite programming
relaxation of the corresponding MAX NAE-{3}-SAT instance.

Theorem 5.2. Let −1 < η < −1/2 be a rational number and let 0 < r < 1 and
ε > 0. Then, for infinitely many values of |U | there exists a 3-uniform hypergraph
H = (U,E), where U = {u1, u2, . . .} and E = E1 ∪ E2, and unit vectors wu1 , wu2 , . . .
such that for every {ui, uj , uk} ∈ E1, we have wtui

wuj
= wtui

wuk
= wtuj

wuk
= − 1

3 ,

for every {ui, uj , uk} ∈ E2 exactly two of the inner products wtui
wuj , w

t
ui
wuk

, wtuj
wuk

are η and the third is 1, and such that

OPT (H) = z∗(H) =
∑

{i,j,k}∈E

3− wtui
wuj − wtui

wuk
− wtuj

wuk

4
.

In addition |E2| is bounded by r|E| ≤ |E2| ≤ (r + ε)|E|.
Proof. The hypergraph H = (U,E) that we construct is the union of two hyper-

graphs H1 = (U,E1) and H2 = (U,E2), that is, E = E1 ∪ E2. We begin with the
description of H1.

Let m and n be (large) integers. (Their values are specified at the end of the
proof.) Let H1 be the graph H1 = H(m, b) with b = 2m/3 (we assume that m is
divisible by 3) and let I be an identity matrix of order n. Consider a graph G1

with adjacency matrix A(G1) = A(H1) ⊗ I. Clearly G1 is just a disjoint union of n
copies of H1. The vertex set U = {u1, u2, . . .} of this graph consists of all pairs
{(v, t)|v ∈ {−1, 1}m, 1 ≤ t ≤ n}, and two vertices (v, t) and (v′, t′) are adjacent if and
only if t = t′ and v and v′ differ in exactly 2m/3 coordinates. Let wu = 1√

m
v for

all u = (v, t); thus ‖wu‖2 = 1 and wtui
wuj = m−2b

m = −1/3 for any pair of adjacent
vertices in G1. Let H1 be a 3-uniform hypergraph, whose edges are the triples of the
vertices in G1 which form a cycle of length 3. It is easy to see that the number of
edges in H1 is equal to 1

6n2
m
(

m
2m/3

)(
2m/3
m/3

)
. Let A be a subset of U containing all

vertices (v, t) with first coordinate of vi equal to one and let B = U − A. It follows
easily from the definition that the three vertices of a 3-cycle in G1 cannot all have the
same first coordinate. Thus any 3-cycle in G1 will intersect both A and B. Therefore
we obtain a cut in the hypergraph H1 whose size is equal to the total number of edges
of H1. Finally, since w

t
ui
wuj = wtui

wuk
= wtuj

wuk
= −1/3 for any edge in H1 and the

value of the semidefinite relaxation z∗(H1) is always bounded by |E(H1)| we conclude
that

∑
{ui,uj ,uk}∈E(H1)

3− wtui
wuj − wtui

wuk
− wtuj

wuk

4
= |E(H1)| = OPT (H1) = z∗(H1)

=
1

6
n 2m

(
m

2m/3

)(
2m/3

m/3

)
.

The construction ofH2 is more involved than that ofH1. We start by constructing
an auxiliary multigraph G2. Let H2 be the graph H2 = H(m, b) with b = 1−η

2 m.
(η is given at the statement of the theorem and can be made arbitrarily close to
−0.74335866 . . ..) LetKn be a complete graph on n vertices. The graphH2 is d regular
with d =

(
m

(1−η)m/2

)
, and, by the discussion in section 3, the smallest eigenvalue of its

adjacency matrix A(H2) is λ = m−2b
m d = ηd. Let G2 be a multigraph with adjacency

matrix equal to A(G2) = (A(H2) + dI/2) ⊗ A(Kn), where I is an identity matrix of
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order 2m. The vertex set of G2 is again U = {(v, t)|v ∈ {−1, 1}m, 1 ≤ t ≤ n}, and two
vertices (v, t) and (v′, t′) are connected by a unique edge if t �= t′ and v and v′ differ
in exactly 1−η

2 m coordinates or they are connected by d/2 parallel edges if v = v′ and
t �= t′. By definition G2 is a (3d(n− 1)/2) regular multigraph and by Lemma 3.3 its
smallest eigenvalue is equal to (λ+d/2)(n−1) = (η+1/2)d(n−1) < −3d/2 < 0, where
here we used the fact that n is sufficiently large. Let wu = 1√

m
v for all vertices (v, t)

be as before; thus ‖wu‖2 = 1 and wtui
wuj

= m−2b
m = η or 1 for any pair of adjacent

vertices of G2. In addition wtui
wuj = 1 if and only if ui = (v, t) and uj = (v, s) with

t �= s. Let B = (bij) be the 2mn × m matrix whose rows are equal to the vectors
wu, u ∈ U . Note that the elements in B are ± 1√

m
. As in the proof of Theorem 3.1,

we can see that the columns of B are eigenvectors of A(G2) that correspond to the
smallest eigenvalue of A(G2). Let OPT (G2) be the size of the MAX CUT in G2

and let z∗(G2) be the value of the semidefinite programming relaxation. Then by
Lemma 3.2 we obtain that

OPT (G2) = z∗(G2) =
∑
i<j

aij(G2)
1− wtui

wuj

2

=
1

2
|E(G2)| − 1

4

(
η + 1/2

)
d(n− 1)|V (G2)| .

The coordinates of the first column of B produce the cut (A,B) (same as for H1)
and its size is equal to OPT (G2), since the first column of B is an eigenvector of the
smallest eigenvalue of A(G2).

Now we are ready to construct H2. Let H2 be the 3-uniform hypergraph on the
vertex set U = V (G2), whose edges are the following triples of the vertices of G2;
{ui, uj , uk} belongs to E(H2) if and only if ui = (v, t), uj = (v, t′) and uk = (v′′, t′′)
such that t �= t′ �= t′′ and v and v′′ differ in exactly (1−η)m/2 coordinates. Note that
by definition, the number of edges in H2 is equal to 1

2n(n − 1)(n − 2)2m
(

m
(1−η)m/2

)
and they form cycles of length 3 in G2. In addition every edge of G2 connecting
ui = (v, t) and uk = (v′′, t′′) (as above) is contained in exactly 2(n − 2) edges of H2

and every pair of vertices ui = (v, t) and uj = (v, t′) (as above) is contained in exactly
d(n− 2) edges of H2. Since in the multigraph G2 between the vertices ui = (v, t) and
uj = (v, t′) we have d/2 parallel edges, we can distribute them equally between all
3-cycles which correspond to the edges of H2 containing this pair of vertices. By doing
this we obtain that every edge in the multigraph G2 is contained in exactly 2(n− 2)
edges of H2. In this case the size of the MAX CUT in H2 is closely related to the
size of the MAX CUT of G2. Note that for any partition of the vertices (X,U −X),
the number of edges of H2 which crosses this cut is exactly n − 2 times the number
of edges of G2 with the same property. Indeed, any edge from G2 which connects
X with U −X is contained in 2(n − 2) triples from H2. All of them also cross this
cut, but every such triple we counted twice, since it contributes two edges of G2 to
the cut. Therefore we can conclude that the value of MAX CUT of H2 is equal to
OPT (H2) = (n− 2)OPT (G2) and this value is obtained on the cut (A,B), the same
one as for the graph G2. This, together with the above discussion implies that

OPT (H2) ≤ z∗(H2) ≤ max
∑

{ui,uj ,uk}∈E(H2)

3− ytui
yuj
− ytui

yuk
− ytuj

yuk

4

=
1

2
max

∑
{ui,uj ,uk}∈E(H2)

[
1− ytui

yuj

2
+

1− ytui
yuk

2
+

1− ytuj
yuk

2

]
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≤ (n− 2) max
∑

{ui,uj}∈E(G2)

1− ytui
yuj

2
= (n− 2)

∑
i<j

aij(G2)
1− wtui

wuj

2

= (n− 2) z∗(G2) = (n− 2)OPT (G2) = OPT (H2) .

Thus,

OPT (H2) = z∗(H2) =
∑

{ui,uj ,uk}∈E(H2)

3− wtui
wuj − wtui

wuk
− wtuj

wuk

4
.

Also, we know that for every edge {ui, uj , uk} ofH2, two of the inner products w
t
ui
wuj

,
wtui

wuk
, and wtuj

wuk
are η and the third is 1.

Finally let H be the 3-uniform hypergraph with the same vertex set U and with
edge set E(H1) ∪ E(H2). We clearly have OPT (H) ≤ z∗(H) ≤ z∗(H1) + z∗(H2) =
OPT (H1)+OPT (H2). On the other hand, (A,B) is a MAX CUT of both H1 and H2;
thus it is also a cut of H of size OPT (H1)+OPT (H2). As the same vectors wui were
used for the two hypergraphs, we get that

∑
{ui,uj ,uk}∈E(H)

3− wtui
wuj − wtui

wuk
− wtuj

wuk

4
= OPT (H1) +OPT (H2)

= OPT (H) = z∗(H).
In addition, for every edge {ui, uj , uk} ∈ E(H), either two of the inner products
wtui

wuj , w
t
ui
wuk

, and wtuj
wuk

are η and the third is 1 (if {ui, uj , uk} ∈ E(H2)) or

wtui
wuj = wtui

wuk
= wtuj

wuk
= − 1

3 (if {ui, uj , uk} ∈ E(H1)). Finally, recall that

|E(H1)| = 1
6n2

m
(

m
2m/3

)(
2m/3
m/3

)
and that |E(H2)| = 1

2n(n − 1)(n − 2)2m
(

m
(1−η)m/2

)
,

where m and n are (large) parameters that we are free to choose. By choosing appro-
priate values of m and n, and using the fact that(

m

2m/3

)(
2m/3

m/3

)
> 2m >

(
m

(1− η)m/2
)

for all sufficiently large m, it follows that we can control the proportion of the edges
of the second type, and make it arbitrarily close to r, as required.

6. Concluding remarks. We have shown that lower bounds on the performance
guarantees of semidefinite programming based approximation algorithms for the MAX
CUT, MAX 2-XOR, and MAX NAE-{3}-SAT problems obtained using local ratio
arguments are indeed tight.

Furthermore, our constructions show that the analyses of these algorithms are
tight even if arbitrary collections of valid constraints are added to the semidefinite
programming relaxations of these problems. Let aij , 1 ≤ i < j ≤ n, and b be real
numbers. A constraint ∑

i<j

aij(v
t
ivj) ≥ b

is said to be valid if it is satisfied whenever each vi is an integer in {−1, 1}. Feige
and Goemans [FG95] and Goemans and Williamson [GW95] proposed adding valid
constraints to the semidefinite relaxations in the hope of narrowing the gap between
the optimal value of the semidefinite program and the weight of the optimal solution.
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As all the coordinates of the vectors u1, u2, . . . of section 3 and of the vectors w1, w2, . . .
of section 5 are equal to ±1/√m, it is not difficult to see that they satisfy any valid
constraint. Thus the proofs of Theorems 3.1, 5.1, and 5.2 show that the addition
of any collection of valid constraints does not improve the performance ratio of the
abovementioned approximation algorithms for the MAX CUT, MAX 2-XOR, and
MAX NAE-{3}-SAT problems.

It is shown in [KZ97] that the 7/8 lower bound on the performance ratio of the
MAX 3-SAT approximation algorithm, obtained again using a local ratio argument,
is also tight. Does local analysis always produce tight results? We see no reason why
this should always be the case. It would be interesting to find natural approximation
algorithms for interesting constraint satisfaction problems for which local analysis is
not tight. It would also be interesting to know whether the local analyses of the
approximation algorithms of Feige and Goemans [FG95] (see also [Zwi00]) for the
MAX 2-SAT and MAX DI-CUT problems are tight. This seems, however, to require
some additional techniques.

Acknowledgments. We would like to thank two anonymous referees for many
helpful comments.
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Abstract. Let D ⊆ Σn be a dictionary. We look for efficient data structures and algorithms to
solve the following approximate query problem: Given a query u ∈ Σn list all words v ∈ D that are
close to u in Hamming distance.
The problem reduces to the following combinatorial problem: Hash the vertices of the n-

dimensional hypercube into buckets so that (1) the c-neighborhood of each vertex is mapped into
at most k buckets and (2) no bucket is too large.
Lower and upper bounds are given for the tradeoff between k and the size of the largest bucket.

These results are used to derive bounds for the approximate query problem.

Key words. approximate query, hashing, isoperimetric inequality, error correcting code
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1. Introduction. Consider a text with words that all belong to a given dic-
tionary D. Due to limited reliability, the words may contain errors. Our task is to
provide for every word from the text a list of alternative similar words from the dictio-
nary, while minimizing the search time and storage space. When the size of D is small
enough, it may be feasible to search all of it for each such query (as done, for example,
by algorithms for the problem of string matching with k-differences; see [LV1], [LV2]).
However, when D is large, a more efficient approach is needed. This problem, called
the approximate query problem, can arise in many different fields. The most obvious
examples come from the design of efficient spellers and speech-recognizers. Variations
of the problem arise in fields such as the analysis of DNA sequences and proteins in
chemistry and biology.

Hashing is a powerful tool in handling many similar problems. However, as we
shall see, the hash functions we require also need to preserve locality. The requirements
of hashing and of preserving locality seem to contradict one another. Informally, the
objective of hashing is to “scatter” the given data, while preserving locality means
doing the opposite. Both hashing and locality preservation are used quite widely in
theory and in practice, but the tradeoffs between these two requirements are not well
understood. The combinatorial problems raised in this paper concern the extent to
which hashing and preservation of locality can be satisfied together.

In the scenario under consideration, the dictionary D may change over time, and
we desire a data structure that requires only minimal modifications upon changes
in D. For concreteness, let D ⊆ {0, 1}n. Our approach is to look for a mapping
h : {0, 1}n → {1, . . . , B}, where B is the number of entries (buckets) in the hash
table. Given a query u ∈ {0, 1}n, we would like to retrieve all words in D that
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are in the c-neighborhood of u (i.e., words of Hamming distance at most c from u).
Thus, in order to minimize the search time, h should map each c-neighborhood into
a small number, k, of buckets. This requirement reflects our desire for h to preserve
locality. At the same time, we expect h to exhibit good hashing properties, in that
each bucket should contain relatively few words. This requirement reduces the amount
of redundant search among words not in the c-neighborhood of u. We provide both
upper and lower bounds on the tradeoff between k, c, and the size of the largest
bucket. These tradeoffs are used in section 2 to derive bounds on the complexity of
the approximate query problem.

A framework for questions of this type was developed in [DHP], where the prob-
lem is called the approximate query retrieval problem (see also [H] and [P]). A similar
problem called the partial-match retrieval problem is studied in [R]. Numerous inter-
esting applications of such problems can be found in [SK].

We can now state formally our problem and results. The (c, k)-coloring problem
is defined as follows:

Color the vertices of the n-dimensional cube Cn so that the c-neighborhood of each
vertex is colored with at most k colors and such that the largest color class is as small
as possible.

We call such a coloring a (c, k)-coloring and say that each c-neighborhood is k-
colored. Our first results are lower bounds on the size of the largest color class. These
bounds rely on isoperimetric inequalities for the cube Cn and are described in section
3. Specifically we prove the following theorems.

Theorem 1.1. In any (1, k)-coloring of Cn there exists a color that appears at
least

∑t
i=0

(
n
i

)
times, where t = n+2

k+1 − 1.

Theorem 1.2. In any (c, k)-coloring of Cn, there exists a color that appears at

least
∑t
i=0

(
n
i

)
times, where t = n−c c√k−1

c√k−1+2
.

Some of the applications require coloring only some small subset of the cube. The
following lower bound addresses this issue and can be found in section 4. Denote by
Bn,r the Hamming ball of radius r in Cn.

Theorem 1.3. In any (1, k)-coloring of Bn,r, there exists a color that appears at

least
(
n/k
r

)
times.

The upper bounds for the (c, k)-problem are described in section 5. Although we
do not have a full answer, we show various colorings of the cube that match, or nearly
match, our lower bounds. Some of these colorings are derived using error correcting
codes (see [PW] or [MS] for relevant information on error correcting codes). Examples
of the upper bounds obtained are described in Table 1.1.

We conclude by introducing a more general problem called the (c, k, s)-covering
problem, which allows each word to be hashed to s entries in the hash table instead
of to a single entry, using s hash functions instead of only one. Section 6 contains a
combinatorial formalization of this problem, as well as possible directions for further
research.

2. The approximate query problem. Let D ⊆ Σn be a dictionary of words
of length n over some alphabet Σ. We concentrate on the case where Σ = {0, 1}, as
our combinatorial results directly translate to this case. The extensions to a larger
alphabet size are straightforward. Our results apply to algorithms of the following
type (see also [DHP]).

The data structure. The algorithm stores the dictionary D in a hash table
using a hash function hD : Σn → {1 . . . B}, where B is the number of entries in the
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Table 1.1
Upper bounds for the (1, k)-coloring problem.

n k Largest color Remarks

any n 2

any n− d+ 1 2d d is a constant

2r − 1 (n+ 1)/2 n+ 1 uses Hamming codes

4r − 1 1 + n/3 O(n3) uses nearly perfect codes

see remarks
∑t+1

i=0

(
n
i

)
, when an (n, t)-quasi-

t = O(n/
√
k) perfect code exists

any any
∑t+d

i=0

(
n
i

)
, d ≤ t, uses a

t = O(n/k1/(d+1)) general (n, t, d)-code

any 2 2
(

n
n/2

)

hash table. Each entry (bucket) in the hash table contains all the words in D that
were hashed to it.

Answering queries. Define the c-neighborhood of u ∈ Σn with respect to Σn

to be

Nc(u) = {v|v ∈ Σn, d(u, v) ≤ c},

where d(u, v) is the Hamming distance of u and v. The c-neighborhood of u ∈ Σn

with respect to D is

Nc(u,D) = Nc(u) ∩D.

The algorithm is given queries u ∈ Σn and should determine Nc(u,D). The
algorithm answers a query u by probing those buckets in the hash table that contain
Nc(u,D). Let Su be the sequence of buckets searched by the algorithm as an answer
to query u. The sequence Su is called the search sequence of u.

Complexity measures. The total time to answer a query u depends on the
length |Su| of the search sequence of u and the total number of words found in the
buckets searched by Su. We thus have two complexity measures:

1. The length KD = maxu |Su| of the longest search sequence used by the al-
gorithm. Small search sequences are advantageous, since each access to a
different bucket may result in a costly disk access.

2. The sizeMD of the largest bucket created by the algorithm, i.e., the maximum
number of words in D that were mapped by hD to the same bucket. A
smallMD reduces the number of irrelevant words read by the algorithm when
answering a query u.

We first show that there exist dictionaries D, for which MD grows exponentially in
n/KD, for any hash function hD.

Corollary 2.1. There exists a dictionary D such that for every hash function
hD, MD ≥ 2Ω(n/KD).

Proof. Let D = Σn. Then any hash function hD for which the length of the
search sequences is bounded by KD is a KD-coloring of the cube Cn. The claim then
follows from Theorems 1.1 and 1.2, using the Stirling approximation for the binomial
coefficients.
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Note that if c is a constant, then the c-neighborhood of any query is polynomial
in size (even for the large dictionary D described in the proof). Yet if KD is small,
then there will be a bucket which contains many words that are irrelevant to a query
whose search sequence includes this bucket. For example, if D = {0, 1}n, then the
1-neighborhood of each query contains n + 1 words. However, if KD is a constant,
then Corollary 2.1 states that there exists a bucket that contains 2Ω(n) words.

The proof of Corollary 2.1 holds only for big dictionaries. Are there any good hash
functions for small dictionaries? Notice that for a small enough random dictionary D,
the size of the c-neighborhood of any query u with respect to D is |Nc(u,D)| = O(1)
with high probability. Thus it is possible to map each word of D to a separate bucket,
and there exists a short search sequence for each query (although computing this
search sequence may not be easy). We exhibit, however, small dictionaries with no
good hash function h. That is, either the search sequence is long or there exists a
large bucket.

Corollary 2.2. There exists a dictionary D of size |D| = O(nr) such that for
every hash function hD, MD = Ω(|D|/Kr

D).
Proof. Let D be a dictionary that includes all the words in some Hamming ball

of radius r. The claim follows from Theorem 1.3.
It is possible to define a number of natural complexity measures in terms of KD

and MD. In [DHP] one such possible time complexity measure is defined

TimeA(hD, u) = |Su|+
∑
i∈Su

|Bi|,

where A is an algorithm that uses a hash function hD, u ∈ Σn is a query, and Bi is
the ith bucket in the hash table. The efficiency of A in terms of its time complexity
can then be measured as

TA = max
D,u

TIME(hD, u)

|Nc(u,D)|+ 1
.

Algorithm A is time optimal if TA = O(1); that is, the algorithm gives an answer
in time linear in the answer size.

An algorithm for which the hash function h is fixed for any dictionary D, and
the search sequence of a query u depends only on h and u, will be called D-oblivious.
Such algorithms are of course preferred since they are easier to design, and can handle
a dynamically changing dictionary D, without having to change the data structure
with every change in D. For such algorithms we give tight lower bounds on the time
complexity defined above. Denote by Nc the size of a c-neighborhood with respect
to Σn. Thus for the Hamming distance Nc =

∑c
i=0

(
n
i

)
(|Σ| − 1)i. Note that usually

|Nc(u,D)| � Nc. Let A be a D-oblivious algorithm that is space optimal (i.e., uses
space |D|). Then [DHP] show that TA = Ω(

√
Nc). We improve their result and show

the following corollary.
Corollary 2.3. Let A be an optimal space D-oblivious algorithm. Then TA =

Ω(Nc/4
c).

Proof. Since algorithm A is D-oblivious, it uses some fixed hash function h for
all dictionaries D. If KA > Nc/4

c, then there exists a query u for which |Su| >
Nc/4

c. Let D be any dictionary for which the c-neighborhood of u is empty; that is,
|Nc(u,D)| = 0. The claim follows.

If KA ≤ Nc/4
c, then h is an (Nc/4

c)-coloring of the cube. Thus by Theorem 1.1
and Theorem 1.2, there exists a color set of size Ω(N2

c /4
c). Let D be a dictionary
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that includes most of the words in this color set. The claim follows for any query u
whose search sequence includes this set.

This bound is tight up to a factor of 4c. Consider, for example, the D-oblivious
algorithm that maps each word to a separate bucket. The search sequence of a query u
will include the buckets of all its possible c-neighbors in Σn. Thus |Su| = |Nc(u)| = Nc,
and the time complexity is Nc + |Nc(u,D)| = O(Nc).

3. Lower bounds on the size of the largest color set in any (c, k)-
coloring of Cn. This section will provide lower bounds on the size of the largest
color set in any (c, k)-coloring of the n-dimensional cube Cn. If k = 1, it is clear that
the whole cube should be colored using one color. For the remainder of this and the
next section assume therefore that k ≥ 2. We now prove Theorems 1.1 and 1.2.

Recall that we assume that Σ = {0, 1}. Similar results can be obtained for
a general alphabet Σ, using an extension of the isoperimetric inequality for larger
alphabets. The details are omitted.

3.1. Proof of Theorem 1.1. Assume by contradiction that all color sets are
smaller than the size stated in the theorem. The isoperimetric inequality provides a
lower bound on the number of neighbors of a set of vertices in Cn, as a function of
the cardinality of the set. Thus every color set S has at least β|S| neighbors (where
β is a decreasing function of |S|). The number of neighbors of all color sets can thus
be bounded from below. On the other hand, the fact that the 1-neighborhood of
each vertex is k-colored can be used to bound the number of neighbors of all color
sets from above. An appropriate choice of parameters leads to a contradiction. We
proceed with the detailed proof.

Denote by ΓS the 1-neighborhood of a subset S ⊆ Cn, not including the vertices
in S. That is,

ΓS = {v ∈ S|∃u ∈ S, d(u, v) = 1}.
Lemma 3.1 (isoperimetric inequality). Let S be a subset of Cn of size |S| =∑r−1

i=0

(
n
i

)
+m, where 0 ≤ m ≤ (nr). Then |ΓS | ≥

(
n
r

)−m+m · ( n
r+1

)
/
(
n
r

)
.

Proof. See [B, pp. 122–129].
Using this inequality, we can derive a lower bound on the ratio |ΓS |/|S| as a

function of |S|.
Lemma 3.2. Let S be any set of size |S| ≤∑r

i=0

(
n
i

)
. Then |ΓS |

|S| ≥
(
n
r+1

)
/
∑r
i=0

(
n
i

)
.

Proof. Let S be any set with size |S| =∑r−1
i=0

(
n
i

)
+m, where 0 ≤ m ≤ (nr).

By Lemma 3.1, the claim holds for m =
(
n
r

)
, and so it suffices to show that the

function

f(m) =

(
n
r

)−m+m · ( n
r+1

)
/
(
n
r

)
∑r−1
i=0

(
n
i

)
+m

is decreasing over 0 ≤ m ≤ (nr). The inequality f(m) ≥ f(m+ 1) reduces to showing
that (

n

r + 1

)
·
r−1∑
i=0

(
n

i

)
≤
(
n

r

)
·
r∑
i=0

(
n

i

)
.

This inequality follows by comparing the ith term on the left with the (i + 1) term
on the right.
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Lemma 3.3.
• ( n

αn+1

)
= 1−α

1/n+α

(
n
αn

)
, where 0 ≤ α ≤ 1.

• ∑αn
i=0

(
n
i

)
<
(
n
αn

)
1−α
1−2α , where 0 < α < 1/2.

Proof. The first part can be verified easily using the definition of the binomial
coefficients. For the second part note that

αn∑
i=0

(
n

i

)
<

(
n

αn

)
·
(
1 +

α

1− α + (
α

1− α )
2 + · · ·

)
=

(
n

αn

)
· 1− α
1− 2α

.

This completes the proof.
As specified above, the size of each neighbor set is at least as large as the size of

the set itself multiplied by some number β, which depends on the size of the set. The
following lemma shows the relationship between β and the size of the set.

Lemma 3.4. Let S be any subset of Cn, where |S| ≤∑αn
i=0

(
n
i

)
, and 0 < α < 1/2.

Then |ΓS | > β · |S| for β = 1−2α
α+1/n .

Proof. By Lemma 3.2 it is enough to prove the claim for sets S with size |S| =∑αn
i=0

(
n
i

)
. By the isoperimetric inequality,

|ΓS | ≥
(

n

αn+ 1

)
.

Thus we have to show that(
n

αn+ 1

)
>

1− 2α

α+ 1/n
·
αn∑
i=0

(
n

i

)
.

By Lemma 3.3 and the fact that β = 1−2α
α+1/n we get(

n

αn+ 1

)
=

(
n

αn

)
· 1− α
1/n+ α

= β ·
(
n

αn

)
· 1− α
1− 2α

> β ·
αn∑
i=0

(
n

i

)

as claimed.
Proof of Theorem 1.1. The theorem is obviously true if k = 1 (the cube must be

colored with one color) or k = n + 1 (each vertex is colored with a different color).
Therefore assume that 1 < k < n + 1, and let α = 1

k+1 − k−1
n(k+1) . Note that by our

assumption on k, 0 < α < 1/2.
Let Si be the color sets and assume by contradiction that all sets are smaller than

Σαni=0

(
n
i

)
. We will bound

∑
i |ΓSi | from above and below and derive a contradiction.

Consider a vertex v colored j (i.e., v ∈ Sj). The 1-neighborhood of v is k-colored,
and therefore v can be a neighbor of at most k − 1 color sets (since it belongs to the
color set Sj). Therefore each one of the 2n vertices belongs to at most k − 1 of the
neighborhoods ΓSi . Thus ∑

i

|ΓSi | ≤ (k − 1)2n.

On the other hand, we can bound the number of neighbors from below as follows.
If we set β = k − 1 in Lemma 3.4, then, by our choice of α, each color set Si satisfies
|ΓSi | > (k − 1)|Si|. Hence,∑

i

|ΓSi | >
∑
i

(k − 1)|Si| = (k − 1)2n,

which is a contradiction. Therefore there exists at least one color set with size at least∑αn
i=0

(
n
i

)
, where αn = n+2

k+1 − 1.
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3.2. Proof of Theorem 1.2. The same proof method will provide a lower bound
for the more general (c, k)-coloring problem. We use the isoperimetric inequality for
larger neighborhoods. Let ΓcS denote the c-neighborhood of a subset S ⊆ Cn, not
including the vertices in S. That is,

ΓcS = {v ∈ S|∃u ∈ S, d(u, v) ≤ c}.
Lemma 3.5 (isoperimetric inequality). Let S be a subset of Cn of size |S| =∑αn

i=0

(
n
i

)
. Then |ΓcS | ≥

∑c
i=1

(
n

αn+i

)
.

Proof. See [B, pp. 122–129].
The following lemma is central to the proof of Theorem 1.2.
Lemma 3.6. Let S be any subset of Cn, where |S| ≤∑αn

i=0

(
n
i

)
, and 0 < α < 1/2.

Then |ΓcS | > β · |S| for β = ( 1−2α
α+c/n )

c.

Proof. Again let S be a set of size |S| = ∑αn
i=0

(
n
i

)
. (The proof that for any

smaller set S, the ratio
|Γc

S |
|S| can only grow is similar to that of Lemma 3.2.) Using

the isoperimetric inequality we have to show that

c∑
i=1

(
n

αn+ i

)
>

(
1− 2α

α+ c/n

)c
·
αn∑
i=0

(
n

i

)
.

By applying Lemma 3.3 it is enough to show that

c∑
i=1

(
n

αn+ i

)
≥
(

1− 2α

α+ c/n

)c
· 1− α
1− 2α

·
(
n

αn

)
.

Let a = αn. Thus, we have to prove that

c∑
i=1

(
n

a+ i

)
≥
(
n− 2a

a+ c

)c
· n− a
n− 2a

·
(
n

a

)
.

Assume first that n ≥ 2a+ c. In this case we will prove the stronger inequality(
n

a+ c

)
≥
(
n− 2a

a+ c

)c
· n− a
n− 2a

·
(
n

a

)
.

Notice that (
n

a+ c

)
=
n− a
a+ c

· n− a− 1

a+ c− 1
· · · n− a− (c− 1)

a+ 1
·
(
n

a

)
.

Since n ≥ 2a+ c, then for every 0 ≤ j ≤ c− 1

n− a− j
a+ c− j ≥

n− a
a+ c

.

Therefore (
n

a+ c

)
≥
(
n− a
a+ c

)c
·
(
n

a

)
.

We thus have to show that(
n− a
a+ c

)c
≥
(
n− 2a

a+ c

)c
· n− a
n− 2a

.
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This is obviously true for a < n/2, and therefore the claim follows for n ≥ 2a+ c.
Assume now that n < 2a+ c and recall that a < n/2. Thus

(
n
a

) ≤ ( n
a+1

)
, and so

c∑
i=1

(
n

a+ i

)
≥
(
n

a

)
.

Since n < 2a+ c, then n− 2a < c and n− a < a+ c. Thus,(
n− 2a

a+ c

)c
· n− a
n− 2a

·
(
n

a

)
≤
(

c

a+ c

)c−1

·
(
n

a

)
≤
(
n

a

)
.

This completes the proof in this case.
Proof of Theorem 1.2. Let Si be the color sets, and assume by contradiction that

all sets are smaller than Σαni=0

(
n
i

)
, for α = 1

c√k−1+2
− c
n ·

c√k−1
c√k−1+2

. Again, we can assume

that 0 < α < 1/2, for otherwise the theorem is trivial.
As in Theorem 1.1, the c-neighborhood of any vertex v is k-colored, and therefore

v is a neighbor of at most k − 1 color sets. Thus∑
i

|ΓcSi
| ≤ (k − 1)2n.

However, by Lemma 3.6 and the choice of α, each color set Si satisfies |ΓSi | >
(k − 1)|Si| (simply set β = k − 1 in Lemma 3.6). Again a contradiction is derived,
and therefore the theorem is proved.

4. Lower bounds on the size of the largest color set in any (c, k)-
coloring of Bn,r . Denote by Lr the rth layer of Cn, that is, the set of all vectors
in Cn with exactly r coordinates which are 1. Let Bn,r = ∪ri=0Lr be the Hamming
ball of radius r in Cn. We now prove Theorem 1.3. A similar result can be proved for
the general (c, k)-coloring. The details are omitted.

When proving Theorem 1.3, we will prove in fact a stronger claim: there exists a
large color set in the rth layer of Bn,r. The proof is similar to that of Theorem 1.1;
however, it uses the concept of shadows instead of the isoperimetric inequality. The
lower shadow of a set S ⊆ Lr is defined as

∂(S) = {v ∈ Lr−1|∃u ∈ S, d(u, v) = 1}.
Lemma 4.1 (Kruskal–Katona). Let ∅ = S ⊆ Lr be a set of size |S| = (

x
r

)
for

some real number x ≥ r. Then |∂(S)| ≥ ( x
r−1

)
.

Proof. See [B, pp. 23–39].
Corollary 4.2. Let S ⊆ Lr be any set of size |S| < (xr) for some real number

x ≥ r. Then |∂(S)| > |S| · r/(x− r + 1).
Proof. Assume that the size of S is |S| = (yr) for y < x. Then, by Lemma 4.1,

|∂(S)| ≥
(

y

r − 1

)
= |S| · r

y − r + 1
> |S| · r

x− r + 1
,

where the equality follows from the definition of the binomial coefficients, and the last
inequality is true since y < x.

Proof of Theorem 1.3. Consider any (1, k)-coloring of Bn,r, and let Si be the color
sets in the rth layer of Bn,r. Assume by contradiction that all sets are smaller than(
n/k
r

)
. We will estimate

∑
i |∂(Si)| and derive a contradiction.
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Consider a vertex v ∈ Lr−1. The 1-neighborhood of v is k-colored, and therefore
v can be a neighbor of at most k color sets in the rth layer. Thus v can belong to at
most k shadows of sets Si. The number of vertices in the (r − 1) layer is

(
n
r−1

)
and

thus

∑
i

|∂(Si)| ≤ k ·
(

n

r − 1

)
.

On the other hand, by Corollary 4.2, |∂(Si)| > |Si| · r/(n/k − r + 1). Also∑
i |Si| =

(
n
r

)
. Hence

∑
i

|∂(Si)| >
∑
i

|Si| · r

n/k − r + 1
=

(
n

r

)
· r

n/k − r + 1
.

This is a contradiction for r ≥ 1.

5. Upper bounds for the (1, k)-coloring problem. How tight is the lower
bound given in Theorem 1.1? Although we do not have a full answer to this question,
we show colorings of the cube for certain values of k for which the bound is tight or
almost tight. We start with a few simple cases for specific values of k. In the next
subsection we develop a general strategy to color the cube, which is based on error
correcting codes.

k = 1, n + 1. The two extreme cases, k = 1 (where the cube is colored with
one color) and k = n + 1 (where each vertex is colored with a different color), are
obviously completely solved. Let us turn to more interesting colorings.

k = 2. In this case, we color layer j with color �j/2�, j ≥ 0. It is easy to verify
that the 1-neighborhood of each vertex is colored with at most k = 2 colors. What
is the largest color set? The color that appears the most times is the color of layers
�n/2� and �n/2�−1. Thus for k = 2 there is a coloring of the cube in which each color
appears at most

(
n
�n/2�

)
+
(

n
�n/2�−1

)
times. The lower bound proved in Theorem 1.1

for k = 2 is
∑(n−1)/3
i=0

(
n
i

)
. There is a gap between the upper and lower bounds, and

we conjecture that the upper bound is the best possible in this case.
k = n. Here we can show a coloring in which each color appears at most twice.

This is of course tight, since every 1-neighborhood should contain at most k = n
colors, and the size of a 1-neighborhood is n + 1. Thus there should be at least one
color that appears twice. The coloring that achieves this bound is as follows.

Color every two vectors that agree on the first n − 1 coordinates and differ only
in the last coordinate with the same color. This coloring uses 2n−1 different colors,
and every color appears exactly twice. It remains to show that each 1-neighborhood
is n-colored. However, this is clear since the neighbor of a vector x, which differs from
it only in the last coordinate, is colored the same as x.

k = n − d + 1, where d is a constant. We can color the cube in a similar way
such that each color appears 2d times. Simply color every set of vectors that agree on
all n − d first coordinates with the same color. Each vector has exactly d neighbors
colored as itself. Thus every 1-neighborhood is (n− d+ 1)-colored.

This method of coloring is efficient as long as d is constant. However, when
k ≤ n/2, a different coloring is needed in order to try and match the lower bound.
For this we use error correcting codes.

5.1. Error correcting codes. Let C be a binary error correcting code of length
n, with minimum distance 2t + 1 between code words. Denote by Nt(u) the sphere
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of radius t around a code word u, i.e., all vectors of distance at most t from u. Such
a code is called an (n, t)-code (see [PW] or [MS] for a comprehensive description of
error correcting codes). Given any (n, t)-code we define the induced coloring of Cn as
follows:

Color each code word with a different color. Vectors not in the code are colored
with the color of the nearest code word, breaking ties arbitrarily.

Notice that each sphere Nt(u) around a code word u is colored with the color
of the code word u. Thus each color appears at least Σti=0

(
n
i

)
times, and the 1-

neighborhoods of vectors at distance less than t from some code word are 1-colored.
The question is what happens with vectors at distance greater than t from any code
word. We first look at some special codes that provide better upper bounds.

5.1.1. Perfect codes. An (n, t)-perfect code is a code for which the spheres of
radius t around the code words partition Cn. Thus every vector is at distance at most
t from some code word. Perfect codes exist only for very restricted values of n and
t. However, since the same proof method will be used subsequently to color the cube
using a general code, assume for the moment that we have a perfect code for any n
and t.

Begin with the induced coloring of some (n, t)-perfect code. Since this is a perfect
code, each color appears exactly

∑t
i=0

(
n
i

)
times. It remains to bound the number of

colors in the 1-neighborhood of each vector.
The 1-neighborhood of any vector x at distance less than t from some code word

is 1-colored. Therefore consider only vectors x at distance exactly t from some code
word u (i.e., x is on the boundary of the sphere Nt(u)). The vector x is colored the
same as u, and it has exactly t neighbors in Nt(u) that are colored with the same
color as it is.

In how many colors are the remaining n − t neighbors of x (those not in Nt(u))
colored? We claim that they are colored in at most (n − t)/(t + 1) colors. To see
this, note that each one of these neighbors belongs to some sphere Nt(v) around a
code word v, where v is at distance t+1 from x. Furthermore, there are exactly t+1
neighbors of x in any such sphere. Thus the neighbors of x that are not in Nt(u) can
be divided into equivalence classes of size t+1, according to the spheres around code
words to which they belong.

Therefore the n − t neighbors of x that are not inNt(u) are colored in (n−t)/(t+1)
colors. If we add to this the color of x and the t neighbors that are in Nt(u), we get
a total of k = (n− t)/(t+ 1) + 1 = (n+ 1)/(t+ 1) colors in the 1-neighborhood of x.
We have thus proved the following:

Any (n, t)-perfect code induces a (1, k)-coloring of Cn, in which each color appears
Σti=0

(
n
i

)
times, where t = n+1

k − 1.
As we can see, this result almost matches the lower bound stated in Theorem 1.1.

Unfortunately, perfect error correcting codes are rather rare. The Hamming code is
perfect for t = 1 (i.e., k = n+1

2 ), and n of the form n = 2r − 1, for some r. The Golay
code is perfect for n = 23 and t = 3.

Corollary 5.1.
1. For any n = 2r− 1, there exists a (1, n+1

2 )-coloring of Cn in which each color
appears n+ 1 times.

2. There exists a (1, 6)-coloring of C23 in which each color appears 24 times.
However, for larger values of t the situation is much worse. In fact it was proven

that no other nontrivial perfect codes exist (see [V]). The resort is to examine larger
classes of codes.
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5.1.2. Quasi-perfect codes. An (n, t)-quasi-perfect code is a code for which the
spheres of radius t around code words are disjoint, and every vector is at distance at
most t+ 1 from some code word. A subclass of quasi-perfect codes are nearly perfect
codes. These codes were defined by Goethals and Snover, and their exact definition
can be found in [GS].

Goethals and Snover [GS] list a few nearly perfect codes. For t = 1 there exists
a nearly perfect code for any n = 2r − 2. For t = 2 there exists a nearly perfect code
for any n = 4r − 1. Lindstrom proved that no other nearly perfect codes exist [L].
The following lemma is from [GS].

Lemma 5.2 (see [GS]). For any (n, t)-nearly perfect code,

1. any vector at distance greater than t from any code word is at distance t+ 1
from exactly �n/(t+ 1)� code words;

2. any vector at distance t from some code word is at distance t+1 from exactly
�(n− t)/(t+ 1)� other code words.

Corollary 5.3. For any n = 4r − 1, there exists a (1, 1 + n
3 )-coloring of Cn in

which each color appears O(n3) times.

Proof. Take an (n, t)-nearly perfect code, where t = 2 and n = 4r−1, and consider
the induced coloring. Since this is a nearly perfect code, each word is at distance at
most t+ 1 from some code word. Thus each color appears at most Σt+1

i=0

(
n
i

)
= O(n3)

times.

We now have to show how many colors appear in each 1-neighborhood. The
interesting cases are those of vectors at distance t and t+1 from some code word. Let
x be a vector at distance t + 1 from some code word. Notice that each code word u
that is at distance t+ 1 from x forces t+ 1 of the neighbors of x to be colored in the
same color as u. By Lemma 5.2 there are �n/(t+1)� code words at distance t+1 from
x. Since n = 4r − 1 and t+ 1 = 3, it is easy to verify that t+ 1 divides n. Therefore
the neighborhood of x is colored with k = 1 + n/(t+ 1) colors. (We add the color of
x.) The proof for vectors at distance t from some code word is similar.

Similar results can be obtained for any quasi-perfect code. It is not known yet
whether quasi-perfect codes exist for large values of t. Therefore we state the general
theorem for any (n, t)-quasi-perfect code with the hope that more codes will be found.

As before, take any (n, t)-quasi-perfect code and look at the induced coloring.
Each vector is at distance at most t + 1 from some code word, and so each color
appears at most Σt+1

i=0

(
n
i

)
times. We have only to bound the number of colors in each

1-neighborhood. Again, the interesting cases are those of vectors at distance t or t+1
from some code word.

Lemma 5.4. The 1-neighborhood of each vector is colored with at most k =
O(n2/t2) colors.

Proof. Let x be some vector. Denote by Zi the number of code words at distance
t + i from x, where i = 1, 2. The number of colors in the 1-neighborhood of x does
not exceed 1 +Z1 +Z2, since the neighbors of x receive their colors from code words
at distance t+ 1 and t+ 2 from x, and we have to add the color of x itself.

There are
(
n
i

)
vectors at distance i from x. Call them the i-neighbors of x. Let v

be some code word at distance t+ i from x. Then, exactly
(
t+i
i

)
of the i-neighbors of

x belong to Nt(v). Since the spheres of radius t around code words are disjoint, there
are at most

(
n
i

)
/
(
t+i
i

)
code words at distance t+ i from x. Thus the number of colors

in the 1-neighborhood of x is at most k ≤ 1 +
(
n
1

)
/
(
t+1
1

)
+
(
n
2

)
/
(
t+2
2

)
= O(n2/t2) as

stated.

Theorem 5.5. Any (n, t)-quasi-perfect code induces a (1, k)-coloring of Cn, in
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which each color appears at most Σt+1
i=0

(
n
i

)
times, where t = O(n/

√
k).

5.1.3. General codes. The method of proof used for quasi-perfect codes can
be generalized for any code. An (n, t, d)-code is a code in which the spheres of radius
t around code words are disjoint, and the spheres of radius t + d around code words
cover the whole cube. Thus for perfect codes d = 0, and for quasi-perfect codes, d = 1.

It is again possible to look at the induced coloring of such a code and bound the
number of colors in each 1-neighborhood by k = O((n/t)d+1). Then a similar theorem
can be proved.

Theorem 5.6. Any (n, t, d)-code induces a (1, k)-coloring of Cn, in which each
color appears at most Σt+di=0

(
n
i

)
times, where t = O

(
n/k1/(d+1)

)
.

Similar techniques can be used to show upper bounds for the (c, k)-coloring prob-
lem. The details are omitted.

6. Generalizations and further research. We have proved lower and upper
bounds on the (c, k)-coloring problem, in which each word was hashed exactly once
to the hash table. It may be useful to allow each word to be hashed to s entries in
the hash table, using s hash functions. More formally, a (c, k, s)-covering of Σn is a
collection of subsets Si that cover Σ

n such that
• each word u ∈ Σn is contained in at most s of the subsets Si;
• for any u ∈ Σn, there exist k subsets Su1 , . . . , Suk

such that Nc(u) ⊆ ∪ki=1Sui
.

The (c, k, s)-covering problem is to minimize the size of the largest subset Si.
The solution we showed for the (c, k)-coloring problem may give insight into the

solution of the general (c, k, s)-covering problem. The lower bound for the (c, k)-
coloring problem was proved using the isoperimetric inequality. This inequality is
tight for sets that are spheres and only for them (see [B]). On the other hand, the
upper bound shows that a perfect code that covers the cube with disjoint spheres
induces a (1, k)-coloring that almost matches the lower bound. These observations
make it plausible that in an optimal (1, k)-coloring, all color sets have the structure
of spheres. We also showed a tradeoff between k and the size of the color sets (or the
radius t of the spheres) (see Theorems 1.1 and 1.2).

All this suggests that in order to find a (c, k, s)-covering, it may be wise to try and
cover Σn with spheres (possibly overlapping). By changing the radius of the spheres,
it may be possible to find a general tradeoff between s, k, and the size of the largest
subset.

For example, suppose we want to find a (1, 1, s)-covering of Cn. It is possible to
simply cover the whole cube with one subset. In this case s = 1, but there is one large
subset. Or we can cover the cube by defining a different subset for the 1-neighborhood
of each vector. In this case the size of each subset is optimal, but s is large. Instead,
we can try to combine these two methods as follows.

Let C be an (n, t)-perfect code. Define a subset Su = Nt+1(u) for each u ∈ C. The
coverings described above are extreme cases of this covering, with t = n and t = 0.
The size of each subset is

∑t+1
i=0

(
n
i

)
, and it is possible to show that s = (n+1)/(t+1).

Thus by choosing t, it is possible to get the desired tradeoff between the size of each
subset and s. (A similar method was used by [DHP] to design algorithms for the
retrieval of neighbors from dictionaries. See also [H] and [P].) This method can be
generalized to cover the cube using a general (n, t, d)-code, where the efficiency of the
cover depends on d.

Several interesting open questions remain. The extensions of the upper bounds for
the (c, k)-coloring problem and the (c, k, s)-covering problems use a general (n, t, d)-
code, and their efficiency depends on d. Thus an important open question is to try
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and determine an upper bound on d that would guarantee the existence of an (n, t, d)-
code for any given n and t. An upper bound of d = t is easy to show, but no better
asymptotically general bound is known. This question is of independent interest to
the study of error correcting codes, and some bounds were given for special types of
codes (see [CKMS], [VS]).

There are also open problems concerning the (1, k)-coloring problem. The upper
bound for this problem can probably be improved when k is a constant. The lower
bound seems to be tight or almost tight for all cases, except for k = 2. We conjecture
that for k = 2, the upper bound we showed of O(

(
n
n/2

)
) is the best possible.

Finally, it would be interesting to check what happens with different distance
measures (not necessarily the Hamming distance). Different distance measures induce
other graphs (other than the n-dimensional cube) for which one can try to solve the
coloring or covering problems. Expanders may be an interesting class of graphs to
check.

Acknowledgment. We would like to thank the anonymous referees for their
comments, which improved the presentation of this paper.
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Abstract. We conjectured in [H. Wang, Australas. J. Combin., 19 (1999), pp. 115–121] that, for
each integer k ≥ 2, there exists N(k) such that if G = (V1, V2;E) is a bipartite graph with |V1| =
|V2| = n ≥ N(k) and d(x) + d(y) ≥ n + k for each pair of nonadjacent vertices x and y of G with
x ∈ V1 and y ∈ V2, then for any k independent edges e1, . . . , ek of G, there exist k vertex-disjoint
cycles C1, . . . , Ck in G such that ei ∈ E(Ci) for all i ∈ {1, . . . , k} and V (C1∪· · ·∪Ck) = V (G). This
conjecture is also verified for k = 2 in [H. Wang, Australas. J. Combin., 19 (1999), pp. 115–121]. We
prove this conjecture for k = 3 in this paper.
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1. Introduction. We discuss only finite simple graphs and use standard ter-
minology and notation from [2] except as indicated. The following is conjectured
in [5].

Conjecture A (see [5]). For each integer k ≥ 2, there exists N(k) such that if
G = (V1, V2;E) is a bipartite graph with |V1| = |V2| = n ≥ N(k) and d(x)+d(y) ≥ n+k
for each pair of nonadjacent vertices x and y of G with x ∈ V1 and y ∈ V2, then for
any k independent edges e1, . . . , ek of G, there exist k vertex-disjoint cycles C1, . . . , Ck
in G such that ei ∈ E(Ci) for all i ∈ {1, . . . , k} and V (C1 ∪ · · · ∪ Ck) = V (G).

As pointed out in [5], if this conjecture is true, the condition on the degrees
of G is sharp. To see this, let G = (X,Y ;E) be a bipartite graph obtained from
a complete bipartite graph Kn−1,n by adding a new vertex x0 to Kn−1,n such that
NG(x0) = {x1, x2, . . . , xk}, where x1, x2, . . . , xk are k distinct vertices of Kn−1,n whose
degrees in Kn−1,n are n− 1. Then for each pair of nonadjacent vertices x and y of G
with x ∈ X and y ∈ Y , we have x0 ∈ {x, y} and d(x)+d(y) = n+k−1. Let e1, . . . , ek
be k independent edges in G such that ei is incident with xi for all i ∈ {1, . . . , k} and
e1 = x0x1. Clearly, every cycle passing through e1 must contain at least three vertices
in {x0, x1, . . . , xk}. Therefore there are no k vertex-disjoint cycles in G satisfying the
requirement.

This conjecture is verified for k = 2 in [5]. To state the result, let F be a graph
obtained from K4,4 by removing three independent edges from K4,4.

Theorem B (see [5]). Let G = (V1, V2;E) be a bipartite graph with |V1| = |V2| =
n ≥ 4. Suppose d(x) + d(y) ≥ n + 2 for each pair of nonadjacent vertices x and y of
G with x ∈ V1 and y ∈ V2. Then for any two independent edges e1 and e2 of G, G
has two vertex-disjoint cycles C1 and C2 such that ei ∈ E(Ci) for each i ∈ {1, 2} and
V (C1 ∪ C2) = V (G), unless G is isomorphic to F .

In this paper, we prove the conjecture for k = 3. To state the result, we define
the three following bipartite graphs. First, for any two graphs H and G, if we write
H ≤ G, it means that H is isomorphic to a subgraph of G. Let (X,Y ) be the
bipartition of K6,6. Let F0 be a spanning subgraph of K6,6 such that F0 consists
of three paths of length 2 and three isolated vertices from X. Let F1 be a spanning
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subgraph of K6,6 such that F1 consists of four paths of length 2. Let F2 be a spanning
subgraph of K6,6 such that F2 consists of two paths of length 2, a path of length 1,
two isolated vertices from X, and two isolated vertices from Y . Let F3 be a spanning
subgraph of K7,7 such that F3 consists of three cycles of length 4 and two isolated
vertices. Let G0 = K6,6 − E(F0), G1 = K6,6 − E(F1), G2 = K6,6 − E(F2), and
G3 = K7,7 − E(F3). It is not difficult to check that for each i ∈ {1, 2, 3}, there
exist three independent edges e1, e2, and e3 in Gi such that Gi does not contain
three vertex-disjoint cycles C1, C2, and C3 with ej ∈ E(Cj) for j ∈ {1, 2, 3} and
V (C1 ∪ C2 ∪ C3) = V (Gi). For instance, let X = {x1, . . . , x6}, Y = {y1, . . . , y6}, and
E(F2) = {x1y2, x1y3, y1x2, y1x3, x4y4}. Choose e1 = x1y1, e2 = x5y5, and e3 = x6y6.
Then G2 does not contain an e1-cycle C of length 4 such that V (C)∩V (e2 ∪ e3) = ∅.

We prove the following result.
Theorem C. Let G = (V1, V2;E) be a graph with |V1| = |V2| = n ≥ 6. Suppose

d(x) + d(y) ≥ n + 3 for each pair of nonadjacent vertices x and y of G with x ∈
V1 and y ∈ V2. Then for any three independent edges e1, e2, and e3, G has three
vertex-disjoint cycles C1, C2, and C3 such that ei ∈ E(Ci) for each i ∈ {1, 2, 3} and
V (C1 ∪ C2 ∪ C3) = V (G) unless either G ∼= G0, or G1 ≤ G ≤ G2, or G ∼= G3.

We shall use the following terminology and notation. Let G be a graph. For
a vertex u ∈ V (G) and a subgraph H of G, N(u,H) is the set of neighbors of u
contained in H, i.e., N(u,H) = N(u) ∩ V (H). We let d(u,H) = |N(u,H)|. Thus
d(u,G) is the degree of u in G. For a subset U of V (G), G[U ] denotes the subgraph
of G induced by U . Let e be an edge of G. An e-subgraph of G is a subgraph H
of G such that e ∈ E(H). In particular, an e-Hamiltonian cycle or path of G is a
Hamiltonian cycle or path of G passing through e, respectively. If P is an e-path, we
define σ(e, P ) = min(|E(P ′)|, |E(P ′′)|), where P ′ and P ′′ are two components of P−e.
If P is of odd length, say P = x1x2 . . . x2q, we define E0(P ) = {x1x2, x2q−1x2q} ∪
{xixi+1|i = 2, 4, . . . , 2q−2} and E1(P ) = {xjxj+1|j = 3, 5, . . . , 2q−3}, and, moreover,
let r(e, P ) = 0 if e ∈ E0(P ) and r(e, P ) = 1 if e ∈ E1(P ). We use l(C) and l(P ) to
denote the length of a cycle C and the length of a path P , respectively. An edge is also
considered as a path of length 1. We define δ2(G) to be the minimum of d(x) + d(y)
for all nonadjacent pairs of vertices x and y in G with x ∈ V1 and y ∈ V2. As usual,
δ(G) is the minimum degree of G.

If G = (V1, V2;E) is a connected bipartite graph, we define G
b

= (V1, V2;E
′),

where E′ = {xy|xy ∈ E, x ∈ V1, and y ∈ V2}.
2. Lemmas. The following lemmas are Ore-type lemmas in bipartite graphs.

Their proofs can be found in or easily deduced from [1, 3, 4]. For the sake of com-
pleteness, we include their proofs. Let G = (V1, V2;E) be a given bipartite graph in
the following.

Lemma 2.1. Let e be an edge and P = x1x2 . . . x2q an e-path in G. Let y ∈
V (G) − V (P ) such that {x2q, y} ⊆ Vi for every i ∈ {1, 2}. If d(x2q, P ) + d(y, P ) ≥
q +1+ r(e, P ), then G has an e-path P ′ such that V (P ′) = V (P )∪ {y}. Moreover, if
e = x1x2, then P ′ is a path from y to x1.

Proof. Clearly, the lemma holds if yx2q ∈ E. So we may assume yx2q ∈ E. As
d(y, P ) > 0, it is also easy to see that if e = x1x2 and x1x2q ∈ E, then the lemma holds.
Hence we may assume that if e = x1x2, then x1x2q ∈ E. Let I = {xi+1|xix2q ∈ E}.
Then |N(y,G)∩ I| = |N(y,G)|+ |I| − |NG(y)∪ I| ≥ q +1+ r(e, P )− q = 1+ r(e, P ).
This implies that there exists {xi+1, xj+1} ⊆ NG(y) ∩ I with i = j if r(e, P ) = 1.
By our assumption, we see that if r(e, P ) = 0, then e ∈ {xixi+1, xjxj+1}. We may
assume without loss of generality (w.l.o.g.) that xixi+1 = e if i = j. Then P ′ =
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yxi+1xi+2 . . . x2qxixi−1 . . . x1 is a required path.

Lemma 2.2. Let e be an edge and P = x1x2 . . . x2q an e-path with q ≥ 2 in G. If
d(x1, P ) + d(x2q, P ) ≥ q + 1 + r(e, P ), then G has an e-cycle C with V (C) = V (P ).

Proof. Clearly, the lemma holds if x1x2q ∈ E. So we may assume x1x2q ∈ E. The
condition implies that there exist xi and xj for some {i, j} ⊆ {1, 3, . . . , 2q − 1} such
that {x1xi+1, x2qxi, x1xj+1, x2qxj} ⊆ E with i = j if r(e, P ) = 1. As x1x2q ∈ E, we
see that e ∈ {xixi+1, xjxj+1} if r(e, P ) = 0. We may assume w.l.o.g. that e = xixi+1

if i = j. Then C ′ = x1x2 . . . xix2qx2q−1 . . . xi+1x1 is a required cycle.

Remark. From the proof of Lemma 2.2, we see that if d(x1, P )+d(x2q, P ) ≥ q+1
and G does not have an e-cycle C with V (C) = V (P ), then d(x1, P )+d(x2q, P ) = q+1,
r(e, P ) = 1, and {x1x2a+2, x2qx2a+1} ⊆ E, where e = x2a+1x2a+2.

Lemma 2.3. Let e be an edge and C an e-cycle in G. Let y ∈ V (G)− V (C). If
d(y, C) ≥ 2, then G[V (C)∪{y}] contains an e-cycle C ′ such that l(C ′) < l(C), unless
d(y, C) = 2, and, moreover, if N(y, C) = {x′, x′′}, then C has a subpath x′zx′′ with z
not incident with e.

Proof. Say C = x1x2 . . . x2qx1 with e = x1x2q. Let {xi, xj} ⊆ N(y, C) such
that 1 ≤ i < j ≤ 2q and xy ∈ E for all x ∈ V (C) − {xi, xi+1, . . . , xj}. Clearly,
C ′ = x1 . . . xiyxj . . . x2qx1 is an e-cycle. If l(C ′) < l(C), then j = i+2 and the lemma
follows.

Lemma 2.4. Let e be an edge, C an e-cycle, and P a path with two endvertices
u ∈ V1 and v ∈ V2 in G such that V (C) ∩ V (P ) = ∅. Let l(C) = 2q. If d(u,C) +
d(v, C) ≥ q + 1, then G has an e-cycle C ′ with V (C ′) = V (C ∪ P ).

Proof. Let C = x1x2 . . . x2qx1 with e = x1x2q and x1 ∈ V1. The condition im-
plies that {xiv, xi+1u} ⊆ E for some i ∈ {1, 3, . . . , 2q − 1}. Then x1x2qx2q−1

. . . xi+1uPvxixi−1 . . . x1 is a required cycle.

Lemma 2.5. If |V1| = |V2| and δ2(G) ≥ |V1|, then G has a perfect matching.

Proof. Let {f1, f2, . . . , fm} be a maximum matching in G. If m < |V1|, let x ∈ V1

and y ∈ V2 be two vertices which are not incident with any edge in {f1, f2, . . . , fm}.
As d(x)+d(y) ≥ |V1|, we see that there exists fi such that d(x, fi)+d(y, fi) = 2. Obvi-
ously, G[V (fi)∪{x, y}] contains two independent edges, and therefore {f1, f2, . . . , fm}
is not a maximum matching of G, a contradiction.

3. Proof of Theorem C. The proof is self-contained. Let G = (V1, V2;E)
be a bipartite graph with |V1| = |V2| = n ≥ 6 and δ2(G) ≥ n + 3. Suppose that
there exist three independent edges e1, e2, and e3 of G such that G does not have
three vertex-disjoint cycles C1, C2, and C3 with ei ∈ E(Ci) for each i ∈ {1, 2, 3} and
V (C1 ∪ C2 ∪ C3) = V (G). We shall prove that either G1 ≤ G ≤ G2 or G ∼= G3.

Note that as δ2(G) ≥ n+3, we have δ(G) ≥ 4. We first prove the three following
claims.

Claim 1. G− V (e1 ∪ e2 ∪ e3) has a perfect matching.

Proof of Claim 1. Clearly, δ2(G−V (e1, e2, e3)) ≥ n+3−6 = n−3. By Lemma 2.5,
G− V (e1 ∪ e2 ∪ e3) has a perfect matching.

Claim 2. For each i ∈ {1, 2, 3}, there exists an ei-cycle Ci in G such that l(Ci) ≤ 6
and V (Ci) ∩ V (ej ∪ ek) = ∅, where {i, j, k} = {1, 2, 3}.

Proof of Claim 2. Enumerate V1 = {x1, x2, . . . , xn} and V2 = {y1, y2, . . . , yn}
such that {xtyt|1 ≤ t ≤ n} is a perfect matching in G with et = xtyt (t = 1, 2, 3). As
δ(G) ≥ 4, we may assume xiy4 ∈ E. If yix4 ∈ E, we are done. So assume yix4 ∈ E. As
d(yi)+d(x4) ≥ n+3, there exists t ∈ {5, . . . , n} such that d(yi, xtyt)+d(x4, xtyt) = 2.
Thus xiyixtytx4y4xi is a required cycle.
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Claim 3. For some {i, j, k} = {1, 2, 3}, there exist two vertex-disjoint cycles C1

and C2 of length at most 6 such that ei ∈ E(C1), ej ∈ E(C2), and V (ek)∩V (C1∪C2) =
∅.

Proof of Claim 3. We choose a smallest cycle C1 such that e1 ∈ E(C1) and
V (C1) ∩ V (e2 ∪ e3) = ∅, and, subject to this, we further choose C1 such that the
number of edges in a maximum matching of G − V (C1 ∪ e2 ∪ e3) is maximal. The
existence of C1 is guaranteed by Claim 2. Thus l(C1) ≤ 6. Let F = {a1b1, . . . , ambm}
be a maximum matching of G − V (C1 ∪ e2 ∪ e3) with {a1, . . . , am} ⊆ V1. If it does
not have a perfect matching, then G− V (C1 ∪ e2 ∪ e3) has two nonadjacent vertices
x and y with x ∈ V1 and y ∈ V2 such that neither of x and y is incident with an edge
in F . By the maximality of F , d(x, atbt) + d(y, atbt) ≤ 1 for all t ∈ {1, 2, . . . ,m}. By
Lemma 2.3 and the choice of C1, we have d(x,C1) ≤ 2 and d(y, C1) ≤ 2. Clearly,
d(x, e2 ∪ e3) + d(y, e2 ∪ e3) ≤ 4. As d(x) + d(y) ≥ n+ 3, it follows that l(C1) = 4 and
d(x,C1) = d(y, C1) = 2. Let z ∈ V (C1) ∩ V1 be such that z is not incident with e1.
Then yz ∈ E − F and C ′1 = C1 − z + x is an e1-cycle of length 4, contradicting the
choice of C1. Therefore F is a perfect matching of G− V (C1 ∪ e2 ∪ e3).

On the contrary, we suppose that Claim 3 is not true. Let e2 = uv and e3 = xy
with {u, x} ⊆ V1. We readily see that d(w, e2 ∪ e3) > 0 for some w ∈ V (G)− V (C1 ∪
e2∪e3) because d(u)+d(b1) ≤ n+2 otherwise. W.l.o.g., we assume b1u ∈ E. Clearly,
a1v ∈ E. If there exists some t ∈ {2, 3, . . . ,m} such that d(a1, atbt) + d(v, atbt) = 2,
then b1u ∈ E by the choice of b1 and so C1 and uvatbta1b1u are two required cycles, a
contradiction. Hence d(a1, et)+d(v, et) ≤ 1 for each t ∈ {2, 3, . . . ,m}. By Lemma 2.3
and the choice of C1, we have d(a1, C1) ≤ 2. As d(a1) + d(v) ≥ n + 3, it follows that
d(v, C1) = l(C1)/2, vx ∈ E, a1y ∈ E, and d(a1, C1) = 2. Then b1x ∈ E. Similarly, as
a1y ∈ E we can show that d(x,C1) = l(C1)/2 and d(b1, C1) = 2. If l(C1) = 4, let C1 =
w1w2w3w4w1 with w1 ∈ V1 and e1 = w1w4, and then xya1w2x and w1w4w3b1w1 are
two required cycles, a contradiction. Hence l(C1) = 6. Let C1 = w1w2w3w4w5w6w1

with w1 ∈ V1 and e1 = w1w6. By the choice of C1 and Lemma 2.3, we have a1w4 ∈ E
and b1w3 ∈ E. If b1w5 ∈ E, then C1 − w4 + b1 and xya1w4x are two required cycles,
a contradiction. Hence b1w1 ∈ E. Similarly, a1w6 ∈ E. Therefore C ′1 = w1w6a1b1w1

is an e1-cycle with l(C ′1) < l(C1), contradicting the choice of C1. So the claim
holds.

By Claim 3, we choose {i, j, k} = {1, 2, 3} and two cycles C1 and C2 such that

ei ∈ E(C1), ej ∈ E(C2), V (C1) ∩ V (C2) = ∅,
V (ek) ∩ V (C1 ∪ C2) = ∅, l(C1) ≤ 6, and l(C2) ≤ 6.(1)

Subject to (1), we choose {i, j, k}, C1, and C2 such that

l(C1) + l(C2) is minimal.(2)

Subject to (1) and (2), we further choose {i, j, k}, C1 and C2 such that

The length of a longest path containing ek in G− V (C1 ∪ C2) is maximal.(3)

Let P be a longest ek-path in G−V (C1 ∪C2). Subject to (1), (2), and (3), we finally
choose {i, j, k}, C1, C2, and P such that

σ(ek, P ) is minimal.(4)

W.l.o.g., say i = 1, j = 2, and k = 3. Let C1 = x1x2 . . . x2t1x1 and C2 =
y1y2 . . . y2t2y1 with e1 = x1x2t1 and e2 = y1y2t2 . Let P = u1u2 . . . us and H =
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G − V (C1 ∪ C2). W.l.o.g., say {x1, y1, u1} ⊆ V1. By our assumption on G, H does
not have an e3-Hamiltonian cycle. Set 2t = |V (H)|. Note that by (2), neither C1 nor
C2 has a chord in G. By (2) and Lemma 2.3, we have

d(u,Ci) ≤ 2 for each i ∈ {1, 2} and u ∈ V (H)− V (e3).(5)

With the choice of C1, C2, and P , we prove the following two claims.
Claim 4. V (P ) = V (H), i.e., s = 2t.
Proof of Claim 4. Suppose s < 2t. We distinguish two cases: s is even or s is

odd.
Case a. s = 2k. Choose a vertex u0 ∈ V (H) − V (P ) with u0 ∈ V1. By (3)

and Lemma 2.1, d(u0, P ) + d(u2k, P ) ≤ k + r(e3, P ), and so d(u0, H) + d(u2k, H) ≤
t+r(e3, P ). As δ2(G) ≥ n+3, it follows that d(u0, C1∪C2)+d(u2k, C1∪C2) ≥ t1+t2+
3−r(e3, P ). Suppose first that, for some i ∈ {1, 2}, say i = 1, d(u0, C1)+d(u2k, C1) ≥
t1 + 2. By (2) and Lemma 2.3, d(u0, C1) ≤ 2, and therefore d(u2k, C1) = t1 and
N(u0, C1) = {xi, xi+2}, where i ∈ {2, 2t1−2}. Let C ′1 = C1−xi+1 +u0 and P ′ = P +
u2kxi+1. Then l(C ′1) = l(C1) and l(P ′) = l(P ) + 1, contradicting (3). Hence we must
have r(e3, P ) = 1 and d(u0, Ci)+d(u2k, Ci) = ti+1 for each i ∈ {1, 2}. It follows that
d(u0, H) + d(u2k, H) = t + 1, and so d(u0, P ) > 0. By (3), this implies that G[V (P )]
does not contain an e3-Hamiltonian cycle. Then u1u2k ∈ E, and, by Lemma 2.2,
d(u1, P ) + d(u2k, P ) ≤ k + 1. It follows that d(u1, C1 ∪ C2) + d(u2k, C1 ∪ C2) ≥
n+3−(k+1) ≥ t1+t2+3. We may assume w.l.o.g. that d(u1, C1)+d(u2k, C1) ≥ t1+2.
By (5), we obtain that t1 = 2 and d(u1, C1) = d(u2k, C1) = 2. Let P1 and P2 be the
two components of P − e3 and say w.l.o.g. that |E(P1)| ≤ |E(P2)| and u1 ∈ V (P1).
Let C ′′1 = C1 − x3 + u1 and P ′′ = P − u1 + u2kx3. Then we have l(C ′′1 ) = l(C1),
l(P ′′) = l(P ), and σ(e3, P

′′) = σ(e3, P )− 1, contradicting (4).
Case b. s = 2k + 1. In this case, u2k+1 ∈ V1. Then either e3 = u2i−1u2i

or e3 = u2i+1u2i for some i ∈ {1, 2, . . . , k}. W.l.o.g., say the former holds. Clearly,
r(e3, P−u1) = 0 and σ(e3, P−u1) > 0 if e3 is on P−u1. Choose u0 from V (H)−V (P )
such that u0 ∈ V2. By Lemma 2.1, if d(u0, P − u1) + d(u2k+1, P − u1) ≥ k + 1, then
G has a path P ′ from u0 to u2 such that V (P ′) = V (P − u1) ∪ {u0}, and, moreover,
P ′ is an e3-path if e3 is on P − u1. Thus P ′ + u1u2 is an e3-path, contradicting the
fact that P is a longest e3-path in H. Hence d(u0, P ) + d(u2k+1, P ) = d(u0, P −
u1) + d(u2k+1, P − u1) ≤ k. Consequently, d(u0, H) + d(u2k+1, H) ≤ t − 1, and
so d(u0, C1 ∪ C2) + d(u2k+1, C1 ∪ C2) ≥ n + 3 − (t − 1) = t1 + t2 + 4. By (5),
d(u0, Ci) ≤ 2 and d(u2k+1, Ci) ≤ 2 for i = 1, 2. It follows that t1 = t2 = 2 and
d(u0, C1) = d(u2k+1, C1) = 2. Let C ′1 = C1 − x2 + u0 and P ′′ = P + u2k+1x2. Then
l(C ′1) = l(C1) and l(P ′′) = l(P ) + 1, contradicting (3).

Claim 5. σ(e3, P ) = 0.
Proof of Claim 5. On the contrary, suppose σ(e3, P ) > 0. By Lemma 2.2, we

have

d(u1, P ) + d(u2t, P ) ≤ t + r(e3, P ),

and it follows that

d(u1, C1 ∪ C2) + d(u2t, C1 ∪ C2) ≥ t1 + t2 + 3− r(e3, P ).

First, suppose that, for some i ∈ {1, 2}, say i = 1, d(u1, C1)+ d(u2t, C1) ≥ t1 +2.
By (5), we obtain t1 = 2 and d(u1, C1) = d(u2t, C1) = 2. As in the proof of Claim 4,
it is easy to see that G[V (C1 ∪ P )] contains an e1-cycle C ′1 and an e3-path P ′ such
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that V (C ′1) ∩ V (P ′) = ∅, l(C ′1) = l(C1), l(P
′) = l(P ), and σ(e3, P

′) = σ(e3, P ) − 1,
contradicting (4). Therefore we must have

r(e3, P ) = 1 and d(u1, P ) + d(u2t, P ) = t + 1,(6)

d(u1, Ci) + d(u2t, Ci) = ti + 1, i = 1, 2.(7)

By (6) and the remark of Lemma 2.2, we must have {u1u2a+2, u2tu2a+1} ⊆ E,
where e3 = u2a+1u2a+2. Let

L′ = u1u2 . . . u2a, C
′ = u1u2 . . . u2a+1u2a+2u1,

L′′ = u2a+3u2a+4 . . . u2t, and C ′′ = u2a+1u2a+2 . . . u2tu2a+1.

Clearly,

P ′′ = u2au2a−1 . . . u1u2a+2u2a+1u2tu2t−1 . . . u2a+3

is an e3-Hamiltonian path of H with σ(e3, P ) = σ(e3, P
′′). Similarly, we must have

d(u2a, P
′′) + d(u2a+3, P

′′) = t + 1,(8)

d(u2a, Ci) + d(u2a+3, Ci) = ti + 1, i = 1, 2.(9)

If d(u1, C1) + d(u2a, C1) ≥ t1 + 1, then, by Lemma 2.4, G[V (C1 ∪ L′)] contains
an e1-Hamiltonian cycle C ′′1 , and, consequently, C ′′1 , C2, C

′′ are three required cycles,
a contradiction. Hence d(u1, C1) + d(u2a, C1) ≤ t1. Similarly, we can show that
d(u2a+3, C1) + d(u2t, C1) ≤ t1. It follows that

∑
u∈U d(u,C1) ≤ 2t1, where U =

{u1, u2a, u2a+3, u2t}. By (7) and (9),
∑
u∈U d(u,C1) ≥ 2t1 + 2, a contradiction.

By Claim 5, say e3 = u2t−1u2t. As δ2(G) ≥ n + 3, G is connected, so G
b
is well

defined. We divide the proof of the theorem into the following two cases.
Case 1. t = 1. As n ≥ 6, either t1 = 3 or t2 = 3, say t2 = 3. We break into the

following two subcases: t1 = 2 or t1 = 3.
Subcase 1.1. t1 = 3. In this subcase, n = 7 and δ2(G) ≥ 10. By (2), we

see that either {x2, x6} ⊆ N(yi) for each i ∈ {3, 5} or {y2, y6} ⊆ N(xi) for each
i ∈ {3, 5}. W.l.o.g., say the former holds. Let x′ ∈ {x2, x6} be such that x′y3 ∈ E. As
d(x′) + d(y3) ≥ 10, we see that d(y3, C1) = 2 and u2y3 ∈ E. Similarly, we must have
d(y5, C1) = 2 and u2y5 ∈ E. Therefore we must have x4 ∈ N(y3)∩N(y5). By (2), we
see that u1y2 ∈ E and u1y4 ∈ E. As d(u1)+d(yj) ≥ 10 for each j ∈ {2, 4}, we see that
u1y6 ∈ E and d(u1, C1) = d(yj , C1) = 3 for each j ∈ {2, 4}. Then C ′1 = u1u2y3x4u1

and C ′2 = y1y2x3y4y5y6y1 are two cycles passing through e3 and e2, respectively, and
l(C ′1) + l(C ′2) < l(C1) + l(C2), contradicting (2).

Subcase 1.2. t1 = 2. In this subcase, n = 6 and δ2(G) ≥ 9. By (2), either
u2y3 ∈ E or u1y4 ∈ E, say u2y3 ∈ E. As d(y3) + d(u2) ≥ 9, we see that d(u2, C1) =
d(u2, C2) = d(y3, C1) = 2. As u2y5 ∈ E and by (2), we have u1y4 ∈ E. Similarly, we
must have d(u1, C1) = d(u1, C2) = d(y4, C1) = 2. Thus x1x4y3y4x1 and u1u2x3x2u1

are two cycles passing through e1 and e3, respectively. This contradicts (2).
Case 2. t ≥ 2. By (2) and Lemma 2.2, we have

d(u1, P ) + d(u2t, P ) ≤ t(10)

and so

d(u1, C1 ∪ C2) + d(u2t, C1 ∪ C2) ≥ n + 3− t = t1 + t2 + 3.(11)
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This implies that there exists i ∈ {1, 2}, say i = 2, such that d(u1, C2) + d(u2t, C2) ≥
t2 + 2. By (2) and Lemma 2.3, we obtain

d(u2t, C2) = t2 and N(u1, C2) = {ya, ya+2} for some a ∈ {2, 2t2 − 2}(12)

and it follows that

d(u1, C1) + d(u2t, C1) ≥ t1 + 1.(13)

We break into the three following subcases according to the values of t1 and t2.
Subcase 2.1. t2 = 3. Let 2b − 1 be the largest integer in {1, 3, . . . , 2t − 3} such

that

uiu2t ∈ E and d(ui, C1) = d(ui, C2) = 2 for all i ∈ {1, 3, . . . , 2b− 1},(14)

ya+1uj ∈ E, d(uj , C1) = 2 and d(uj , C2) = 1 for all j ∈ {2, 4, . . . , 2b− 2},(15)

N(u2t, C1) = {x1}, d(ya+1, C1) = 2 and G[{u1, u2, . . . , u2b−1}] ∼= Kb,b−1.(16)

If there exists no such an integer 2b− 1 satisfying (14), (15), and (16), let 2b− 1 = 1.
Since d(u1, C2) = 2 and d(u2b−1, C2) = 2 by (12) and (14), it is easy to see that

G[V (C2)∪{u1, u2, . . . , u2b−1}−{ya+1}] contains an e2-Hamiltonian cycle C ′2. Let L′ =
u2bu2b+1 . . . u2tya+1. Then G[V (L′)] does not contain an e3-Hamiltonian cycle. Thus
ya+1u2b ∈ E. Clearly, r(e3, L

′) = 0. Then by Lemma 2.2, d(u2b, L
′) + d(ya+1, L

′) ≤
t − b + 1. As ya+1uj ∈ E for all j ∈ {2, 4, . . . , 2b − 2} by (15), we have d(ya+1, P ) +
d(u2b, P ) ≤ t + 1, and, if the equality holds, then {u1, u3, . . . , u2b−1} ⊆ N(u2b).
Suppose d(u2b, C2) = 2. Then either y1y6y5u2by1 is an e2-cycle in G or ya+1 = y5

and {y1, y3} ⊆ N(u2b). By (2), the latter holds. Then u2b−1y2 ∈ E, for otherwise C1,
y1y6y5y4u1u2 . . . u2b−1y2y1, and y3u2bu2b+1 . . . u2ty3 are three required cycles. Hence
{y4, y6} ⊆ N(u2b−1). Thus y1y6u2b−1u2by1 is an e2-cycle in G, contradicting (2).
Therefore we must have d(u2b, C2) ≤ 1. As C2 and C2 − ya+1 + u1 are two e3-
cycles, we see that d(ya+1, C1) ≤ 2 and d(u2b, C1) ≤ 2 by (2) and Lemma 2.3. As
d(ya+1) + d(u2b) ≥ n + 3, it follows that

t1 = 2, d(ya+1, C1) = d(u2b, C1) = 2, d(u2b, C2) = 1,

and {u1, u3, . . . , u2b−1} ⊆ N(u2b).(17)

If x3u2t ∈ E, then C1−x3 + ya+1, C
′
2 and x3u2bu2b+1 . . . u2tx3 are three required

cycles, a contradiction. Together with (13), we obtain

d(u1, C1) = 2 and N(u2t, C1) = {x1}.(18)

This indeed shows 2b−1 ≥ 1 such that (14), (15), and (16) are satisfied. We claim
2b−1 = 2t−3. If this is not true, i.e., 2b−1 < 2t−3, let L = u2b+1u2b+2 . . . u2t. By (17)
and (18), d(u1, C1)+d(u2b, C1) = 4, and, clearly, G[V (C1)∪{u1, . . . , u2b}] contains an
e1-Hamiltonian cycle. Therefore G[V (L)] does not contain an e3-Hamiltonian cycle.
Hence u2b+1u2t ∈ E, and, by Lemma 2.2, d(u2b+1, L)+d(u2t, L) ≤ t−b. As u2tui ∈ E
for all i ∈ {1, 3, . . . , 2b − 1} by (14), we have d(u2b+1, P ) + d(u2t, P ) ≤ t, and, if the
equality holds, then {u2, u4, . . . , u2b} ⊆ N(u2b+1). By (5), d(u2b+1, C1∪C2) ≤ 4. With
(18), we conclude that 8 ≥ d(u2b+1, C1∪C2)+d(u2t, C1∪C2) ≥ n+3−t = t1+t2+3 = 8.
It follows that d(u2b+1, C1) = d(u2b+1, C2) = 2 and {u2, u4, . . . , u2b} ⊆ N(u2b+1).
Together with (17) and (18), this shows that (14), (15), and (16) hold if 2b − 1 is
replaced by 2b + 1, contradicting the maximality of 2b− 1. Hence 2b− 1 = 2t− 3.
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By (14)–(17), we see that d(u2, C1) = 2, d(u2, C2) = 1 and G[{u1, u2, . . . , u2t−2}] ∼=
Kt−1,t−1. First, suppose y1u2 ∈ E. By (2), for each i ∈ {1, 3, . . . , 2t− 3}, y1y6uiu2y1

is not an e2-cycle in G and therefore uiy6 ∈ E. As d(u1)+d(y6) ≥ n+3 and u1u2t ∈ E,
we see that d(y6, C1) = 2. As d(ya+1, C1) = 2 by (17), we see that C1 − x3 + ya+1

and x3u2y1y6x3 are two cycles of length 4, contradicting (2).
Thus y1u2 ∈ E. Similarly, by (14)–(17), we can show that y1uj ∈ E for all j ∈

{2, 4, . . . , 2t − 2}. It follows that {u2, u4, . . . , u2t−2} ⊆ N(yc), where {y1, ya+1, yc} =
{y1, y2, y3}. As d(y1)+ d(u2) ≥ n+3, we see that u2u2t−1 ∈ E. Then ycu2u2t−1u2tyc
is an e3-cycle in G, contradicting (2).

Subcase 2.2. t2 = 2 and t1 = 3. By Subcase 2.1 and symmetry, we may assume
d(u1, C1) + d(u2t, C1) ≤ t1 + 1. It follows from (10), (11), and (13) that

d(u1, P ) + d(u2t, P ) = t and d(u1, C1) + d(u2t, C1) = 4.(19)

Let C ′2 = C2 − y3 + u1. Clearly, C ′2 is an e2-cycle in G. Therefore G[V (L′)] does
not contain an e3-Hamiltonian cycle where L′ = u2u3 . . . u2ty3. Then y3u2 ∈ E. As
r(e3, L

′) = 0 and by Lemma 2.2, we obtain d(y3, L
′) + d(u2, L

′) ≤ t. It follows that
d(u2, C2 ∪ P ) + d(y3, C2 ∪ P ) ≤ t+ 4 and, if the equality holds, then y1u2 ∈ E. Thus
d(u2, C1) + d(y3, C1) ≥ n + 3 − t − 4 = 4. As C2 and C ′2 are two e2-cycles of length
4, we see, by (2) and Lemma 2.3, that d(u2, C1) ≤ 2 and d(y3, C1) ≤ 2. We conclude
that

d(y3, C1) = 2, d(u2, C1) = 2, and y1u2 ∈ E.(20)

Let C ′′2 = y1y4u1u2y1. We have

y2u3 ∈ E,(21)

for otherwise C1, C
′′
2 , and y3y2u3u4 . . . u2ty3 are three required cycles.

We claim t = 2. On the contrary, suppose t ≥ 3. Since y1u2u1y2y3y4y1 is
an e2-cycle in G, G[V (L′′)] does not contain an e3-Hamiltonian cycle, where L′′ =
u3u4 . . . u2t. So u3u2t ∈ E and d(u3, L

′′) + d(u2t, L
′′) ≤ t − 1 by Lemma 2.2. By

(5), d(u3, C1) ≤ 2. As d(u3) + d(u2t) ≥ n + 3, we see, together with (21), that
d(u3, C1) = 2 and y4u3 ∈ E. Then y1y2u1u2u3y4y1 is an e2-cycle in G. Thus G[V (L)]
does not contain an e3-Hamiltonian cycle where L = u4u5 . . . u2ty3, and so y3u4 ∈ E.
As r(e3, L) = 0 and by Lemma 2.2, d(u4, L) + d(y3, L) ≤ t− 1. By (5), d(u4, C1) ≤ 2.
As d(u4)+d(y3) ≥ n+3, it follows that u1u4 ∈ E, and, consequently, C1, y1y4u3u2y1,
and y3y2u1u4u5 . . . u2ty3 are three required cycles, a contradiction. This shows that
t = 2.

Thus n = 7 and δ2(G) ≥ 10. Since C2, C
′
2, and C ′′2 are e2-cycles in G and by (2),

we see that

{x1, x5} ⊆ N(u2), {x1, x5} ⊆ N(y2),(22)

{x2, x6} ⊆ N(y3), and {x2, x6} ⊆ N(u1).

By (2) and (20), we see that x3u2 ∈ E and y3x4 ∈ E. Then x3u4 ∈ E, for
otherwise x3u2u3u4x3 is an e3-cycle in G, contradicting (2). As d(x3) + d(u4) ≥ 10,
we obtain {x1, x5} ⊆ N(u4) and {y2, y4} ⊆ N(x3). Then x4u3 ∈ E, for otherwise
x4u3u4x5x4 is an e3-cycle in G, contradicting (2). As d(x4)+d(u3) ≥ 10 and y2u3 ∈ E
by (21), we obtain {u1, y1} ⊆ N(x4) and {x2, x6, y4} ⊆ N(u3). Then y3x2 ∈ E, for
otherwise y3x2u3u4y3 and C ′2 are two cycles of length 4 in G, contradicting (2). As
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d(x2)+d(y3) ≥ 10, we obtain {y1, u1} ⊆ N(x2) and x6y3 ∈ E. We have x5u2 ∈ E, for
otherwise x5u2u3u4x5 is an e3-cycle in G, contradicting (2). As d(x5) + d(u2) ≥ 10,
we obtain {y2, y4} ⊆ N(x5) and x1u2 ∈ E. We also see x1y2 ∈ E, for otherwise C ′′2
and x1y2x5x6x1 are two cycles of length 4 in G, contradicting (2). Then x1y4 ∈ E
as d(x1) + d(y2) ≥ 10. Finally, we have u1x6 ∈ E, for otherwise x1x6u1x2x1 is an

e1-cycle in G, contradicting (2), and so x6y1 ∈ E as d(u1) + d(x6) ≥ 10. Then G
b

consists of three cycles x1y2u3x4x1, x3x6u1u4x3, x5x2y3u2x5 and two isolated vertices
y1 and y4. Therefore G ∼= G3.

Subcase 2.3. t1 = t2 = 2. In this subcase, by (11), we have

d(u1, C1 ∪ C2) ≥ 3 and d(u1, C1) > 0.(23)

Let C ′2 = C2 − y3 + u1 and L1 = P − u1 + u2ty3. As before, G[V (L1)] does not
contain an e3-Hamiltonian cycle, and therefore y3u2 ∈ E and d(y3, L1)+d(u2, L1) ≤ t.
Hence

d(y3, C1 ∪ C2) + d(u2, C1 ∪ C2) ≥ n + 3− t− 1 ≥ 6.(24)

It follows that

d(u2, C1 ∪ C2) ≥ 2 and d(y3, C1) ≥ 1.(25)

We divide the proof into the following two subcases: t ≥ 3 or t = 2.
Subcase 2.3(a). t ≥ 3. Let L2 = u3u4 . . . u2t. As d(u1, C2) = 2 and by (23), (25),

and Lemma 2.4, if d(u2, C1) = 2, then G[V (C1)∪{u1, u2}] contains an e1-Hamiltonian
cycle as d(u1, C1) > 0, and otherwise d(u2, C2) = 1 and G[V (C2) ∪ {u1, u2}] contains
an e2-Hamiltonian cycle. Therefore G[V (L2)] does not contain an e3-Hamiltonian
cycle. Therefore u3u2t ∈ E and d(u3, L2) + d(u2t, L2) ≤ t− 1 by Lemma 2.2. Hence
d(u3, P ) + d(u2t, P ) ≤ t. It follows that

d(u3, C1 ∪ C2) + d(u2t, C1 ∪ C2) ≥ n + 3− t = 7 and d(u3, C1 ∪ C2) ≥ 3.(26)

As d(u3, C2) > 0 by (26) and d(u1, C2) = 2, it is easy to see that G[V (C2) ∪
{u1, u2, u3} − {y3}] contains an e2-Hamiltonian cycle Q. Then G[V (L3)] does not
contain an e3-Hamiltonian cycle where L3 = u4u5 . . . u2ty3. Hence y3u4 ∈ E. As
r(e3, L3) = 0 and by Lemma 2.2, we have d(u4, L3) + d(y3, L3) ≤ t − 1. Therefore
d(u4, P ) + d(y3, P ) ≤ t + 1, and, moreover, if the equality holds, then u1u4 ∈ E.
We now claim u1u4 ∈ E. On the contrary, say u1u4 ∈ E. Then d(u4, C1 ∪ C2) +
d(y3, C1 ∪ C2) ≥ n + 3 − t = 7. This implies that d(u4, C1) = d(y3, C1) = 2 and
y1u4 ∈ E. If x3u2t ∈ E, then C1 − x3 + y3, Q, and x3u4u5 . . . u2tx3 are three
required cycles, a contradiction. Hence x3u2t ∈ E. By (13) and (26), we have
d(u1, C1) = d(u3, C1) = d(u3, C2) = 2. If x1u2 ∈ E, then x1x4u1u2x1, C2 − y3 + u3,
and x3x2y3u2tu2t−1 . . . u4x3 are three required cycles, a contradiction. Thus x1u2 ∈ E.
As u2y3 ∈ E and by (25), we have {u2x3, u2y1} ⊆ E. Let C ′1 = C1 − x3 + u1 and
L4 = P − u1 + x3u2. Then G[V (L4)] does not contain an e3-Hamiltonian cycle.
By Lemma 2.2, d(x3, L4) + d(u2t, L4) ≤ t. As d(x3) + d(u2t) ≥ n + 3, we obtain
d(x3, C2) = 2. Then C1 − x3 + u3, y1y4u1u2y1 and x3u4u5 . . . u2ty3y2x3 are three
required cycles, a contradiction. This shows u1u4 ∈ E.

Then we have

d(u4, C1 ∪ C2) + d(y3, C1 ∪ C2) ≥ n + 3− t− 1 = 6.(27)
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We shall obtain a contradiction according to whether u2y1 ∈ E or u2y1 ∈ E.
Let us first assume that u2y1 ∈ E. Let C ′′2 = y1y4u1u2y1. Then G[V (L5)] does
not contain an e3-Hamiltonian cycle where L5 = u3u4 . . . u2ty3y2. Hence y2u3 ∈ E.
By (26), we obtain d(u3, C1) = d(u2t, C1) = 2 and u3y4 ∈ E. Then x3u2 ∈ E,
for otherwise C1 − x3 + u3, C2 and x3u2u1u4u5 . . . u2tx3 are three required cycles.
By (24), we obtain d(y3, C1) = 2 and x1u2 ∈ E. We also have x3u4 ∈ E, for
otherwise C1 − x3 + u3, y1u2u1y2y3y4y1, and x3u4 . . . u2tx3 are three required cycles.
As y3u4 ∈ E and by (27), {x1u4, y1u4} ⊆ E. If u1x4 ∈ E, then x1x4u1u2x1, C2 and
x2x3u2tu2t−1 . . . u3x2 are three required cycles. Hence u1x4 ∈ E and so u1x2 ∈ E by
(23). Then x1x4u3u2x1, C2, and x2x3u2tu2t−1 . . . u4u1x2 are three required cycles,
again a contradiction.

Next, we assume u2y1 ∈ E. As y3u2 ∈ E and by (24), we have d(u2, C1) =
d(y3, C1) = 2. Then x3u2t ∈ E, for otherwise C1 − x3 + y3, C

′
2 and x3u2u3 . . . u2tx3

are three required cycles. By (13) and (26), we have d(u1, C1) = d(u3, C1) = 2. Then
C1 − x2 + u2, C

′
2, and y3x2u3u4 . . . u2ty3 are three required cycles, a contradiction.

Subcase 2.3(b). t = 2. In this subcase, n = 6 and δ2(G) ≥ 9. As δ2(G) ≥ 9, each

component of G
b
is a path of length at most 2. If G ≥ G1, then G1

b ≥ G
b
. Then G

b

must consist of three paths of length 2 and three isolated vertices such that the three
isolated vertices are all in V1 or are all in V2. This would imply G ∼= G0. Therefore
we may assume that G ≥ G1. Hence we need to show G ≤ G2.

As y3u2 ∈ E and by (25), we have either y1u2 ∈ E or N(u2, C1 ∪C2) = {x1, x3}.
Subcase 2.3(b1). y1u2 ∈ E. Let C ′′2 = y1y4u1u2y1. Then u3y2 ∈ E, for otherwise

C1, C
′′
2 , and y2u3u4y3y2 are three required cycles. Thus E(G

b
) ⊇ {u1u4, y3u2, y2u3}.

Similarly, if d(u1, C1) = d(u4, C1) = 2, then u2x3 ∈ E; otherwise the cycles C1 −
x3 + u1, C2 and P − u1 + x3 are as required. This means u2x1 ∈ E, by (25), and
so u3x2 ∈ E; otherwise the cycles u2x1x4u1u2, C2, and x2u3u4x3x2 are as required.

Hence E(G
b
) ⊇ {u2x3, u3x2}, and so G ≤ G2. Therefore, by (13), we may assume

that d(u1, C1) + d(u4, C1) = 3.
First, suppose d(u1, C1) = 2 and d(u4, C1) = 1. Thus xiu4 ∈ E for some i ∈ {1, 3}.

Assume that G ≤ G2. Then we must have d(y3, C1) = d(u3, C1) = 2 and u3y4 ∈ E.
Suppose x3u4 ∈ E. Then x3u2 ∈ E, for otherwise C1 − x3 + u1, C2, and P − u1 + x3

are three required cycles. Consequently, x1u2 ∈ E as y3u2 ∈ E and by (25), and
so x1u2u1x4x1, C2 and x3u4u3x2x3 are three required cycles, a contradiction. Hence
x3u4 ∈ E and so x1u4 ∈ E. Then {y2, y4, u2} ⊆ N(x3) as d(x3) + d(u4) ≥ 9.
Thus u2x1 ∈ E, for otherwise x1x4u1u2x1, C2 − y3 + x3 and y3u4u3x2y3 are three
required cycles, and therefore {y2, y4} ⊆ N(x1) as d(u2) + d(x1) ≥ 9. It follows that
x1x4u1y2x1, x3y4y1u2x3, and y3u4u3x2y3 are three required cycles, a contradiction.

Next, suppose d(u1, C1) = 1 and d(u4, C1) = 2. Thus xiu1 ∈ E for some i ∈
{2, 4}. Assume G ≤ G2. Then we must have d(y2, C1) = d(u2, C1) = 2. As d(xi) +
d(u1) ≥ 9, we see that {y1, y3, u3} ⊆ N(xi). If i = 2, i.e., x4u1 ∈ E, then x1x4u1u2x1,
C2, and x3x2u3u4x3 are three required cycles, a contradiction. Therefore x4u1 ∈ E
and x2u1 ∈ E. Then x2y3 ∈ E, for otherwise C1 − x3 + y3, C

′
2, and P − u1 + x3 are

three required cycles. As d(x2) + d(y3) ≥ 9, we see that x2u3 ∈ E. Then x1x4y3y2x1,
C ′′2 , and x3x2u3u4x3 are three required cycles, a contradiction.

Subcase 2.3(b2). N(u2, C1 ∪ C2) = {x1, x3}. As δ2(G) ≥ 9, we see that N(y1) =
N(y3) = V2−{u2}. Then x3u4 ∈ E, for otherwise C1−x3+y3, C

′
2, and P−u1+x3 are

three required cycles. Thus d(u1, C1) = 2 by (13). As d(x3) + d(u4) ≥ 9, we see that
d(x3, C2) = 2. Assume that G ≤ G2. Then we see that either u3y2 ∈ E or u3x2 ∈ E.
If u3y2 ∈ E, then x1x4u1u2x1, x3x2y1y4x3, and y3y2u3u4y3 are three required cycles,



96 HONG WANG

and if u3x2 ∈ E, then C1 − x2 + u2, C
′
2 and x2y3u4u3x2 are three required cycles, a

contradiction. This completes the proof of the theorem.
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ACM, New York, 1999, pp. 177–184] have recently proposed the first strongly polynomial algorithms
with proven constant approximation factors, 2e ≈ 5.44 and 16.86, for finding minimum weight zero-
and bounded-skew trees, respectively.

In this paper we introduce a new approach to these problems, based on zero-skew “stretching”
of spanning trees, and obtain algorithms with improved approximation factors of 4 and 14. For the
case when tree nodes are points in the plane and edge weights are given by the rectilinear metric
our algorithms find zero- and bounded-skew trees of length at most 3 and 9 times the optimum.
This case is of special interest in VLSI clock routing. An important feature of our algorithms is
their practical running time, which is asymptotically the same as the time needed for computing the
minimum spanning tree.
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1. Introduction. The skew of an edge-weighted rooted tree is the maximum
difference between any two root-to-leaf path weights. Zero- or bounded-skew trees
are needed for achieving synchronization in many applications, including network
multicasting [20] and VLSI clock routing [2, 17]. In these applications edge weights
represent propagation delays, and a signal generated at the root should be received by
multiple recipients, referred to as sinks, located at the leaves (almost) simultaneously.
The goal is to find zero- or bounded-skew trees of minimum total weight, since the
weight of the tree is directly proportional to the amount of resources (bandwidth and
buffers for network multicasting, power and chip area for clock routing in VLSI) that
must be allocated to the tree.

∗Received by the editors September 18, 2000; accepted for publication (in revised form) December
10, 2001; published electronically January 16, 2002. A preliminary version of this work appeared in
[22].

http://www.siam.org/journals/sidma/15-1/37836.html
†Department of Computer Science, Georgia State University, University Plaza, Atlanta, GA 30303

(alexz@cs.gsu.edu). This author’s research was supported in part by NSF grant CCR-9988331,
award MM2-3018 of the Moldovan Research and Development Association (MRDA) and the U.S.
Civilian Research and Development Foundation for the Independent States of the former Soviet
Union (CRDF), and State of Georgia’s Yamacraw Initiative.

‡Department of Computer Science and Engineering, University of California at San Diego, La
Jolla, CA 92093-0114 (mandoiu@cs.ucsd.edu).

97



98 ALEXANDER Z. ZELIKOVSKY AND ION I. MĂNDOIU

In order to meet the skew constraints in the above applications, one may increase
edge weights of the underlying network or metric space. This corresponds to adding
buffers to a network link, or wire wiggling, respectively. We will refer to this operation
as stretching. Formally, let (M, d) be an arbitrary metric space. A stretched tree
T = (V, E, π, cost) for a set of sinks S ⊆M is a rooted tree with node set V and edge
set E, together with a pair of mappings, π : V →M and cost : E → R+, such that

(1) π is a one-to-one mapping between the leaves of T and S, and
(2) for every edge (u, v) ∈ E, cost(u, v) ≥ d(π(u), π(v)).

Informally, every edge (u, v) of a stretched tree T embedded in (M, d) can be stretched
by wiggling such that its length increases from d(π(u), π(v)) to cost(u, v).

A stretched tree T is a zero-skew tree (ZST) if all root-to-leaf paths in T have
equal cost; T is a b-bounded-skew tree (b-BST, or just BST when the bound b is clear
from the context) if the difference between the cost of any two root-to-leaf paths is at
most b.

The two problems that we study in this paper are the following:
Zero-skew tree problem. Given a set of sinks S in metric space (M, d), find a

minimum cost zero-skew tree for S.
Bounded-skew tree problem. Given a set of sinks S in metric space (M, d) and a

bound b > 0, find a minimum cost b-bounded-skew tree for S.
The ZST and BST problems are NP-hard [8]. The restriction of the BST problem

to the rectilinear plane is also known to be NP-hard, but the complexity of the recti-
linear ZST problem is not known—for a fixed tree topology the problem can be solved
in linear time by using the deferred-merge embedding (DME) algorithm independently
introduced in [5, 6, 10].

Although the rectilinear zero- and bounded-skew tree problems have received
much attention in the VLSI CAD literature [3, 5, 6, 7, 9, 10, 11, 15, 16, 19] (see Chapter
4 of [17] for a detailed review), the first algorithms with constant approximation
factors have been proposed only recently by Charikar et al. [8]. They give algorithms
with approximation factors of 2e ≈ 5.44 and 16.86 for the ZST and BST problems,
respectively. The BST algorithm in [8] relies on an approximation algorithm for the
Steiner tree problem in graphs. Using the best current Steiner tree approximation of
Robins and Zelikovsky [21] and Arora’s PTAS for computing rectilinear Steiner trees
[1], the BST bounds in [8] can be updated to 16.11 for arbitrary metric spaces and to
12.53 for the rectilinear plane (see Table 1).

In this paper we introduce a new approach to these problems, based on zero-skew
“stretching” of spanning trees. Our contributions include the following:

• constructive lower bounds on the cost of the optimum ZST and BST in arbi-
trary metric spaces;
• improved approximation for the ZST problem in arbitrary metric spaces,
based on a reduction to the zero-skew spanning tree problem;
• improved approximation for the ZST problem in metrically convex metric
spaces,1 based on skew elimination using Steiner points;

• improved approximation for the BST problem in arbitrary and metrically con-
vex metric spaces, based on combining an approximate ZST with a minimum
spanning tree for the sinks.

An important feature of our algorithms is their practical running time, which is asymp-
totically the same as the time needed for computing a minimum spanning tree. Thus,

1A metric space (M,d) is called metrically convex if, for every u, v ∈ M and 0 ≤ λ ≤ 1, there
exists a point w ∈ M such that d(u,w) = λd(u, v) and d(w, v) = (1 − λ)d(u, v).
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Table 1
Summary of results and comparison to results of Charikar et al. [8]. Values marked with as-

terisks update those reported in [8] by taking into account the best current Steiner tree approximation
of Robins and Zelikovsky [21] and Arora’s PTAS for computing rectilinear Steiner trees [1].

Problem Zero-skew tree Bounded-skew tree

Metric General M. convex Rectilinear General M. convex Rectilinear

Approximation

factor in [8]
2e ≈ 5.44 16.11∗ 12.53∗

Approximation

factor in this paper
4 3 14 11 9

Runtime in [8] strongly polynomial strongly polynomial

Runtime in this paper O(n2) O(n logn) O(n2) O(n logn)

our algorithms can easily handle the clock nets with hundreds of thousands of sinks
that occur in large cell based or multichip module designs. For a summary of our
results and a comparison to the results of Charikar et al. [8]2 we refer the reader to
Table 1.

The rest of the paper is organized as follows. In the next section we prove new
lower bounds on the cost of the optimal ZST and BST. Then, in section 3, we show
how to convert (or “stretch”) a rooted tree T spanning the set S of sinks into a
ZST for S. We show that such “stretching” increases the cost by the sum of sink
delays, where the delay in T of a sink s is the length of the path connecting s to its
furthest descendant. We also show that, for metrically convex metric spaces such as
the Euclidean or rectilinear planes, it is possible to reduce the cost increase to half
the sum of delays.

In section 4 we give a Kruskal-like algorithm that builds a rooted spanning tree T
whose total delay does not exceed its length and whose length is at most twice the cost
of an optimal ZST. These two facts yield an approximation factor of 4 for the ZST
problem in arbitrary metric spaces and an approximation factor of 3 for metrically
convex metric spaces. In section 5 we discuss the implications of combining our ZST
heuristics with the DME algorithm when solving rectilinear instances.

Finally, in section 6, we describe how to construct approximate BSTs by com-
bining an approximate ZST for a subset of the sinks with subtrees of a minimum
spanning tree (MST) or approximate minimum Steiner tree for the sinks. In combi-
nation with the MST, this gives a 14-approximation algorithm for the BST problem
in arbitrary metric spaces; the factor is reduced to 11 for arbitrary metrically convex
metric spaces and to 9 for the rectilinear plane.

2. Constructive lower bounds. In this section, we establish new lower bounds
for the ZST and BST problems in an arbitrary metric space. In contrast to the lower
bounds of Charikar et al. [8] these bounds are constructive. A practical advantage of
constructive lower bounds is that they can give tighter bounds on the quality of the
computed solution on an instance by instance basis.

The minimum cost of a ZST (BST) for S will be denoted by ZST ∗(S) (respec-
tively, BST ∗(S)). In our analysis we will use the following constructive lower bound
on ZST ∗(S).

2The running time in [8] is not explicitly estimated.
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Lemma 2.1. Let S be a set of n sinks. Then, for any enumeration s1, s2, . . . , sn
of the sinks in S,

ZST ∗(S) ≥ MinDist{s1, s2}+ 1

2

n−1∑
i=2

MinDist{s1, . . . , si+1},

where MinDist{A} = minu,v∈A, u �=v d(u, v).
Proof. For any r ≥ 0, let N(r) denote the minimum number of closed balls of

radius r of (M, d) needed to cover all sinks in S. Charikar et al. [8] established that

ZST ∗(S) ≥
∫ R

0

N(r) dr,

where R is the smallest radius r for which N(r) = 1.
Let ri = MinDist{s1, . . . , si+1}/2 for every i = 1, . . . , n − 1, and let rn = 0.

Clearly, R ≥ r1 ≥ r2 ≥ · · · ≥ rn−1 ≥ rn. Note that N(r) ≥ i + 1 for every r < ri,
since no two points in the set {s1, . . . , si+1} can be covered by the same ball of radius
r. Hence,

∫ R

0

N(r) dr ≥
n−1∑
i=1

∫ ri

ri+1

(i + 1) dr =

n−1∑
i=1

(i + 1)(ri − ri+1) = 2r1 +

n−1∑
i=2

ri,

and the lemma follows.

It can be shown that natural greedy enumerations (e.g., start from a diametrical
pair of points and add each time the point maximizing minimum distance to previously
enumerated points) do not always deliver the maximum to the lower bound established
in Lemma 2.1. The complexity of finding the best enumeration is an open question.

Below we bound the cost of the optimum BST by comparing it with the cost of
the optimum ZST for a subset of the sinks.

Lemma 2.2. Let S be a set of sinks. Then, for any W ⊆ S and skew bound b > 0,

BST ∗(S) ≥ ZST ∗(W )− b · (|W | − 1).

Proof. Let T be a b-BST for S. We use T to construct a ZST for W of cost
no larger than cost(T ) + b · (|W | − 1) as follows. First, notice that T contains a
b-BST for W , say T ′, as a subtree. Let Pu denote the unique path in T ′ connecting
u to the root, and let u0 be a leaf of T ′ for which cost(Pu0) is maximum. We get a
ZST for W by adding to T ′ a loop of cost cost(Pu0

)− cost(Pu) for each leaf u �= u0.
Since T ′ has skew at most b, each of the |W | − 1 added loops has cost at most b.
Thus, the resulting ZST has cost at most cost(T ′) + b · (|W | − 1) ≤ BST ∗(S) + b ·
(|W | − 1).

3. Zero-skew stretching of spanning trees. Let T = (S, E) be a rooted tree
spanning a set S of sinks from metric space (M, d). For any sink u, let Tu denote the
subtree of T rooted at u. The delay in T of u is defined by

delayT (u) = max{length(Puv) | v leaf in Tu},

where Puv denotes the unique path in T connecting u and v, and length(Puv) =∑
e∈Pu,v

d(e).
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Fig. 1. The two phases of the stretching algorithm for arbitrary metric spaces. In the first
phase, for each sink u, k = degT (u) new nodes u1, . . . , uk are embedded at u and connected to u
by a path of total cost delayT (u). The children vi, i = 1, . . . , k, are reattached to the new nodes
in nondecreasing order of d(u, vi) + delayT (vi). In the second phase, the parent of each sink u is
reattached to uk.

Let length(T ) =
∑
e∈E d(e) and delay(T ) =

∑
u∈S delayT (u). In this section

we show that, for any metric space (M, d), T can be stretched to a ZST of cost
length(T ) + delay(T ). The stretched ZST uses no Steiner points, i.e., has all nodes
embedded at the sinks. We also show that, by using Steiner points, the amount
of stretching can be reduced to half the delay of T in case the underlying space is
metrically convex.

3.1. Zero-skew stretching in arbitrary metric spaces. The stretching algo-
rithm for arbitrary metric spaces (Figure 2) constructs a ZST T1 from a given rooted
tree T spanning S.3 The construction proceeds in two phases. In the first phase (Steps
1–3) the following transformation is applied to each sink u (see Figure 1). First, the
children v1, . . . , vk of u are sorted in nondecreasing order of d(u, vi) + delayT (vi).
Then k new nodes u1, . . . , uk are embedded at u and connected to u by a path of
total cost delayT (u). Finally, each vi is disconnected from u and reattached to ui by
an edge of cost d(u, vi). The result of the first phase is a tree T1 in which every sink
either is a leaf or has a single child.

In the second phase (Steps 4–5) we convert T1 into a ZST for S as follows. First,
we change the root of T1 to r′ = rt, where r is the root of T and t = degT (r). Notice
that every sink u that is not yet a leaf in T1 is incident to its parent, say v, and to u1.
For every such sink u the edge (u, v) is replaced in T1 with (uk, v), where k = degT (u).
After this transformation all sinks become leaves in T1.

Lemma 3.1. The stretched tree T1 produced by the algorithm in Figure 2 is a
ZST with total cost length(T ) + delay(T ).

Proof. We will prove that every path in T1 from uk, u ∈ S, k = degT (u), to a
descendant sink has cost equal to delayT (u); this immediately implies that T1 is a
ZST. Let v1, . . . , vk be the sorted children of u in T , and let u1, . . . , uk be the copies
of u added to T1 in Step 3. Consider a path P from uk to a descendant sink s going
through edge (ui, w), where w is the degT (vi)th copy of vi. Inductively, we can assume
that the cost of the path from w to s is equal to delayT (vi). Hence, it suffices to show
that the cost of the path from uk to w is equal to delayT (u) − delayT (vi). Indeed,

3For clarity, in Figure 2 we omit curly braces for single element sets and use “−” and “+” instead
of “\” and “∪”, respectively.
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Input: Spanning tree T = (S, E), rooted at r, in a metric space (M, d).
Output: ZST T1 = (V1, E1, π, cost) for S.

1. V1 ← S; π(v)← v for each v ∈ V1.
2. E1 ← E; cost(u, v)← d(u, v) for each (u, v) ∈ E1.
3. For each sink u ∈ S, do:

k ← degT (u)
Sort u’s children in T , say v1, v2, . . . , vk, such that

d(u, v1)+delayT (v1) ≤ d(u, v2)+delayT (v2) ≤ · · · ≤ d(u, vk)+delayT (vk)
// Add k new nodes embedded at u
V1 ← V1 + {u1, . . . , uk}; π(u1)← · · · ← π(uk)← u
// Connect the k new nodes and u with a path
E1 ← E1 + (u, u1); cost(u, u1)← d(u, v1) + delayT (v1)
For i = 1, . . . , k − 1 do

E1 ← E1 + (ui, ui+1)
cost(ui, ui+1)← [ d(u, vi+1) + delayT (vi+1) ] − [ d(u, vi) + delayT (vi) ]

// Reattach children vi to the corresponding copies of u
For i = 1, . . . , k do

E1 ← E1 − (u, vi) + (ui, vi); cost(ui, vi)← cost(u, vi).
4. Change the root of T1 = (V1, E1) from r to rt, where t = degT (r).
5. For each sink u ∈ S − r, degT (u) > 0, do:

v ← parentT1
(u); k ← degT (u)

E1 ← E1 − (u, v) + (uk, v); cost(uk, v)← cost(u, v).
6. Output T1 = (V1, E1, π, cost).

Fig. 2. The zero-skew stretching algorithm for arbitrary metric spaces.

the cost of this path is

cost(w, ui) + cost(ui, ui+1) + · · ·+ cost(uk−1, uk)

= d(vi, u) +

k−1∑
j=i

{ [d(u, vj+1) + delayT (vj+1)] − [d(u, vj) + delayT (vj)] }

= [d(u, vk) + delayT (vk)]− delayT (vi)

= delayT (u)− delayT (vi).

A similar computation shows that the cost of the path from uk to u is d(u, vk) +
delayT (vk) = delayT (u).

The cost of T1 is equal to length(T ) after Step 2 of the algorithm. In Step 3
it increases for each sink u ∈ S by the cost of the path (u, u1, u2, . . . , uk), i.e., by
delayT (u). Hence, the total cost of T1 is

length(T ) +
∑
u∈S

delayT (u) = length(T ) + delay(T )

3.2. Zero-skew stretching in metrically convex metric spaces. Before
stating the algorithm, we need to introduce some more notation. A path P =
(p1, p2, . . . , pk) in T1 is called critical if it ends at a leaf node pk and contains no
loops. By construction, it follows that the tree T1 produced by the algorithm in Fig-
ure 2 has at least one critical path starting from each node. Let P = (p1, p2, . . . , pk)
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Fig. 3. Loop folding in metrically convex metric spaces.

Input: Rooted spanning tree T = (S, E) in a metric space (M, d).
Output: ZST T2 = (V2, E2, π, cost) for S.

1. Find T1 = (V1, E1, π, cost) using the algorithm in Figure 2.
2. (V2, E2, π, cost)← (V1, E1, π, cost).
3. For each sink u ∈ S and i = 0, 1, . . . ,degT (u), do:

// Add attachment node wi on the critical path from ui+1

Find edge (x, y) = e(P, δ/2) on the critical path P from ui+1, where
δ = cost(ui, ui+1)

V2 ← V2 + wi; π(wi)← v(P, δ/2)
E2 ← E2 − (x, y) + (x, wi) + (wi, y)
cost(x, wi)← d(π(x), π(wi)); cost(wi, y)← d(π(wi), π(y))
// Replace the loop (ui, ui+1), where u0 ≡ u, with the edge (ui, wi)
E2 ← E2 − (ui, ui+1) + (ui, wi); cost(ui, wi)← δ/2.

4. Output T2 = (V2, E2, π, cost).

Fig. 4. The zero-skew stretching algorithm for metrically convex metric spaces.

be a critical path in T1, and let length(P ) = length(π(p1), π(p2), . . . , π(pk)). For
every 0 ≤ δ ≤ length(P ), there exist i such that length(π(p1), π(p2), . . . , π(pi)) ≤
δ < length(π(p1), π(p2), . . . , π(pi+1)). We denote the edge (pi, pi+1) by e(P, δ).
Since (M, d) is metrically convex, there is a point v(P, δ) ∈ M such that
the length(π(p1), . . . , π(pi), v(P, δ)) = δ and length(v(P, δ), π(pi+1), . . . , π(pk)) =
length(P )− δ.

The improved stretching algorithm for metrically convex metric spaces (Figure 4)
first computes a ZST T1 using the algorithm in Figure 2. Then it “folds” half of
each loop along a critical path of T1 (see Figure 3). Folding can be applied to each
loop (ui, ui+1), since cost(ui, ui+1) is at most the length of the critical path P from
ui+1. Indeed, by Lemma 3.1, every path from ui+1 to a descendant leaf has the same
cost. Hence, cost(ui, ui+1) ≤ cost(P ). Finally, since P does not contain loops, each
edge of P has cost equal to the distance between the embedding of its ends, and thus
cost(P ) = length(P ).

Lemma 3.2. The stretched tree T2 produced by the algorithm in Figure 4 has
zero-skew and total cost equal to length(T ) + delay(T )/2.

Proof. The total cost of the loops in the stretched tree T1 is equal to delay(T ).
Step 3 of the algorithm replaces each loop by an edge with half its cost. Therefore,
cost(T2) = length(T )+delay(T )/2. The tree T2 has zero-skew, since T1 has zero-skew,
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Input: Finite set S ⊆M .
Output: Rooted spanning tree T on S.

1. Initialization:
ROOTS ← S; E ← ∅
For each v ∈ S, h(v)← 0.

2. While |ROOTS| > 1 do:
Find the closest two sinks r, r′ ∈ ROOTS with respect to metric d
If h(r) < h(r′), then swap r and r′

E ← E + (r, r′)
h(r)← max{h(r), d(r, r′) + h(r′)}
ROOTS ← ROOTS − r′.

3. Output the tree T = (S, E), rooted at the only remaining sink in ROOTS.

Fig. 5. The Rooted-Kruskal algorithm.

and loop folding preserves the cost of all root-to-leaf paths.

4. ZST approximation via spanning trees. In the previous section we have
shown that any rooted spanning tree can be stretched into a ZST whose cost is equal
to the length of the spanning tree plus its delay (half the delay, for metrically convex
metric spaces). This motivates the following:

Zero-skew spanning tree problem. Given a set of points S in a (metrically con-
vex) metric space (M, d), find a rooted spanning tree T on S such that cost(T ) =
length(T ) + delay(T ) (respectively, length(T ) + delay(T )/2) is minimized.

Note that the MST on S has the shortest possible length but may have very large
delay—if the MST is a simple path, then its delay may be as much as O(n) times
larger than its length. On the other hand, a star having the least delay may be O(n)
times longer than the MST.

In this section we give an algorithm for finding a rooted spanning tree which
has both delay and length at most two times the minimum ZST cost. Therefore,
our algorithm gives factor 4 and 3 approximations for the ZST problem in general
and metrically convex metric spaces, respectively. Simultaneously, our algorithm
gives factor 4 and 3 approximations for the zero-skew spanning tree problem in the
respective metric spaces, since cost(T ) cannot be smaller than the cost of the minimum
ZST.

The algorithm (Figure 5) can be thought of as a rooted version of the well-known
Kruskal MST algorithm. At all times, the algorithm maintains a collection of rooted
trees spanning the sinks; initially, each sink is a tree by itself. In each step, the
algorithm chooses two trees that have the smallest distance between their roots and
merges them by linking the root of one tree as the child of the other. In order to keep
the delay of the resulting tree small, the child root is always chosen to be the root
with smaller delay.

Lemma 4.1. delay(T ) ≤ length(T ).

Proof. Note that, at the end of the Rooted-Kruskal algorithm, h(u) represents
exactly the delay of node u in T . Every iteration of the algorithm adds the edge (r, r′)
to E(T ), thus increasing length(T ) by d(r, r′). On the other hand, since h(r) ≥ h(r′)
when h(r) is updated, the iteration contributes at most d(r, r′)+h(r′)−h(r) ≤ d(r, r′)
to
∑
u∈S h(u), i.e., to the total delay of T .



ALGORITHMS FOR ZERO- AND BOUNDED-SKEW TREES 105

Let n be the number of sinks in S.
Lemma 4.2. length(T ) ≤ 2(1− 1/n)ZST ∗(S).
Proof. Let s1 be the root of T , and let s2, . . . , sn be the remaining n − 1 nodes

of T , indexed in reverse order of their deletion from ROOTS. Since in each iteration
the algorithm adds to T the edge joining a closest pair of points in ROOTS,

length(T ) =

n−1∑
i=1

MinDist{s1, . . . , si+1}.

Thus, by Lemma 2.1,

length(T ) ≤ 2 ZST ∗(S)−MinDist{s1, s2} = 2 ZST ∗(S)− d(s1, s2).

Since (s1, s2) is the longest edge in T , d(s1, s2) ≥ length(T )/(n− 1), and the lemma
follows.

Lemmas 3.1, 4.1, and 4.2 give the following theorem.
Theorem 4.3. For any metric space and any set of n sinks, running the algorithm

in Figure 2 on the tree T produced by the Rooted-Kruskal algorithm gives a ZST whose
cost is at most 4(1− 1/n) times larger than ZST ∗(S).

Proof. By Lemma 3.1, the cost of the embedding is equal to length(T )+delay(T ).
However, delay(T ) ≤ length(T ) by Lemma 4.1, and the approximation factor follows
from Lemma 4.2.

Similarly, Lemmas 3.2, 4.1, and 4.2 give the following theorem.
Theorem 4.4. For any metrically convex metric space and any set of n sinks,

running the algorithm in Figure 4 on the tree T produced by the Rooted-Kruskal algo-
rithm gives a ZST whose cost is at most 3(1− 1/n) times larger than ZST ∗(S).

Proof. By Lemma 3.2, the cost of the embedding is now equal to length(T ) +
(1/2) · delay(T ), and the theorem follows again from Lemmas 4.1 and 4.2.

The following example shows that the algorithm in Theorem 4.3 can produce
ZSTs which are 4(1− 1/n) times larger than optimal. A similar example shows that
the algorithm in Theorem 4.4 has a tight approximation factor of 3(1− 1/n).

Example 1. Consider a discrete metric space on 2k + 1 points, n = 2k of which
are sinks. We label the sinks with 0-1 sequences of length k, i.e., S = {α =
bk−1bk−2 . . . b0 | bi ∈ {0, 1}}. All sink-to-sink distances are equal to 1 and the distance
from the single Steiner point to each of the sinks is 1/2. In this space, the optimal
ZST is a star rooted at the Steiner point and has cost equal to n/2. The Rooted-
Kruskal algorithm may construct the spanning tree T with root (11 . . . 1) and edges
(α, α′) such that α′ is identical to α except that the rightmost 0 in α′ is replaced with
1 in α. Indeed, at each iteration of Step 2, the algorithm may choose to merge trees
rooted at α and α′ as above. It may choose α to be the root of the merged tree, since
h(α) = h(α′).

Clearly, length(T ) = n− 1. On the other hand, since we always merge two roots
with the same h-value, each merge contributes exactly 1 to the total delay of T . Thus,
delay(T ) = n− 1. By Lemma 3.1, the cost of the ZST produced by the algorithm is

length(T ) + delay(T ) = 2(n− 1) = 4 (1− 1/n) · n
2

.

Running time. The running time of the stretching algorithms given in sec-
tion 3 is dominated by the time needed to sort the children of each node; this can be
done in O(n log n) overall. For arbitrary metrics the Rooted-Kruskal algorithm can
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Fig. 6. When Figure 4 is applied to the Rooted-Kruskal spanning tree, the topology of the
stretched tree remains the same, since each attachment node wi belongs to the edge (ui+1, vi+1).

be implemented in O(n2) time using Eppstein’s dynamic closest-pair data structure
[12]. In the rectilinear plane (in fact, in any fixed dimensional Lp space), the running
time can be reduced to O(n log n) time by using the dynamic closest-pair data struc-
ture of Bespamyatnikh [4]. These implementations of the Rooted-Kruskal algorithm
are asymptotically optimal, since the running times match known lower bounds for
computing the first closest pair.

Thus, the total time for running the Rooted-Kruskal algorithm followed by one of
the stretching algorithms given in section 3 is O(n2) in arbitrary metric spaces (respec-
tively, O(n log n) in the rectilinear plane). Notice that this matches asymptotically
the time needed for computing an MST for the sinks.

5. Practical considerations for approximating the rectilinear ZST. In
the previous two sections it has been shown that the minimum cost ZST can be
approximated in metrically convex metric spaces within a factor of 3. In order to
obtain better ZSTs in the rectilinear plane, we may combine the stretched spanning
tree with the DME algorithm [5, 6, 10]. The DME algorithm gives the optimal
rectilinear ZST for any given topology, which is an unweighted binary tree with the
leaves labeled by the sinks. Therefore, we may shorten only the rectilinear ZST if we
feed the topology of the stretched spanning tree into the DME algorithm.

In section 3 we suggested two different ways of stretching a spanning tree. One
may expect that the topology produced by the algorithm in Figure 4 (the loop folding
algorithm) is superior to the topology produced by the algorithm in Figure 2. Surpris-
ingly, when stretching the spanning tree produced by the Rooted-Kruskal algorithm,
both algorithms lead to the same topology. As proven below, every attachment node
wi inserted by the algorithm in Figure 4 belongs to the edge (ui+1, vi+1). Hence, loop
folding does not change the topology of the stretched tree (see Figure 6).

Theorem 5.1. Let T be the rooted spanning tree constructed by the Rooted-
Kruskal algorithm. In any metrically convex metric space, the topologies produced by
running Figures 2 and 4 on T are identical.

Proof. Let the children {v1, . . . , vk} of a node u be sorted as in the algorithm
in Figure 2, i.e., in nondecreasing order of d(u, vi) + delayT (vi). For brevity, denote
di = d(u, vi) and Di = delayT (vi). We will show that δ = cost(ui, ui+1) is no greater
than di+1. This will ensure that the attachment node wi lies on the edge (ui+1, vi+1)
and, therefore, the tree topologies produced by the two stretching algorithms are the
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same (see Figure 6). Since δ = (di+1 + Di+1)− (di + Di), it suffices to prove that

Di+1 ≤ di + Di.(5.1)

We say that index k precedes index l if the node vk has been attached to u before vl
in the Rooted-Kruskal algorithm. Let p1 be the maximum index preceding i + 1, p2

be the maximum index preceding p1, and so on, until we arrive at an index pm with
Dpm = 0.4 Then dp1 + Dp1 represents the length of the critical path from u at the
time when vi+1 is linked to u by the Rooted-Kruskal algorithm, and dpi+1

+ Dpi+1
is

the length of the critical path from u at the time when vpi is linked to u.

Notice that, since the distance between the closest two sinks in ROOTS does not
decrease during the Rooted-Kruskal algorithm,

di+1 ≥ dp1 ≥ · · · ≥ dpm .(5.2)

Moreover,

Di+1 ≤ dp1 + Dp1(5.3)

and

Dpj−1 ≤ dpj + Dpj(5.4)

for every j = 2, . . . , m− 1, since through all attachments node u remains the root.

Assume, for a contradiction, that (5.1) does not hold. We will show by induction
on j that pj > i + 1 and Di+1 ≤ Dpj for every j = 1, . . . , m. Since Dpm = 0, the
above claim implies that Di+1 = 0, making (5.1) trivially true.

To prove the claim, first consider j = 1. If p1 ≤ i, then dp1 + Dp1 ≤ di + Di,
and (5.3) implies (5.1). So, it must be the case that i + 1 < p1. Then di+1 + Di+1 ≤
dp1 + Dp1 , and (5.2) implies that Di+1 ≤ Dp1 .

Now assume that Di+1 ≤ Dpj−1
for some j ≥ 2. If pj ≤ i, using (5.4) we get

Di+1 ≤ Dpj−1
≤ dpj + Dpj ≤ di + Di.

So, it must be the case that i + 1 < pj . Then di+1 + Di+1 ≤ dpj + Dpj , and, since
di+1 ≥ dpj by (5.2), this implies that Di+1 ≤ Dpj .

Corollary 5.2. Combination of the Rooted-Kruskal algorithm with the stretch-
ing algorithm for arbitrary metric spaces (Figure 2) and with the DME algorithm gives
a 3-approximation for the rectilinear ZST problem.

6. Approximate BSTs. In this section we give two approximation algorithms
for the BST problem, both built around a black-box ZST approximation algorithm.
In both cases we construct a ZST for an appropriately chosen subset of the sinks,
then extend this ZST to a b-BST for all sinks. In the first algorithm (Figure 7) the
extension is done by adding subtrees of an MST on the sinks; in the second (Figure 8)
subtrees are extracted from an approximate Steiner tree.

4We will always arrive at an index pm with Dpm = 0, since at least one child of u has zero delay.
Indeed, let v be the child first connected to u. At the moment when the edge (u, v) is added by the
Rooted-Kruskal algorithm, u has zero delay and thus v must also have zero delay. The delay of v
never changes after its removal from ROOTS.
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Input: Finite set S ⊆M , bound b > 0.
Output: b-BST for S.

1. Find an MST T0 on S, with respect to the metric d, and choose an arbitrary
sink r as root.

2. Find a set W of sinks and a collection of subtrees of T0, (Bu)u∈W , as follows:
W ← ∅; T ← T0

While T �= ∅ do:
Find a sink v of T which is furthest from the root
Find the highest ancestor, say u, of v that still has delayT (u) ≤ b
W ←W + u; Bu ← Tu; T ← T − (u, parent(u))−Bu.

3. Find an approximate ZST, T1, for W .
4. Output the tree T ′ = T1 ∪

(⋃
u∈W Bu

)
rooted at the root of T1.

Fig. 7. The MST based BST algorithm.

6.1. The MST based algorithm. The first algorithm (Figure 7) uses a simple
iterative construction to cover the sinks by disjoint b-skew subtrees of an MST T0

of S. The algorithm then outputs the union of these subtrees with a ZST T1 on
their roots. Clearly, the resulting tree T ′ is a b-BST for S. Moreover, cost(T ′) ≤
cost(T1) + length(T0), since the subtrees are disjoint pieces of T0. Hence, if the ZST
algorithm used in Step 3 has an approximation factor of rZST , by Lemma 2.2 we get
that

cost(T ′) ≤ rZSTZST ∗(W ) + length(T0)

≤ rZST (BST ∗(S) + b · (|W | − 1)) + length(T0).

For each node u �= r added to W in Step 2 of the algorithm in Figure 7, the
path from the parent of u to the sink v is deleted from the tree. Since v is a furthest
sink, the length of this path is equal to delayT (parent(u)). By the choice of u,
delayT (parent(u)) > b. Thus, b · (|W | − 1) ≤ length(T0), and so

cost(T ′) ≤ rZSTBST ∗(S) + (rZST + 1)length(T0).

Let rMST be the Steiner ratio for the metric space (M, d), i.e., the supremum,
over all sets of points S in (M, d), of the ratio between the length of an MST and
the length of a minimum Steiner tree for S. Since the length of the minimum Steiner
tree for S is a lower bound on BST ∗(S), we get that length(T0) ≤ rMSTBST ∗(S).
Hence, we have the following theorem.

Theorem 6.1. The algorithm in Figure 7 has an approximation factor of rZST +
rMST + rZST rMST .

Since the Steiner ratio is at most 2 for any metric space [18], and 3/2 for the
rectilinear plane [13], by using the results in Theorems 4.3 and 4.4 we get the following
corollary.

Corollary 6.2. The approximation factor of the algorithm in Figure 7 is 14 in
arbitrary metric spaces, 11 in arbitrary metrically convex metric spaces, and 9 in the
rectilinear plane.

Notice that the running time of the algorithm in Figure 7 is still O(n log n) for
the rectilinear plane and O(n2) for arbitrary metric spaces. The MST in Step 1 can
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Input: Finite set S ⊆M , bound b > 0.
Output: b-BST for S.

1. Find an approximate Steiner tree T0 on S, with respect to the metric d.
2. Find a set W of sinks and a collection of subtrees of T0, (Bu)u∈W , as follows:

W ← ∅; T ← T0

While T �= ∅ do:
Pick an arbitrary sink u in T , and let Bu be the subtree of T induced

by vertices within tree distance of at most b from u
W ←W ∪ {u}; T ← T \Bu.

3. Find an approximate ZST, T1, for W .
4. Output the tree T ′ = T1 ∪

(⋃
u∈W Bu

)
.

Fig. 8. The approximate Steiner tree based BST algorithm.

be computed within these time bounds using Hwang’s [14] rectilinear MST algorithm
and Kruskal’s algorithm, respectively, while Step 2 can be implemented in linear time.

6.2. The approximate Steiner tree based algorithm. The second BST
algorithm combines a ZST for a subset W of the sinks with b-skew subtrees of an
approximate Steiner tree T0 (Figure 8).

Theorem 6.3. The BST problem can be approximated within a factor of rZST +
rSMT + 2 rZST rSMT , given rZST (respectively, rSMT ), approximation algorithms for
the ZST, and minimum Steiner tree problems.

Proof. By construction, the distance in T0 between any two sinks in W is at
least b. Consider the set of open balls of radius b/2 centered at the sinks in W , with
the balls considered in the metric space induced by T0. Since any two such balls are
disjoint, and each of them must cover at least b/2 worth of edges of T0, we get that

b|W | ≤ 2 length(T0).(6.1)

To estimate the cost of the BST produced by the algorithm, notice that
⋃
u∈W Bu

has total cost of at most length(T0). By Lemma 2.2 and (6.1), we get

cost(T ′) ≤ rZSTZST ∗(W ) + length(T0)

≤ rZST (BST ∗(S) + b · (|W | − 1)) + length(T0)

≤ rZST (BST ∗(S) + 2 length(T0)) + length(T0),

and the theorem follows by observing that length(T0) ≤ rSMTBST ∗(S), since, as
noted above, the length of the minimum Steiner tree for S is a lower bound on
BST ∗(S).

With the currently known approximation factors for Steiner trees and ZST, The-
orem 6.1 gives better BST approximations than Theorem 6.3 for the rectilinear plane,
as well as arbitrary (metrically convex) metric spaces. However, Theorem 6.3 may
improve upon Theorem 6.1 for metric spaces with good Steiner tree approximation
(rSMT close to 1) and large Steiner ratio (rMST close to 2), e.g., for high dimensional
Lp spaces.

7. Conclusions and open problems. We have given approximation algo-
rithms for the ZST and BST problems with improved approximation factors for
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general and metrically convex metric spaces, as well as the rectilinear plane. Our
algorithms have a practical running time: O(n log n) in the rectilinear plane and
O(n2) in general metric spaces. Preliminary experiments also show that, when com-
bined with the linear time DME algorithm of [5, 6, 10], our rectilinear ZST algorithm
gives results competitive to those obtained by the Greedy DME heuristic of Edahiro
[11], which is regarded in the VLSI CAD community as the best ZST heuristic to date
(see [17]).

An interesting open question is to determine the limitations of the spanning-tree
based ZST construction introduced in this paper. One can define the zero-skew Steiner
ratio of a metric space as the supremum, over all sets of sinks, of the ratio between the
minimum zero-skew cost (i.e., length + delay) of a spanning tree and the minimum
ZST cost. The results in section 4 imply that the zero-skew Steiner ratio is at most 4
in arbitrary metric spaces, and at most 3 in metrically convex metric spaces. On the
other hand, we have constructed instances showing that the zero-skew Steiner ratio
can be as large as 3 for arbitrary metric spaces; we conjecture that the ratio is never
larger than 3. Determining the complexity of the zero-skew spanning tree problem is
another interesting open question.

In the planar versions of the rectilinear ZST and BST problems, one seeks zero and
bounded-skew trees in the rectilinear plane with no self-intersecting edges. Charikar
et al. [8] have given the first constant approximation factors for these versions; it
would be interesting to find algorithms with improved approximation factors.
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FACETS OF THE WEAK ORDER POLYTOPE DERIVED FROM
THE INDUCED PARTITION PROJECTION∗

JEAN-PAUL DOIGNON† AND SAMUEL FIORINI†

SIAM J. DISCRETE MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 15, No. 1, pp. 112–121

Abstract. The weak order polytopes are studied in Gurgel and Wakabayashi [Discrete Math.,
175 (1997), pp. 163–172], Gurgel and Wakabayashi [The Complete Pre-Order Polytope: Facets and
Separation Problem, manuscript, 1996], and Fiorini and Fishburn [Weak order polytopes, submitted].
We make use of their natural, affine projection onto the partition polytopes to determine several new
families of facets for them. It turns out that not all facets of partition polytopes are lifted into
facets of weak order polytopes. We settle the cases of all facet-defining inequalities established for
partition polytopes by Grötschel and Wakabayashi [Math. Programming, 47 (1990), pp. 367–387].
Our method, although rather simple, allows us to establish general families of facets which contain
two particular cases previously requiring long proofs.

Key words. weak order polytope, partition polytope, facet of convex polytope
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1. Introduction. In order to solve real-life problems which require finding an
optimal linear ordering, Grötschel, Jünger, and Reinelt [8] have studied the facial
structure of the “linear ordering polytope.” They found several facets and used these
results in the so-called branch-and-cut technique which combines branch-and-bound
with cutting planes techniques. The same polytope had appeared before under the
name “binary choice polytope” in the theory of probabilistic utility; see the refer-
ences in Fishburn [7]. Recently, several papers were devoted to the geometry of this
polytope and closely related ones; see Fiorini and Fishburn [6] or Fiorini [5] and their
bibliographies.

For a general definition, let F be a family of reflexive relations on the set n = {1,
2, . . . , n}. Each element R of F is encoded by its characteristic vector xR, which has
a coordinate xR(i,j) for each pair (i, j) of distinct elements in n; this coordinate equals

1 when iRj, and 0 otherwise. A subset of vertices of the unit cube in R
n(n−1) is thus

associated to F . The study of its convex hull, called the F-polytope, includes, for
instance, the determination of (many) facets, or, more ambitiously, of the full com-
binatorial structure. Several particular cases have been investigated. In the previous
paragraph, F is the family of all linear orderings on n. (For recent references, see, e.g.,
[3] and [4].) When F is the set of all equivalence relations on n, the F-polytope is also
called the partition polytope PnPA, or the clique-partitioning polytope; see Grötschel
and Wakabayashi [9]. Here we focus on the weak order polytope PnWO. A weak order
on n is a reflexive, transitive, and complete relation on n. Such a weak order W is a
ranking of the elements of n with ties allowed, typically

C1 ≺ C2 ≺ · · · ≺ Ck,(1.1)

where {C1, C2, . . . , Ck} is the partition of n corresponding to the equivalence relation
W ∩W−1. The mapping W �→W ∩W−1 leads to the “induced partition projection”
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from the weak order polytope PnWO onto the partition polytope PnPA, which we will
exploit to produce new facets of weak order polytopes.

Adjacency of vertices in the weak order polytope PnWO is studied by Gurgel and
Wakabayashi [12], while facets are determined by Gurgel and Wakabayashi [11] (see
also Gurgel [10]). The results of these two papers are extended by Fiorini and Fishburn
[6], who also spell out some motivation for the study of PnWO. By “lifting” known
facets from PnPA (that is, taking in PnWO preimages of facets of PnPA), we derive several
new families of facets of PnWO. For instance, two isolated examples of facets are given
by Gurgel and Wakabayashi [11], the 20-page proof for one of them being omitted
(see, however, Gurgel [10]); they are the first two instances of a general family of
facets which we establish easily along our approach.

It should be stressed that not any facet of PnPA has a preimage which is a facet
of PnWO. Thus a case by case analysis is required, whose outcome is reported here
for all facet-defining inequalities established for PnPA by Grötschel and Wakabayashi
[9]. (Additional facets of PnPA were recently provided in [1]; they are reserved for
later work.) In summary, we derive facets of PnWO from trivial, 2-chorded even wheel,
and 2-chorded path facets of PnPA, and also from 2-partition facets, except for the
“smallest” one. On the other hand, triangle and 2-chorded cycle facets are lifted into
ridges; we describe the two facets of PnWO containing such a ridge. Thus we show how
a natural relation between the two polytopes can be useful in their study.

2. Permutation subspaces. Assume n ≥ 2 throughout the paper. The weak
order polytope PnWO lies by definition in the real affine space R

n(n−1) and has one
vertex xW for each weak order W on n = {1, 2, . . . , n}. Its dimension equals n(n−1).
On the other hand, as equivalence relations are symmetric, it is simpler to see the

partition polytope PnPA in the real affine space R
(n
2) in which any point has one

coordinate y{i,j} for each unordered pair {i, j} in n. In fact, PnPA is of dimension
(
n
2

)
.

Its vertex corresponding to the equivalence relation R will be denoted as yR.
The mapping W �→ E = W ∩W−1, where W is a weak order on n and E is the

equivalence relation of W , provides a mapping from vert PnWO (the set of all vertices of
the weak order polytope) onto vert PnPA: in the same notation, xW is mapped onto yE .
The latter mapping extends to the affine projection (i.e., surjective, affine mapping)

π : R
n(n−1) → R

(n
2) : x �→ y with y{i,j} = x(i,j) + x(j,i) − 1,(2.1)

called the induced partition projection. As π(PnWO) = PnPA, the linear mapping π
induces an inclusion preserving correspondence from the face lattice of PnPA to the
face lattice of PnWO. If f(y) ≤ b is a linear inequality valid for PnPA which defines the
face F , then π̇−1(F ) = PnWO ∩ π−1(F ) is the face of PnWO defined by the inequality
(f ◦ π)(x) ≤ b (which is valid for PnWO). We say that the latter inequality is lifted
from inequality f(y) ≤ b and also that the preimage π̇−1(F ) is lifted from F ; here π̇
denotes the restriction of π to PnWO.

In particular, when the face F consists of a single vertex yE , its preimage π̇−1(yE)
is a face of PnWO which is affinely equivalent to the linear ordering polytope PkLO, with
k the number of equivalent classes of E; indeed, vertices of π̇−1(yE) correspond to all
weak orders which linearly order the k classes of E.

The (affine) dimension of a set S of points in R
n(n−1) is the dimension of the

affine subspace aff S it spans and is denoted as dimS. Now choose any point o in
the affine space R

n(n−1) as an origin, thus transforming R
n(n−1) into a vector space

R
n(n−1)
o . (This point does not need to be (0, 0, . . . , 0).) The rank rkS of a set S of
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points in R
n(n−1)
o is the rank of the vector subspace it generates.

Given a vertex yE of PnPA, the permutation subspace permsub(yE) is the (unique)

vector subspace of R
n(n−1)
o that forms a translate of aff π̇−1(yE). Equivalently,

permsub(yE) consists of all linear combinations of vectors −→op with p ∈ π̇−1(yE), whose
coefficients sum up to 0. Although dimπ−1(yE) =

(
n
2

)
, the face π̇−1(yE) can have a

lower affine dimension; the latter equals rk permsub(yE). A basis for permsub(yE) can
be easily found, as we now indicate. The trick is to consider the difference between two
vertices xW , xW

′
of π̇−1(yE) with W and W ′, disagreeing only in the transposition

of two consecutive classes. (The argument is classic for the linear ordering polytope.)

For two nonempty, disjoint subsets U and V of n, define in R
n(n−1)
o the transposi-

tion vector transp(U, V ), located at o, by specifying as follows its components in the
canonical base (also located at o):

(transp(U, V ))(i,j) =




1 if i ∈ U and j ∈ V,
−1 if i ∈ V and j ∈ U,

0 otherwise.
(2.2)

The set of all transposition vectors transp(U, V ), for U , V distinct classes of the equiv-
alence relation E, span permsub(yE) but is linearly dependent (since transp(U, V ) =
−transp(V,U)). A basis of permsub(yE) is formed by selecting one of the two transpo-
sition vectors transp(U, V ) and transp(V,U) for any unordered pair {U, V } of classes
of E. Such vectors transp(U, V ), with U and V two classes of E, are also called
transposition vectors of the vertex yE . When U = {u}, V = {v}, we abbreviate the
notation by writing transp(u, v).

Proposition 2.1. Let E and E′ be two equivalence relations on n with E ⊆ E′.
Then permsub(yE) ⊇ permsub(yE

′
).

Proof. From the assumption, any two classes U ′, V ′ of E′ are unions of classes of
E, say U ′ = ∪ki=1Ui and V ′ = ∪lj=1Vj . Then

transp(U ′, V ′) =

k∑
i=1

l∑
j=1

transp(Ui, Vj),(2.3)

and transp(U ′, V ′) ∈ permsub(yE).
If F is a nonempty face of PnPA, its permutation subspace permsub(F ) is the vector

subspace spanned by the union of the permutation subspaces of the vertices of F . By
Proposition 2.1, we can ignore here any vertex yE

′
of F for which there exists a vertex

yE of F with E ⊂ E′.
The next result is the main tool we will use to derive facets of PnWO.
Proposition 2.2. For any face F of PnPA,

dimF + rk permsub(F ) ≤ dim π̇−1(F ) ≤ dimF +

(
n

2

)
.(2.4)

Proof. Choose a vertex o′ of F as an origin in R
(n
2) and then choose a vertex o of

π̇−1(F ) as an origin in R
n(n−1). As π(o) = o′, the affine mapping π becomes a linear

mapping. Setting f = rkF , we may select f linearly independent vertices q1, q2, . . . ,
qf of F . Pick in π̇−1(F ) vertices p1, p2, . . . , pf with π(pi) = qi for i = 1, 2, . . . ,
f . With g = rk permsub(F ), select next a basis r1, r2, . . . , rg of permsub(F ) which
consists of transposition vectors of vertices of F . Thus any rj is a difference between
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two vertices of π̇−1(F ). As is easily checked, the vectors p1, p2, . . . , pf , r1, r2, . . . ,
rg are linearly independent. Because with o they all belong to aff π̇−1(F ), we have
f + g ≤ dim π̇−1(F ), which is the first inequality to be proved. The second inequality
follows at once from rkπ−1(o′) =

(
n
2

)
.

Remark. Both inequalities in Proposition 2.2 become equalities at least when yid

belongs to F (where id is the equivalence relation with n classes) but not always (as
will be seen later, e.g., in Proposition 4.1).

As we now show, Proposition 2.2 greatly helps understanding preimages by π̇ of
various facets of PnPA.

3. Lifting the trivial, triangle, and 2-partition inequalities. For i, j dis-
tinct elements in n, inequality x{ij} ≥ 0 defines a facet of PnPA; see Grötschel and
Wakabayashi [9]. (Notice how we sometime abbreviate indices {i, j} in {ij}.) The
lifted inequality xij + xji − 1 ≥ 0 defines a facet of PnWO as shown by Gurgel and
Wakabayashi [12]. (In index position, (i, j) is from now on abbreviated in ij or i, j.)
On the other hand, if F is the facet of PnPA defined by the triangle inequality

x{ij} + x{jk} − x{ik} ≤ 1,(3.1)

where i, j, k are distinct elements in n, the preimage π̇−1(F ) defined by

xij + xji + xjk + xkj − xik − xki ≤ 2(3.2)

turns out to be a ridge. (We skip the proof.) This ridge is the intersection of the two
facets defined by the two following transitivity inequalities [11], [10]:

xij + xjk − xik ≤ 1,

xkj + xji − xki ≤ 1.

Now consider two nonempty, disjoint subsets S, T of n with |S| < |T |. Grötschel
and Wakabayashi [9] show the 2-partition inequality∑

i∈S
j∈T

x{ij} −
∑
i,j∈S
i<j

x{ij} −
∑
i,j∈T
i<j

x{ij} ≤ |S|(3.3)

to be facet-defining for PnPA. Its lifted inequality in R
n(n−1), that we also call a

2-partition inequality,

∑
i∈S
j∈T

(xij + xji)−
∑
i,j∈S
i�=j

xij −
∑
i,j∈T
i�=j

xij ≤ |S|+ |S| |T | −
(|S|

2

)
−
(|T |

2

)
(3.4)

is valid for PnWO. When S = {j} and T = {i, k} this inequality coincides with
inequality (3.2), so it is clearly not facet-defining.

Theorem 3.1. Let S and T be two disjoint subsets of n such that 0 < |S| < |T |
and (|S|, |T |) �= (1, 2). Then inequality (3.4) defines a facet of PnWO.

Proof. According to the trivial lifting lemma of Fiorini and Fishburn [6], any
facet-defining inequality for PnWO is also facet-defining for PmWO when m > n. We
may thus assume S ∪ T = n. Let F be the facet of PnPA defined by inequality (3.3).
Then, inequality (3.4) defines the preimage π̇−1(F ) in PnWO. We proceed by showing
that all transposition vectors transp(i, j), for i, j distinct in n, belong to permsub(F );
the thesis then follows from Proposition 2.2.
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For every injective mapping f : S → T , an equivalence relation E yields yE ∈ F
when it has the classes {s, f(s)} for all s in S and {t} for all t in T \ f(S).

When |S| + 2 ≤ |T |, we deduce that all transposition vectors transp(j, k), for
j, k ∈ T , and j �= k, belong to permsub(F ). Also, for i ∈ S and j, k ∈ T with j �= k,
we get transp({j}, {i, k}) ∈ permsub(F ) which, after subtraction of transp(j, k), gives
transp(j, i) ∈ permsub(F ). If S contains two distinct elements h, i, similar arguments
give transp(h, i) ∈ permsub(F ). Thus permsub(F ) contains all transp(u, v) for u, v
distinct in S ∪ T = n.

When |S| + 1 = |T |, we have |S| ≥ 2 by assumption. Let i, j be two distinct
elements in S and k, l be two distinct elements in T . By considering appropriate
partitions encoded as vertices of F , we find the following six linearly independent
transposition vectors in permsub(F ):

transp(k, i) + transp(k, l),

transp(k, j) + transp(k, l),

transp(l, i) + transp(l, k),

transp(l, j) + transp(l, k),

transp(k, j) + transp(k, l) + transp(i, j) + transp(i, l),

transp(i, j) + transp(i, k) + transp(l, j) + transp(l, k).

All transposition vectors transp(u, v) with u, v distinct in {i, j, k, l} are linear com-
binations of the six vectors in the above list. Thus again permsub(F ) contains all
possible transposition vectors.

4. Lifting the 2-chorded cycle inequalities. Consider a cycle in n; to simplify
notation, we relabel the elements of n in such a way that the cycle has vertices 1, 2,
. . . , k. We denote by ⊕ and � the addition and subtraction on k = {1, 2, . . . , k}
with results reduced modulo k to a value in k. The 2-chorded cycle inequality

k∑
i=1

x{i,i⊕1} −
k∑
i=1

x{i,i⊕2} ≤ k − 1

2
(4.1)

is facet-defining for PnPA when k is odd and at least 5 (see [9]). In what follows, we
assume this double condition on k. Taking the preimage by the induced partition
projection π, we derive the following inequality valid for PnWO:

k∑
i=1

(xi,i⊕1 + xi⊕1,i)−
k∑
i=1

(xi,i⊕2 + xi⊕2,i) ≤ k − 1

2
.(4.2)

As will be shown in Proposition 4.1, this inequality defines a ridge of PnWO; the
two facets containing the ridge are specified in Theorem 4.2. We use the notation

Dk = {(i, j) ∈ k× k | i� j is odd and i �= j},
Ek = {(i, j) ∈ k× k | i� j is even}.

Proposition 4.1. For k odd and at least 5, inequality (4.2) defines a ridge of
PnWO. Any vertex of PnWO satisfying inequality (4.2) with equality also satisfies the
linear equation ∑

ij∈Ek
xij −

∑
ij∈Dk

xij = 0.(4.3)
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Proof. Let F denote the facet of PnPA defined by inequality (4.1); then inequal-
ity (4.2) defines the face G = π̇−1(F ) of PnWO. We show that any vertex xW of G also
satisfies (4.3). Indeed, π(xW ) ∈ F , and a vertex yE belongs to F iff the equivalence
relation E, hereafter denoted as ∼, enjoys up to cyclic rotation of 1, 2, . . . , k either
the conditions

1 �∼ 2 ∼ 3 �∼ 4 ∼ 5 �∼ 6 ∼ 7 �∼ · · · �∼ k − 1 ∼ k �∼ 1(4.4)

or the conditions

1 ∼ 2 ∼ 3 �∼ 4 ∼ 5 �∼ 6 ∼ 7 �∼ · · · �∼ k − 1 ∼ k �∼ 1.(4.5)

Either set of conditions implies that xW also satisfies (4.3).
Now to prove that G is a ridge, it suffices by Proposition 2.2 to prove that

permsub(F ) plus the transposition vector transp(1, 2) generate all transposition vec-
tors transp(i, j) with i, j distinct in n. Take a minimal equivalence relation E such
that yE satisfies (4.1) with equality. Then E admits the class {i} for all i ∈ n \ k;
moreover, we may assume, after relabeling if necessary, that E admits the class {1}.
As yE ∈ F , we get transp(1, i) and transp(i, j) in permsub(F ) for all i, j distinct in
n \ k. Taking appropriate cyclic images of E, we see that the same holds if 1 is re-
placed with any element in k. Now using the minimal equivalence relation defined by
(4.4) together with its cyclically rotated images, we can check that permsub(F ) plus
transp(1, 2) generate transp(1, 3), transp(2, 3), transp(2, 4), transp(3, 4), transp(1, 4),
transp(3, 5), etc., thus all transp(i, j) with i, j distinct in k.

Theorem 4.2. Let k be odd and at least 5. One of the two facets of PnWO

containing the ridge obtained in Proposition 4.1 is defined by the inequality

k + 1

2

k∑
i=1

(xi,i⊕1 − xi,i⊕2) +
k − 3

2

k∑
i=1

(xi⊕1,i − xi⊕2,i)

+

(k−1)/2∑
j=3

k∑
i=1

(−1)j+1(xi,i⊕j − xi⊕j,i) ≤ (k − 1)2

4
,

(4.6)

and the other facet containing the ridge is defined by the similar inequality obtained
by substituting xij with xji for all i, j in k with i < j.

Gurgel and Wakabayashi [11] present two facet-defining inequalities for PnWO

which are the two particular cases of Theorem 4.2 for k = 5 and k = 7; the 20-page
proof for k = 7 is omitted there but appears in Gurgel [10]. Our proof of Theorem 4.2
is rather short and uses the following known result on tournaments (see Bermond [2]
or Laslier [13]).

Lemma 4.3. For k odd, the relation Dk is a tournament on k whose Slater index

(or feedback arc-number) equals k2−1
8 . The same holds for the relation Ek.

Proof. As k is assumed to be odd, i � j is even iff j � i is odd; thus Dk is a
tournament. Let L be any linear ordering on k obtained by reversing certain arcs of
Dk. For i = 1, 2, . . . , (k − 1)/2, the outdegree of the element of rank i in L equals
k − i, while in Dk it equals (k − 1)/2. Thus the number of reversed arcs is at least∑(k−1)/2
i=1 ((k − i)− (k − 1)/2) = (k2 − 1)/8. The following linear ordering T requires

no more arc reversings than this number:

1 ≺ 3 ≺ 5 ≺ · · · ≺ k − 2 ≺ k ≺ 2 ≺ 4 ≺ 6 ≺ · · · ≺ k − 3 ≺ k − 1.(4.7)
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Finally, notice that Dk and Ek are dual relations.
Proof of Theorem 4.2. Let G be the ridge defined by inequality (4.2), written

more compactly as

〈c, x〉 ≤ k − 1

2
for

k∑
i=1

(xi,i⊕1 + xi⊕1,i)−
k∑
i=1

(xi,i⊕2 + xi⊕2,i) ≤ k − 1

2
.(4.8)

We know that G also satisfies (4.3), which we summarize as

〈d, x〉 = 0 for
∑
ij∈Ek

xij −
∑
ij∈Dk

xij = 0.(4.9)

Then

〈2(k − 1)c + 4d, x〉 ≤ (k − 1)2(4.10)

is inequality (4.6) up to a factor 4. There remains to show that inequality (4.10) is
valid for any vertex of PnWO and that it becomes an equality at some vertex of PnWO

not in G.
Let W be a weak order on n. By a class segment we mean a subset S of k of the

form {i, i⊕1, . . . , i⊕ (} such that all elements of S belong to a same class of W , and,
moreover, S cannot be extended in k while keeping this double condition. The length
of S is (+1. (Thus k itself may be a class segment, and its length is by convention k.)
Now denote by s the number of class segments of length strictly greater than 1 and by
r the number of class segments of odd length. It is not difficult to check 〈c, xW 〉 = s.

We now prove

2(k − 1)〈c, xW 〉+ 4〈d, xW 〉 ≤ (k − 1)2.(4.11)

Only coordinates xWij with i, j ∈ k appear in inequality (4.11); thus we may assume
that any element in n \ k is isolated in its equivalence class. Next, if a class segment
S = {i, i⊕1, . . . , i⊕(} has ( > 1, we modify W by breaking only the class C containing
S into two successive classes, namely {i, i ⊕ 1} and C \ {i, i ⊕ 1}; this modification
does not decrease 〈c, xW 〉 and leaves 〈d, xW 〉 unchanged (as easily verified). We may
now assume that all class segments of W have length 1 or 2.

If a class C strictly contains a one-element segment {i∗}, let W+ and W− be the
weak orders obtained from W by pushing i∗ out of its equivalence class one position
down and one position up, respectively; that is,

W− = W \ {(j, i∗) | j ∼ i∗ and j �= i∗},
W+ = W \ {(i∗, j) | j ∼ i∗ and j �= i∗}.

(As before, ∼ denotes the equivalence relation W ∩W−1.) Either 〈d, xW+〉 = 〈d, xW−〉
= 〈d, xW 〉 or 〈d, xW+〉−〈d, xW 〉 = 〈d, xW 〉−〈d, xW−〉 �= 0; thus we may extract i∗ from
its equivalence class and get another weak order, also called W , without decreasing
either 〈d, xW 〉 or 〈c, xW 〉. We may now further assume that any element i∗ isolated
in its segment is also isolated in its class.

In the evaluation of 〈d, xW 〉, all pairs of W touching one class segment of length
2 have a total contribution zero. Thus, we need look only at the linear ordering T
induced by W on the set R of the r elements of k which are alone in their classes.
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Notice that Dk induces on R a relation which is naturally isomorphic to Dr. Thus
using Lemma 4.3 we get

〈d, xW 〉 = |T ∩ Er| − |T ∩ Dr|
= |T | − 2|T ∩ Dr|
≤ r(r − 1)

2
− 2 · r

2 − 1

8

=
(r − 1)2

4
.

Hence, as s = (k − r)/2,

2(k − 1)〈c, xW 〉+ 4〈d, xW 〉 ≤ 2(k − 1)
k − r

2
+ 4

(r − 1)2

4

=

(
r − k + 1

2

)2

+
3(k − 1)2

4
.

As k is odd, we cannot have r = 0. For r varying in k, the last expression has
maximum value (k − 1)2, attained for r = 1 or r = k.

We have thus established that inequality (4.10) defines a face of PnWO which
contains the ridge G. A vertex xT in this face but not in G is obtained for T , the
linear ordering specified in the proof of Lemma 4.3.

To get the other facet of PnWO which contains the ridge G, we apply the linear
permutation mapping (xij) onto (xji); this permutation stabilizes both PnWO and
G.

5. Lifting the 2-chorded path and 2-chorded wheel inequalities. Again,
by making use of our fundamental tool (Proposition 2.2), we infer additional facets
of PnWO from two families of facets of PnPA.

A 2-chorded path inequality for PnPA is obtained as follows (under a specific choice
of labels for the elements in n). Let 1, 2, . . . , (− 1 be (a path) in n, and let ( be an
additional element in n. Grötschel and Wakabayashi [9] prove that the inequality

�−2∑
i=1

x{i,i+1} −
�−3∑
i=1

x{i,i+2} +

�−2∑
j=2

jeven

x{j�} −
�−1∑
j=1

jodd

x{j�} ≤ (− 2

2
(5.1)

is facet-defining for PnPA when ( is even and at least 4.
Theorem 5.1. The inequality lifted from inequality (5.1),

�−2∑
i=1

(xi,i+1 + xi+1,i)−
�−3∑
i=1

(xi,i+2 + xi+2,i)

+

�−2∑
j=2

jeven

(xj� + x�j)−
�−1∑
j=1

jodd

(xj� + x�j) ≤ (− 2

2
,

(5.2)

defines a facet of PnWO for ( even, ( ≥ 4.
Proof. Because of Proposition 2.2, it suffices to show that permsub(F ), for F the

facet of PnPA defined by inequality (5.1), contains all transposition vectors transp(u, v)
for u, v distinct in n. To this aim, we notice that vertex yE belongs to F at least
when E is an equivalence relation with the following equivalence classes, where i, j ∈
{1, 2, . . . , (− 1} and i < j:
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(i) for i and j odd,

{1, 2}, {3, 4}, . . . , {i− 2, i− 1},
{i},
{i + 1, (},
{i + 2, i + 3}, {i + 4, i + 5}, . . . , {j − 2, j − 1},
{j},
{j + 1, j + 2}, {j + 3, j + 4}, . . . , {(− 2, (− 1},
{( + 1}, {( + 2}, . . . , {n};

(5.3)

(ii) for i even and j odd,

{1, 2}, {3, 4}, . . . , {i− 1, i}, . . . , {j − 2, j − 1},
{j},
{j + 1, j + 2}, {j + 3, j + 4}, . . . , {(− 2, (− 1},
{(}, {( + 1}, . . . , {n};

(5.4)

(iii) for i odd and j even,

{1, 2}, {3, 4}, . . . , {i− 2, i− 1},
{i},
{i + 1, i + 2}, {i + 3, i + 4}, . . . , {j, j + 1}, . . . , {(− 2, (− 1},
{(}, {( + 1}, . . . , {n};

(5.5)

(iv) for i and j even ,

{1, 2}, {3, 4}, . . . , {i− 1, i}, . . . , {j − 1, j}, . . . , {(− 3, (− 2},
{(− 1}, {(}, . . . , {n}.(5.6)

By (i), we get transp(i, j) ∈ permsub(F ) when i and j are odd. For i even and j odd,
(ii) gives transp({i − 1, i}, {j}) ∈ permsub(F ), and by subtracting transp(i − 1, j)
(which was just shown to belong to permsub(F )), we get transp(i, j) ∈ permsub(F ).
The cases (i odd, j even) and (i, j even) follow in a similar way from (iii) and (iv).
The other transposition vectors transp(u, v), for u, v ∈ n with u �= v, also belong to
permsub(F ).

With an adequate relabeling of the elements in n, a 2-chorded even wheel inequality
for PnPA, with 1 ≤ k ≤ n− 1 and k even, is written as

k∑
i=1

x{i,i⊕1} −
k∑
i=1

x{i,i⊕2} +

k∑
j=1

jeven

x{jn} −
k∑

j=1

jodd

x{jn} ≤ k

2
(5.7)

(where i and j are taken modulo k in {1, 2, . . . , k}). According to [9], this inequality
defines a facet of PnPA when k is even and k ≥ 8.

Theorem 5.2. The inequality lifted from inequality (5.7) gives a facet-defining
inequality for PnWO when k is even and k ≥ 8, which reads

k∑
i=1

(xi,i⊕1 + xi⊕1,i)−
k∑
i=1

(xi,i⊕2 + xi⊕2,i)

−
k∑

j=1
jeven

(xjn + xnj)−
k∑

j=1

jodd

(xjn + xnj) ≤ k

2
.

(5.8)
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Proof. As the arguments are similar to those in the previous proof, we just list one
example of a useful partition of n; the corresponding equivalence relation E provides
a vertex yE of PnPA which belongs to the facet defined by inequality (5.7). For i, j
odd in 1, 2, . . . , k with j /∈ {i� 2, i, i⊕ 2} (the case j ∈ {i� 2, i⊕ 2} requires a slight
modification), we list the classes of E:

{i},
{i⊕ 2, i⊕ 3}, {i⊕ 4, i⊕ 5}, . . . , {j � 2, j � 1},
{j},
{j ⊕ 2, j ⊕ 3}, {j ⊕ 4, j ⊕ 5}, . . . , {k � 1, k},
{1, 2}, {3, 4}, . . . , {i� 2, i� 1},
{i⊕ 1, j ⊕ 1, n},
{k + 1}, {k + 2}, . . . , {n− 1}.

(5.9)

This partition and similar ones obtained by cyclically rotating 1, 2, . . . , k help in
showing that permsub(F ) contains all transposition vectors transp(u, v), where F is
the facet of PnPA defined by inequality (5.7), and 1 ≤ u < v ≤ n.

Grötschel and Wakabayashi [9] present still one more facet-defining inequality for
PnPA, an isolated example which is not “symmetric,” and has some coefficients equal
to 2. We leave it to the reader to verify that this inequality is lifted into an additional
facet-defining inequality for PnWO.

Acknowledgments. The authors thank Olivier Hudry for directions to the bib-
liography on tournaments, and the two referees for comments on the first version and
for the mention of [1], [3].

REFERENCES

[1] H.-J. Bandelt, M. Oosten, J. H. G. C. Rutten, and F. C. R. Spieksma, Lifting theorems
and facet characterization for a class of clique partitioning inequalities, Oper. Res. Lett.,
24 (1999), pp. 235–243.
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Abstract. The first contribution of this paper is a theoretical investigation of combinatorial
optimization problems. Their landscapes are specified by the set of neighborhoods of all points of
the search space. The aim of the paper consists of the estimation of the number N of local optima
and the distributions of the sizes (αj) of their attraction basins. For different types of landscapes
we give precise estimates of the size of the random sample that ensures that at least one point lies
in each attraction basin.

A practical methodology is then proposed for identifying these quantities (N and (αj) distribu-
tions) for an unknown landscape, given a random sample of starting points and a local steepest ascent
search. This methodology can be applied to any landscape specified with a modification operator
and provides bounds on search complexity to detect all local optima. Experiments demonstrate the
efficiency of this methodology for guiding the choice of modification operators, eventually leading to
the design of problem-dependent optimization heuristics.

Key words. combinatorial complexity, local search, neighborhood graph, randomized starting
solution

AMS subject classifications. 68R99, 90C10, 60F99

PII. S0895480199355225

1. Introduction. In the field of stochastic optimization, two search techniques
have been widely investigated during the last decade: simulated annealing [26] and
evolutionary algorithms (EAs) [7, 8]. These algorithms are now widely recognized
as methods of order zero for function optimization as they impose no condition on
function regularity. However, the efficiency of these search algorithms, in terms of
the time they require to reach the solution, is strongly dependent on the choice of
the modification operators used to explore the landscape. These operators in turn
determine the neighborhood relation of the landscape under optimization.

This paper provides a new methodology allowing one to estimate the number and
the sizes of the attraction basins of a landscape specified in relation to some modifica-
tion operator. This allows one to derive bounds on the probability that one samples
a point in the basin of the global optimum, for example. Further, this method could
be used for guiding the choice of efficient problem-dependent modification operators
or representations.

Formally, a landscape can be denoted by L = (f, µ,E), where f is the function
to optimize and µ the modification operator that is applied to elements of the search
space E. The structure of the landscape heavily depends on the choice of the modifi-
cation operators, which in turn may depend on the choice of the representation (the
coding of the candidate solutions into binary or gray strings, for example). Hence,
before the optimization process can be started, there is a number of practical choices
(representation and operators) that determine the landscape structure. Consequently,
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these choices are often crucial for the success of stochastic search algorithms.

Some research has studied how the fitness landscape structure impacts the poten-
tial search difficulties [14, 22, 23, 27]. It is shown that every complex fitness landscape
can be represented as an expansion of elementary landscapes—one term in the Fourier
expansion—which are easier to search in most cases. This result has been applied to
solve a difficult NP-complete problem [21] (the identification of a minimal finite k-
state automaton for a given input-output behavior), using evolutionary algorithms.
Other theoretical studies of search feasibility consider the whole landscape as a tree
of local optima, with a label describing the depth of the attraction basin at each node
[17, 20]. Such a construction naturally describes the inclusion of the local attraction
basins present in the landscape. These studies investigate tree structures that ensure
a minimal correlation between the strength of the local optima and their proximity
to the global optimum, with respect to an ultrametric distance on the tree. However,
from a practical point of view, the tree describing the repartition of local optima is
unknown and too expensive in terms of computational cost to determine for a given
landscape.

The lack of an efficient method at reasonable cost that allows one to character-
ize a given landscape motivates the construction of heuristics for extracting a priori
statistical information about landscape difficulty, for example, based on random sam-
pling of the search space. We cite from the field of evolutionary algorithms: Fitness
Distance relations, first proposed in [9] and successfully used to choose problem de-
pendent random initialization procedures [12, 15]; Fitness Improvement of evolution
operators, first proposed in [6], then extended and successfully used to choose binary
crossover operators [13] and representations [10]. However, even if such heuristics
can guide the a priori choice of some EA parameters, they do not give significant
information about landscape structure; for instance, recent work suggests that very
different landscapes (leading to different EA behaviors) can share the same fitness
distance relation [19, 11]. Further, the efficiency of such summary statistics is lim-
ited to the sampled regions of the space and therefore does not necessarily help the
long term convergence results as implicitly illustrated in [13], for example. This gives
strong motivation for developing tools that allow one to derive more global (beyond
the sampled regions) information on the landscape at hand, relying on an implicit
assumption of stationarity of the landscape. Along that line, this paper proposes a
new method to identify the number and the repartition of local optima with respect
to a given neighborhood relation of a given landscape. The proposed method applies
to any neighborhood relation specified with a modification operator and hence pro-
vides a practical tool to compare landscapes obtained with different operators and
representations.

The framework is the following. We assume that the search space E can be split
into the partition E1,. . . ,EN of subspaces which are attraction basins of local maxima
m1,. . . ,mN of the fitness function. We also assume that there exists a local search
algorithm (for example, a steepest ascent) which is able to find from any point of the
search space the corresponding local maximum:

Θ :

{
E → {m1, . . . ,mN},
x �→ mj if x ∈ Ej .

The basic problem consists of detecting all local maxima mj . This is equivalent
to finding a way to put a point in all attraction basins Ej because the local search
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algorithm will complete the job. We shall develop the following strategy. First, we
shall study the direct problem, which consists of studying the covering of the search
space by a collection of points randomly distributed when the partition (Ej) is known.
Second, we shall deal with the inverse problem which consists of estimating the number
of local maxima from information deduced from the covering.

Direct problem (section 4). One puts M points randomly in the search space.
The question is the following: Given the statistical distribution of the relative sizes of
the attraction basins and their number N , what is the probability pN,M that at least
one point lies in every attraction basin? This probability is very important. Indeed,
using the local search algorithm, it is exactly equal to the probability of detecting all
local maxima of the function.

Inverse problem (section 5). The statistical distribution of the relative sizes of the
attraction basins and their number are assumed to be known for computing pN,M in
section 4. Unfortunately, this is rarely the case in practical situations, and one wants
to estimate both. The strategy is to put randomly M initial points in the search
space and to detect the corresponding local maxima by the local search algorithm.
The data we collect is the set (βj)j≥1 of the number of maxima detected with j initial
points. Of course, β0 is unknown (number of local maxima of the landscape that have
not been detected). The question is the following: How can the total number of local
maxima N =

∑∞
j=0 βj be efficiently estimated from the set (βj)j≥1? A lower bound

is N̄ =
∑∞
j=1 βj , but we aim at constructing a better estimator.

The paper is divided into three parts. First, section 4 addresses the direct problem
of sample sizing in the case of basins of random sizes, then in the case of basins of
equal sizes. Second, section 5 is devoted to the estimation of the distribution of the
relative basins sizes for an unknown landscape, using a random sample from the search
space. This is achieved by a two step methodology: section 5.2 starts by considering
a parametrized family of laws for the relative sizes of basins for which it derives the
corresponding covering of the search space (law of (βj)). Then section 5.3 comments
on how these results can be practically used for characterizing the sizes of basins
of an unknown landscape. For instance, it proposes to compare the covering of an
unknown landscape (given by the empirically observed (βj) values) to the coverings
studied in section 5.2. Finally, the last part of the paper (section 6) is devoted to some
experiments that validate (section 6.1) and illustrate (section 6.2) the methodology:
First, a landscape is purposely designed to test the reliability of the method according
to the size of the random sample and to the number of local optima. (Recall that the
theoretical results are asymptotic with respect to N and M .) Second, the method is
used to investigate some problems known to be difficult to optimize for EAs. For each
problem, we also compare the landscapes related to different mutation operators.

2. Notations and definitions. Consider a fitness f : E → R, and a neighbor-
hood relation induced by a modification operator µ, such that the number of different
µ-neighbors (neighbors that can be obtained by one application of µ to x) of x ∈ E
is “bounded.” In the following, we denote by N the number of local optima of L
and by (αj) the random variables describing the sizes of the attraction basins of L
(normalized to the average size). As shown in [24, 25], a local improvement algorithm
is efficient to find quickly a local optimum starting from some given point. Among
the possible algorithms we present the Steepest Ascent (SA), also called the optimal
adjacency algorithm in [24].
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Fig. 1. Schematic representations of the search space E with N = 4 attraction basins. M = 6
points have been randomly placed on both pictures. As a result there is at least one point in each
attraction basin in the left picture, but not in the right picture, where E4 is empty.

Steepest Ascent Algorithm (SA).
Input: A fitness f : E → R, an operator µ, and a point X ∈ E.
Algorithm: Modify X by repeatedly performing the following steps:

- Record for all µ-neighbors of X, denoted by µi(X): (i, f(µi(X))).
- Assign X = µi(X), where i is chosen such that f(µi(X)) reaches the highest

possible value. (This is the steepest ascent.)
- Stop when no strictly positive improvement in µ-neighbors’ fitnesses has been

found.
Output: The point X, denoted by µSA(X).

The SA algorithm thus consists of selecting the best neighbors after the entire
neighborhood is examined. An alternative algorithm, the so-called First Improvement
(FI), consists of accepting the first favorable neighbor as soon as it is found, without
further searching. Note that in the FI case there are extra free parameters which are
the order in which the neighborhood is searched. As pointed out in [16, p. 470], the
steepest ascent is often not worth the extra computation time, although it is sometimes
much quicker. Nevertheless, our focus in this paper is not a complete optimization of
the computational time, so we let this problem remain an open question.

Definition 2.1. Attraction basin: The attraction basin of a local optimum mj is
the set of points X1, . . . , Xk of the search space such that a steepest ascent algorithm
starting from Xi (1 ≤ i ≤ k) ends at the local optimum mj. The normalized size of
the attraction basin of the local optimum mj is then equal to k/|E|.

Remarks. 1. This definition of the attraction basins yields a partition of the
search space into different attraction basins, as illustrated in Figure 1. The approach
proposed in this paper is based on this representation of the search space into a
partition of attraction basins and could be generalized to partitions defined with
alternative definitions of attraction basins.

2. In the presence of local constancy in the landscape, the above definition of the
steepest ascent (and hence also the related definition of the attraction basins) is not
rigorous. For instance, if the fittest neighbors of point p have the same fitness value,
then the steepest ascent algorithm at point p has to make a random or user-defined
choice. Nevertheless, even in the presence of local constancy, the comparison of the
results (distribution of (αj)) obtained with different steepest ascent choices may give
useful information about the landscape and guide the best elitism strategy: “move”
to fitter points or “move” to strictly fitter points only.

3. Summary of the results. Given a distribution of (αj), we determine Mmin,
the minimal size of a random sample of the search space, in order to sample at least one
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Fig. 2. Schematic representation of the search space E with its N = 4 attraction basins and the
4 corresponding local maxima m1,. . . ,m4. In the left picture we have put M = 6 points randomly
chosen. We apply the search algorithm and detect 3 maxima according to the right picture, so that
we have β1 = 2, β2 = 0, β3 = 0, β4 = 1, and βj = 0 for j ≥ 5.

point in each attraction basin of the landscape. Two particular cases are investigated.

1. Deterministic configuration. All the attraction basins have the same size
((αj) are deterministic).

2. Random configuration. The sizes of the attraction basins are completely ran-
dom ((αj) are uniformly distributed).

In both configurations, we give the value of Mmin as a function of the number of
local optima N . For instance, a random sample of size Mmin = N(lnN + ln a) for
the deterministic configuration (resp., Mmin = aN2 for the random configuration)
ensures that a point is sampled in each attraction basin with probability exp(−1/a).

We then address the inverse problem of identifying the distribution of the nor-
malized sizes (αj)j=1,...,N of the attraction basins for an unknown landscape. Some
direct analysis is first required as discussed below.

Direct analysis. Consider a random sample (Xi)i=1,...,M uniformly chosen in the
search space. For each i ∈ {1, . . . ,M}, a steepest ascent starting from Xi (with the
modification operator(s) at hand µ) ends at the local optimum µSA(Xi). Define βj
as the number of local optima (m.) that are reached by exactly j points from (Xi)
(see an example in Figure 2):

βj = card{k; card{i;µSA(Xi) = mk} = j}.

Proposition 5.1 gives the distribution of (βj) for a family of parametrized distribu-
tions Lawγ for (αj) asymptotically with respect to N and M . More precisely, let
(Zj)j=1,...,N be a family of positive real-valued independent random variables with
Gamma distributions whose densities are

pγ(z) =
γγ

Γ(γ)
zγ−1e−γz.

Suppose αj =
Zj∑N

i=1
Zi

. Let a > 0 be a constant. If N 
 1 and M = [aN ],1 then the

expected number βj,γ := Eγ [βj ] is

βj,γ = N
Γ(j + γ)

j!Γ(γ)

ajγγ

(a+ γ)j+γ
+ o(N).

1[x] stands for the integral part of the real number x.
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Moreover, the ratio r = M/N is the unique solution of∑∞
j=1 βj,γ

M
=

1− (1 + r
γ )
−γ

r
.(3.1)

The latter equation is then used to find a good estimator of N , with observed values
of the variables βj , as explained below.

Inverse problem. Given an unknown landscape, we then propose to characterize
the distribution of (αj) through the empirical estimation of the distribution of the
random family (βj). In fact, by construction, the distribution of (αj) and that of
(βj) are tightly related: We experimentally determine observed values taken by (βj)
(random sampling and steepest ascent search). Then, for each γ value, we use a χ2

test to compare the observed law for (βj) to the law β should (theoretically) obey if
the law of (αj) were Lawγ . Naturally, we find a (possible) law for (αj) if and only if
one of the latter tests is positive. Otherwise, we gain only the knowledge that (αj)
does not obey the law Lawγ . Note also that the method can be used to determine
subparts of the search space with a given distribution for (αj). In case the law of (αj)
obeys Lawγ , (3.1) is used to find a good estimator of N .

Last, section 6 validates the methodology of section 5, by considering known land-
scapes with random and deterministic sizes of basins, showing that the estimations of
the number of local optima N are accurate, even if M is much smaller than N . Fur-
ther, we apply the methodology on unknown landscapes and show that the Hamming
binary and gray F1 landscapes contain much more local optima than the 3-bit-flip
landscapes.

4. Direct problem. We assume that the search space E can be split into
the partition E1,. . . ,EN of subspaces which are attraction basins of local maxima
m1,. . . ,mN of the fitness function. Let us put a sample of M points randomly in the
search space. We aim at computing the probabilities pN,M that at least one point of
the random sample lies in each attraction basin.

Proposition 4.1. If we denote by αj := |Ej |/|E| the normalized size of the jth
attraction basin, then

pN,M =

N∑
k=0

(−1)k
∑

1≤j1<···<jk≤N
(1− αj1 − · · · − αjk)M .(4.1)

Proof. Let us denote by Aj the event

Aj = {there is no point in Ej} .
The probability of the intersection of a collection of events Aj is easy to compute.
For any 1 ≤ i1 < · · · < ik ≤ N , if there is one initial point chosen uniformly in E
(M = 1), then we have

P (Ai1 ∩ · · · ∩Aik) = 1− αi1 − · · · − αik .
If there are M initial points chosen uniformly and independently in E, then

P (Ai1 ∩ · · · ∩Aik) = (1− αi1 − · · · − αik)M .

On the other hand, 1 − pN,M is the probability that at least one of the attraction
basin contains no point, which reads as

pN,M = 1− P (A1 ∪ · · · ∪AN ) .
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The result follows from the inclusion-exclusion formula [29, Formula 1.4.1a].
Proposition 4.1 gives an exact expression for pN,M which holds true for whatever

N , M , and (αj) are but is quite complicated. The following corollaries show that the
expression of pN,M is much simpler in some particular configurations.

Corollary 4.2. 1. If the attraction basins all have the same size αj ≡ 1/N (the
so-called D-configuration), then

pN,M =

N∑
k=0

CkN (−1)k(1− k/N)M .

2. If, moreover, the numbers of attractors and initial points are large N 
 1 and
M = [N(lnN + ln a)], where a > 0 is a constant, then

pN,M
N→∞−→ exp

(−a−1
)
.

3. Let us denote by MD the number of points which are necessary to detect all
local maxima. Then in the asymptotic framework N 
 1, MD obeys the distribution
of

MD = N lnN −N lnZ + o(N),

where Z is an exponential variable with mean 1.
An exponential variable with mean 1 is a random variable whose density with

respect to the Lebesgue measure over R
+ is p(z) = exp(−z).

Proof. The first point is a straightforward application of Proposition 4.1. It is
actually referenced in the literature as the coupon-collector’s problem [4]. The fact
that MD/(N lnN) converges in probability to 1 is also well known. The statistical
distribution of Md−N lnN is given by [4, Chapter 2, Example 6.6] which establishes
the second point. The third point then follows readily from the identity P(Md ≥ m) =
1− pN,m−1.

Corollary 4.3. 1. If the sizes of the attraction basins are random (the so-called
R-configuration), in the sense that their joint distribution is uniform over the simplex
of R

N ,

SN :=

{
αi ≥ 0,

N∑
i=1

αi = 1

}
,

and the numbers of attractors and initial points are large: N 
 1 and M = [N2a],
a > 0, then

pN,M
N→∞−→ exp

(−a−1
)
.

2. Let us denote by MR the number of points which are necessary to detect all
local maxima. Then in the asymptotic framework N 
 1, MR obeys the distribution
of

MR = N2Z−1 + o(N2),

where Z is an exponential variable with mean 1.
A construction of the R-configuration is the following. Assume that the search

space E is the interval [0, 1). Choose N −1 points (ai)i=,1,...,N−1 uniformly over [0, 1]
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and independently. Consider the order statistics (aσ(i))i=,1,...,N−1 of this sample, that
is to say, permute the indices of these points so that aσ(0) := 0 ≤ aσ(1) ≤ · · · ≤
aσ(N−1) ≤ aσ(N) := 1. Denote the spacings by αj = aσ(j) − aσ(j−1) for j = 1, . . . , N .
Note that αj is also called the jth coverage. If the jth attraction basin Ej is the
interval [aσ(j−1), aσ(j)), then the sizes (αj)j=1,...,N of the attraction basins (Ej)j=1,...,N

obey a uniform distribution over the simplex SN .
Proof. From (4.1) and the relation

∑N
j=1 αj = 1 we get that

pN,M =

∞∑
k=0

(−1)kpN,M,k,(4.2)

pN,M,k =
∑

1≤j1<···<jk≤N
E
[
(1− αj1 − · · · − αjk)M

]
,(4.3)

where E stands for the expectation with respect to (αj)j=1,...,N whose distribution is
uniform over SN . As pointed out in [29, section 9.6a], the probability distribution of
the sum of any k of the N coverages αj is described by the repartition function given
by [29, Formula 9.6.1], which shows that it admits a density qN,k(α) with respect to
the Lebesgue measure over [0, 1]:

qN,k(α) =
(N − 1)!

(k − 1)!(N − k − 1)!
αk−1(1− α)N−1−k.

We can thus write a closed form expression for pN,M,k:

pN,M,k = CkN

∫ 1

0

dαqN,k(α)(1− α)M

= CkN
(N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

0

dααk−1(1− α)M+N−1−k(4.4)

=
1

k!

N !

(N − k)!
(N − 1)!

(N − 1− k)!
(M +N − 1− k)!

(M +N − 1)!
.(4.5)

We shall first prove an estimate of pN,M,k.

Step 1. pN,M,k ≤ 1
k! (

N2

M )k. We have N !/(N−k)! ≤ Nk and (N−1)!/(N−k−1)! ≤
(N − 1)k ≤ Nk. For any k = 0, . . . , N we also have (M +N − 1− k)!/(M +N − 1)! ≤
M−k. Substituting these inequalities into (4.5) establishes the desired estimate.

Step 2. For any fixed k, if M = [aN2], then pN,M,k → a−k/k! as N → ∞. On

the one hand, CkN
(N−1)!

(k−1)!(N−k−1)! ×N−2k → 1/(k!(k − 1)!). On the other hand,

N2k ×
∫ 1

0

dααk−1(1− α)[aN2]+N−1−k =

∫ 1

0

dssk−1
(
1− s

N2

)[aN2]+N−1−k
.

Since
(
1− s

N2

)[aN2]+N−1−k
is bounded by 1 and converges to exp(−as) as N → ∞,

the dominated convergence theorem implies that

N2k ×
∫ 1

0

dααk−1(1− α)[aN2]+N−1−k N→∞−→ (k − 1)!a−k,

which yields the result by (4.4).
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Step 3. Convergence of pN,M when M = [aN2].
We first choose some K ≥ 1. We have from the result of Step 1

∣∣∣∣∣pN,M −
K∑
k=0

(−1)kpN,M,k

∣∣∣∣∣ ≤
∞∑

k=K+1

1

k!

(
N2

[aN2]

)k
.(4.6)

Substituting the result of Step 2 into (4.6) shows that

lim sup
N→∞

∣∣∣∣∣pN,M −
K∑
k=0

(−1)ka−k

k!

∣∣∣∣∣ ≤
∞∑

k=K+1

a−k

k!
.

This inequality holds true for any K, so letting K → ∞ completes the proof of the
corollary.

It follows from the corollaries that about N lnN points are needed in the D-
configuration to detect all maxima, while about N2 points are needed to expect the
same result in the R-configuration. This is due to the fact that there exist very small
attraction basins in the R-configuration. Actually, it can be proved that the smallest
attraction basin in the R-configuration has a relative size which obeys an exponential
distribution with mean N−2. (For more detail about the asymptotic distribution
concerning order statistics, we refer the reader to [29].) That is why a number of
points of the order of N2 is required to detect this very small basin.

Mean values. The expected value of MD is

E[MD] = N lnN +NC + o(N),

where C is the Euler’s constant whose value is C � 0.58. The expected value of
MR/N

2 is equal to infinity. This is due to the fact that the tail corresponding to
exceptional large values of MR is very important:

P(MR ≥ N2a)
N→∞−→ 1− exp(−a−1) �

a	1
a−1.

Standard deviations. The normalized standard deviation, which is equal to the
standard deviation divided by the mean, of the number of points necessary to detect
all local maxima in the D-configuration is equal to

σD :=

√
E[M2

D]− E[MD]2

E[MD]
�

N→∞
π√

6(lnN + C)
,

which goes to 0 as N → ∞ , which proves in particular that MD/(N lnN) con-
verges to 1 in probability. This is, of course, not surprising. The D-configuration
has a deterministic environment, since all basins have a fixed size, so that we can
expect an asymptotic deterministic behavior. The situation is very different in the
R-configuration which has a random environment, and it may happen that the small-
est attraction basin be much smaller than its expected size N−2. That is why the
fluctuations of MD, and especially the tail corresponding to exceptional large values,
are very important.
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5. Inverse problem.

5.1. Formulation of the problem. We now focus on the inverse problem. We
look for the number N of local maxima of the fitness function and also some pieces
of information on the distribution of the sizes of the corresponding attraction basins.
We assume that we can use an algorithm that is able to associate to any point of the
search space the corresponding local maximum. In order to detect all local maxima,
we should apply the algorithm to every point of the search space. Nevertheless, this
procedure is far too long since the search space has a large cardinality. Practically,
we shall apply the algorithm to M points that will be chosen randomly in the search
space E. The result of the search process can consequently be summed up by the
following set of observed values (j ≥ 1):

βj := number of maxima detected with j points.(5.1)

Our arguments are based upon the following observations. First note that N̄ :=∑∞
j=1 βj is the number of detected maxima. It is consequently a lower bound of the

total number of local maxima N , but a very rough estimate, in the sense that it may
happen that many maxima are not detected, especially those whose attraction basins
are small. Besides, N̄ represents less information than the complete set (βj)j≥1. By
a clever treatment of this information, we should be able to find a better estimate of
N than N̄ .

5.2. Analysis. The key point is that the distribution of the set βj is closely
related to the distribution of the sizes of attraction basins. Let us assume that the
relative sizes (αj)j=1,...,N of the attraction basins can be described by a distribution
parametrized by some positive number γ as follows. Let (Zj)j=1,...,N be a sequence of
independent random variables whose common distribution has density pγ with respect
to the Lebesgue measure over (0,∞):2

pγ(z) =
γγ

Γ(γ)
zγ−1e−γz,(5.2)

where Γ is the Euler’s Gamma function Γ(s) :=
∫∞
0
e−tts−1dt. The density pγ is

plotted in Figure 3. It is the so-called Gamma density with parameters (γ, γ) [5, p. 47,
Formula 2.2]. Under pγ , the expected value of Z1 is 1 and its standard deviation is
1/
√
γ. In the following we shall say that we are under Hγ if the relative sizes of the

attraction basins (αj)j=1,...,N can be described as (Z1/TN , . . . , ZN/TN ), where TN :=∑N
j=1 Zj and the distribution of Zj has density pγ . Note that the large deviations

principle (Cramer’s theorem [1, Chapter 1]) applied to the sequence (Zj) yields that
for any x > 0 there exists cγ,x > 0 such that 3

Pγ

(∣∣∣∣TNN − 1

∣∣∣∣ ≥ x
)
≤ exp(−Ncγ,x),(5.3)

which shows that, in the asymptotic framework N 
 1, the ratio Zj/N stands for the
relative size αj up to a negligible correction. The so-called D- and R-configurations
described in section 4 are particular cases of this general framework:

• For γ = ∞, Zj ≡ 1, and TN = N , so that we get back the deterministic
D-configuration.

2If γ is a positive integer, then pγ is a negative-binomial distribution.
3Applying the procedure described in [1] establishes that cγ,x = γ(x− 1− lnx).
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Fig. 3. Probability density of the sizes of the attraction basins under Hγ for different γ.

• For γ = 1, the Zj ’s obey independent exponential distributions with mean 1,
and the family αj = Zj/TN obeys the uniform distribution over SN [18].

The important statement is the following one.
Proposition 5.1. Under Hγ the expected values βj,γ := Eγ [βj ] of the βj’s can

be computed for any N , M , and j ≤M :

βj,γ = N
Γ(γ + j)

j!Γ(γ)

Γ(Nγ)

Γ((N − 1)γ)

Γ((N − 1)γ +M − j)
Γ(Nγ +M)

M !

(M − j)! .(5.4)

In the asymptotic framework N 
 1, if M = [aN ], then βj,γ can be expanded as

βj,γ = N
Γ(j + γ)

j!Γ(γ)

ajγγ

(a+ γ)j+γ
+ o(N).(5.5)

Proof. Under Hγ , the probability that j of the M points lie in the kth attraction
basin can be computed explicitly:

Pγ (j points in Ek) = CjMEγ

[
αjk(1− αk)M−j

]
,

where αk = Zk/
∑
i Zi and Eγ stands for the expectation of Zj with distribution pγ .

Accordingly, in terms of the Zi’s this expression reads

Pγ (j points in Ek) = CjMEγ

[
ZjkŽ

M−j
k

(Zk + Žk)M

]
,

where Žk =
∑
i 
=k Zi. The random variables Zk and Žk are independent. The proba-

bility density of Zk is pγ given by (5.2). The random variable Žk is the sum of N − 1
independent random variables with densities pγ , so that its probability density is
[5, p. 47, Formula 2.3]:

p̌γ(ž) =
γ(N−1)γ

Γ((N − 1)γ)
ž(N−1)γ−1e−γž.

Accordingly,

Pγ (j points in Ek) = CjM

∫ ∞
0

dz

∫ ∞
0

džpγ(z)p̌γ(ž)
zj žM−j

(z + ž)M
.
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By the change of variables u = z/(z + ž) and v = z + ž we get

Pγ (j points in Ek) = CjM

∫ 1

0

du

∫ ∞
0

dvvNγ−1e−γvuγ+j−1(1− u)(N−1)γ+M−j−1.

The integral with respect to v is straightforward by definition of the Gamma function.
The integral with respect to u can be obtained via tabulated formulae [5, p. 47,
Formula 2.5]. This gives the explicit formula (5.4) for βj,γ since

Eγ [βj ] =

N∑
k=1

Pγ (j points in Ek) .

If N 
 1 and M = [aN ], then we have N−γ × Γ(Nγ)/Γ((N − 1)γ) → γγ , Nγ+j ×
Γ((N − 1)γ +M − j)/Γ(Nγ +M)→ 1/(γ + a)j+γ , and N−j ×M !/(M − j)!→ aj as
N →∞. This proves the asymptotic formula (5.5).

In particular, the distribution of the βj ’s under the D-configuration is Poisson in
the asymptotic framework N 
 1:

βj,∞ = Ne−M/N 1

j!

(
M

N

)j
+ o(N),

while it is geometric under the R-configuration:

βj,1 = N
1

1 + M
N

(
M
N

1 + M
N

)j
+ o(N).

From (5.5) we can deduce that the following relation is satisfied by the ratio r = M/N :∑∞
j=1 βj,γ

M
=

1− (1 + r
γ )
−γ

r
.(5.6)

5.3. Estimator of the number of local maxima. We now have sufficient
tools to exhibit a good estimator of the number of local maxima. We remind the reader
of the problem at hand. We assume that some algorithm is available to determine from
any given point the corresponding local maximum. We choose randomly M points in
the search space and detect the corresponding local maxima. We thus obtain a set
of values (βj)j≥1 as defined by (5.1). We can then determine from the set of values
(βj)j≥1 which configuration Hγ0 is the most probable, or at least which Hγ0 is the
closest configuration of the real underlying distribution of the relative sizes of the
attraction basins. The statistics used to compare observed and expected results is the
so-called χ2 goodness of fit test [28, section 8.10], which consists first of calculating
for each γ

Tγ :=
∑
j∈Ω

(βj − βj,γ)2
βj,γ

,

where Ω := {j ∈ N, βj ≥ 1} is the set of the indices j for which βj ≥ 1. Obviously, a
large value for Tγ indicates that the corresponding βj,γ are far from the observed ones;
that is to say, Hγ is unlikely to hold. Conversely, the smaller Tγ , the more likely Hγ

holds true. In order to determine the significance of various values of T., we need the
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distribution of the statistics. A general result states that if the hypothesis Hγ0 does
hold true, then the distribution of Tγ0 is approximatively the so-called χ2-distribution
with degrees of freedom equal to the cardinality of the set Ω minus 1. Consequently,
we can say that the closest configuration of the real underlying distribution of the
relative sizes of the attraction basins is Hγ0 , where γ0 is given by

γ0 = argmin {Tγ , γ > 0} .(5.7)

Furthermore, we can estimate the accuracy of the configuration Hγ0 by referring Tγ0
to tables of the χ2-distribution for card(Ω) − 1 degrees of freedom. A value of Tγ0
much larger than the one indicated in the tables means that none of the configurations
Hγ hold true. Nevertheless, Hγ0 is the closest distribution of the real one.

Remark. The distribution theory of χ2 goodness of fit statistic can be found in
[3, Chapter 30]. The result is in any case approximate, and all the poorer as they are
many expected βj,γ less than five. These cases must be avoided by combining cells.
However, power in the tail regions is then lost, where differences are more likely to
show up.

Defining γ0 as (5.7), we denote by β̄ the quantity

β̄ =

∑∞
j=1 βj

M
.

From (5.6), under Hγ0 the ratio α = M/N is the unique solution of

β̄ =
1− (1 + r

γ0
)−γ0

r
.(5.8)

Consequently, once we have determined γ0, formula (5.8) is a good estimator of the
ratio α = M/N , hence N .

6. Experiments. Given a landscape L, the following steps are performed in
order to identify a possible law for the number and sizes of the attraction basins of
L, among the family of laws Lawγ studied above.

1. Choose a random sample (Xi)i=1,...,M uniformly in E.
2. Perform a steepest ascent starting from each Xi up to µSA(Xi).
3. Compute βj defined as the number of local optima reached by exactly j initial

points Xi.
4. Compare the observed law of β to the laws of β(γ) for different γ values,

using the χ2 test.
To visualize the comparison of the last item, we propose to plot the obtained χ2

value for different γ values. We also plot the corresponding χ2 value below which the
test is positive with a confidence of 95%.

6.1. Experimental validation. The results obtained in section 5 are asymp-
totic with respect to the number of local optima N and the size of the random sample
M . Hence, before the methodology can be applied, some experimental validation is
required in order to determine practical values for M and N for which the method is
reliable. This is achieved by applying the methodology to determine the distribution
of (αj) (normalized sizes of the attraction basins) in two known purposely constructed
landscapes: The first contains basins with random sizes; the second contains basins
with equal sizes.

Results are plotted in Figures 4, 5, and 6. Samples with smaller sizes than those
shown in these figures yield βj values which are not rich enough to allow a significant
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Fig. 4. Basins with random uniform sizes: The left figures plot the χ2 test results (i.e., the
values of Tγ), comparing the empirically observed β distribution to the family of γ-parametrized
distributions. The right figures plot for different γ values the estimation of the number of local
optima computed by (5.8). These estimations are very robust (only one estimation is plotted) and
are accurate for γ0 = 1. The same figures also show the visited numbers of optima actually visited
by the steepest ascent (N̄ =

∑∞
j=1

βj). The numerical simulations exhibit unstable results for the

χ2 test for small N values and M = N .

χ2 test comparison. For instance, the χ2 test requires that observed βj are nonnull
for some j > 1 at least. (Some initial points are sampled in the same attraction
basin.) In case all initial points are sampled in different attraction basins the χ2 test
comparison is not significant.

These experiments give practical bounds on the sample sizes (in relation to the
number of local optima) for which the methodology is reliable: The numerical simula-
tions exhibit unstable results for the χ2 test for M = N and small N values (Figures
4). When N increases and M is bounded (M ≤ min(2000, 3N) in the experiments),
results become stable and accurate (Figures 5). Further, we demonstrate that the es-
timation of number of local optima is accurate, even when initial points visit a small
number of attraction basins of the landscape (Figure 6). This situation is even more
striking in the experiments of the following section on Baluja F1 problems.

6.2. The methodology at work. Having seen that the methodology is a pow-
erful tool, provided that the information obtained for β is rich enough, we apply it to
investigate the landscape structure of the difficult gray- and binary-coded F1 Baluja
problems [2] for a 1-bit-flip and 3-bit-flip neighborhood relations.

Gray-coded Baluja F1 functions. Consider the function of k variables
(x0, . . . , xk−1), with xi ∈ [−2.56, 2.56] [2]:

F1(.x) = 100

10−5+
∑k−1

i=0
|yi|
, y0 = x0, and yi = xi + yi−1 for i = 1, . . . , k − 1.

It reaches its maximum value among 107 at point (0, . . . , 0). The gray-encoded F1g
and binary F1b versions, with, respectively, 2, 3, and 4 variables encoded on 9 bits,
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Fig. 5. The same as in Figure 4 with different values for N and M . Stable results are obtained
when N increases and M is bounded (M ≤ min(2000, 3N) here). The estimation of N corresponding
to the smallest χ2 value (γ = 1) is very accurate.

are considered. This encoding consequently corresponds to the binary search space
with l = 9k.

Considering the 1-bit-flip mutation (Hamming landscape), Figure 7 shows that
the distribution of the sizes of the basins is closer to the random configuration than
to the deterministic one and that the estimated number of local optima is similar for
the binary and gray codings. On the other hand, considering the 3-bit-flip mutation
(Figure 8), the estimated number of local optima drops significantly for both problems:
less than 250 for both binary and gray landscapes, whereas the Hamming landscape
contains thousands of local optima (Figure 7).

Experiments at problem sizes l = 18 and l = 36 have been carried out in addition
to the plotted ones (l = 27), leading to similar results for both F1g and F1b problems:
The number of local optima of the 3-bit-flip landscape is significantly smaller than
that of the Hamming landscape. For example, when 1 = 18, there are less than 10
local optima in the 3-bit-flip landscape versus hundreds in the Hamming landscape.
When 1 = 36, the estimations for the Hamming landscape show about two times more
local optima for the gray than for the binary encoding (resp., 45000 and 25000). Still
for 1 = 36, but for the 3-bit-flip landscape, the estimated number of local optima
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Fig. 6. Basins with deterministic equal sizes: The χ2 results are stable for smaller sample
sizes than those of the random configuration. The bottom figures correspond to the case N = 105

and M = 500, where the χ2 test is not significant, yet the predicted number of local optima is very
accurate! With 500 initial points, 497 local optima have been visited, while there are actually 105

optima. Yet, formula (5.8) is able to estimate the true number with an error of less than 30% when
the adequate γ value is used.

drops, respectively, to 1400 and 1000.

A new optimization heuristic. A simple search strategy for solving difficult prob-
lems naturally follows from the methodology presented in this paper: Once the num-
ber N and distribution of the attraction basins is estimated following the guidelines
summarized in the beginning of section 6, generate a random sample whose size is set
to N(lnN + ln a) if the sizes of the basins are close to the deterministic configuration
(resp., aN2 if the sizes of the basins are close to random). Then a simple steepest
ascent starting from each point of the sample ensures that the global optimum is
found with probability exp(−1/a).

In the 27-bits F1 problem, this heuristic demonstrates to be very robust and effi-
cient in solving the problem with the 3-bit-flip operator. Using a 3-bit-flip mutation
steepest ascent, an initial random sample of 5 points (versus 100 with 1-bit-flip mu-
tation) is enough to ensure that one point at least lies in the global attraction basin
(experiments based on 50 runs)! This is due to the fact that the basin of the global
optimum is larger than the basins of the other local optima. In order to detect all
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Fig. 7. The difficult Baluja 27-bits F1 gray (F1g) and binary (F1b) landscapes with a 1-bit-flip
mutation. Experiments with samples of sizes M = 2000 and M = 5000 show the same results for
the χ2 test, and the corresponding estimations of the number of local maxima converge to a stable
value around 4000.

attraction basins, we can estimate the required sample size to 62500 (250× 250 using
Corollary 4.3 and the estimation of N = 250 in the experiments of Figure 8).

6.3. Discussion. This paper provides a new methodology allowing one to es-
timate the number and the sizes of the attraction basins of a landscape specified
in relation to some modification operator. This allows one to derive bounds on the
probability that one samples a point in the basin of the global optimum, for exam-
ple. Further, it allows one to compare landscapes related to different modification
operators or representations, as illustrated with the Baluja problem.

The efficiency of the proposed method is certainly dependent on the class of laws
of (αj) (sizes of the attraction basins) for which the distribution of β is known. We
have chosen a very particular family of distributions pγ for representing all possible
distributions for the relative sizes of attraction basins. The constraints for this choice
are twofold and contradictory. On the one hand, a large family of distributions is
required to be sure that at least one of them is sufficiently close to the observed
repartition (βj). On the other hand, if we choose an overlarge family, then we need a
lot of parameters to characterize the distributions. It is then very difficult to estimate
all parameters and consequently to decide which distribution is the closest to the
observed one. That is why the choice of the family is very delicate and crucial.
We feel that the particular family pγ that has been chosen (5.2) fulfills determinant
conditions. First, it contains two very natural distributions, the so-called D- and R-
configurations that we have studied with great detail. Second, it is characterized by
a single parameter easy to estimate. Third, it contains distributions with a complete
range of variances, from 0 (the D-configuration) to infinity, by going through 1 (the
R-configuration).

However, the experiments with the Baluja problem appeal for refining the class
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Fig. 8. The difficult Baluja 27-bits F1 gray (F1g) and binary (F1b) landscapes with a 3-
bit-flip mutation: the number of local optima drops significantly compared to the Hamming 1-bit-
flip landscape. These results are confirmed by experiments using samples of sizes M = 2000 and
M = 5000 which give the same estimation for the number of local optima.

of laws of (αj) around basins with random sizes. We may propose αj = Zj/
∑N
i=1 Zi,

where Zj are independent and identically distributed with one of the distributions of
the bidimensional family pγ,δ(.), γ > 0, δ > 0:

pγ,δ(z) =
γδ

Γ(δ)
zδ−1e−γz.

The parameter δ characterizes the distribution of the sizes of the small basins, since
pγ,δ(z) ∼ zδ−1 as z → 0, while γ characterizes the distribution of the sizes of the
large basins, since the decay of pγ,δ(z) as z →∞ is essentially governed by e−γz. The
density pγ,δ is the so-called Gamma density with parameters (γ, δ) [5, p. 47, Formula
2.2]. This family presents more diversity than the family pγ(.) we have considered in
section 5.2. The expected value of βj is under pγ,δ:

βj,γ,δ = N
Γ(j + δ)

j!Γ(δ)

ajγδ

(a+ γ)j+δ

∣∣∣∣
a=M/N

+ o(N).

The method of estimating the number of local minima described in section 5.3 could
then be applied with this family.

To apply our method we have also made a crucial choice which consists of execut-
ing the local search algorithm from randomly distributed points. We do so because
we have no a priori information on the landscape at hand. However, assume for a
while that we have some a priori information about the fitness function, e.g., its aver-
age value. Consequently, we could hope that starting with points whose fitnesses are
better than average would improve the detection of the local maxima. Nevertheless,
extensive computer investigations of some particular problems have shown that this is
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not the case [16, p. 456], possibly because a completely random sampling of starting
points allows one to get a wider sample of local optima.

A first application of the methodology presented in this paper is to compare
landscapes obtained when different operators are used (k-bit-flip binary mutations
for different k values, for example). However, the complexity of this method is di-
rectly related to size of the neighborhood of a given point. Hence, its practical use-
fulness to study k-bit-flip landscapes is limited when k value increases. Hence, it
seems most suited to investigate different representations. Its extension to nonbinary
representations is straightforward, provided that a search algorithm that leads to the
corresponding local optimum can be provided for each representation. Further, this
methodology can be used to determine subparts of the search space, such that (αj)
obey a particular law, hence guiding a hierarchical search in different subparts of the
space.

Note finally that the distributions of the sizes of basins do not fully characterize
landscape difficulty. Depending on the relative position of the attraction basins, the
search still may range from easy to difficult. Additional information is necessary
to compare landscapes difficulty. Further work may address such issues to extract
additional significant information in order to guide the choice or the design of problem
dependent operators and representations.
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CYCLIC COLORINGS OF 3-POLYTOPES WITH LARGE MAXIMUM
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Abstract. A cyclic coloring of a plane graph is a vertex coloring in which, for each face f , all the
vertices in the boundary of f have different colors. It is proved that if G is a 3-polytope (3-connected
plane graph) with maximum face size ∆∗, then G is cyclically (∆∗ + 1)-colorable provided that ∆∗
is large enough. The figure ∆∗ + 1 is sharp.
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1. Introduction. The cyclic chromatic number χc = χc(G) of a plane graph G
is the smallest number of colors in a vertex-coloring of G in which, for each face f ,
all the vertices in the boundary of f have different colors. Clearly χc � ∆∗, where
∆∗ = ∆∗(G) is the largest number of vertices in a face; and the pyramid (wheel) with
one ∆∗-face and ∆∗ triangular faces has χc = ∆∗ + 1.

The cyclic chromatic number was introduced explicitly by Ore and Plummer [11],
who proved that χc � 2∆∗ whenever ∆∗ � 3. However, Ringel [13] had earlier
conjectured that χc � 6 if ∆∗ = 4, and this was proved by Borodin [2, 3]. It is
pointed out in [2, 12] that for each ∆∗ � 4 there is a 2-connected plane graph with
χc = � 32∆∗�, and it is conjectured that χc � 3

2∆
∗, which would therefore be best

possible. It has recently been proved [5] that χc � 9
5∆
∗ for all ∆∗ � 3.

Stronger results hold for 3-polytopes (or, equivalently, for 3-connected planar
graphs: Steinitz [14] proved that a (simple) planar graph G is the 1-skeleton of a
3-polytope if and only if G is 3-connected). For 3-polytopes, Plummer and Toft
[12] proved (inter alia) that χc � ∆∗ + 4 if ∆∗ � 42. Borodin [4] improved this to
χc � ∆∗+3 if ∆∗ � 24, and we here prove that χc � ∆∗+2 if ∆∗ � 61 and χc � ∆∗+1
if ∆∗ � 122. As mentioned above, the bound χc � ∆∗ + 1 is best possible, but it
would clearly be desirable to reduce the lower bounds of 61 and 122 on ∆∗. Since
this paper was first submitted, Enomoto, Horňák and Jendrol’ [8] have proved that
χc � ∆∗ + 1 if ∆∗ � 60, and Horňák and Jendrol’ [10] have proved that χc � ∆∗ + 2
if ∆∗ � 40. (It is conjectured in [12] that χc � ∆∗ + 2 for all 3-polytopes.) It would
also be of interest to characterize 3-polytopes with large ∆∗ for which χc = ∆∗ + 1;
we have not been able to solve this problem. The rest of this paper is devoted to the
proof of the following theorem.
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Theorem 1.1. If G is a 3-polytope with ∆∗(G) � k, then

(a) χc(G) � k + 1 if k � 122,

(b) χc(G) � k + 2 if k � 61.

2. Preliminaries. Let G be a 3-polytope or a 3-connected plane graph; let V ,
E, and F be the sets of vertices, edges, and faces of G; and let v ∈ V and f ∈ F . We
say that two vertices see each other (across a face) if there is a face that is incident
with both of them. The cyclic degree dc(v) of v is the number of vertices w �= v that
see v. The degree d(v) of v (or d(f) of f) is the number of edges incident with it, and
N(v) is the set of vertices adjacent to v, so that d(v) = |N(v)|. A k-vertex (k-face) is
a vertex (face) with degree k, and a �k-vertex has degree at least k (etc.). A vertex
v has type (a,�b,�c), or is an (a,�b,�c)-vertex, if its incident faces have degrees (in
no particular order) d1 = a, d2 � b and d3 � c; other types are defined analogously.
A type followed by a superscript � describes the incident faces in cyclic order around
v. Note that, since G is 3-connected, the cyclic degree of a (d1, . . . , dk)-vertex is∑k
i=1(di − 2).

If H is a 3-connected graph and v ∈ V (H), a contractible v-edge is an edge e
incident with v such that the graph H/e is 3-connected. We shall use the following
known result.

Lemma 2.1. Let H be a 3-connected graph with at least five vertices, and let v be
a vertex such that H has no contractible v-edge. Then
(a) (Halin [9]) dH(v) � 4 and
(b) (Ando, Enomoto, and Saito [1]) v has at least three neighbors of degree 3.

The following lemma is fundamental.
Lemma 2.2. For fixed positive integers k, h such that there exists a 3-polytope

with ∆∗ � k that is not cyclically h-colorable, let G be such a 3-polytope with as few
vertices as possible. Then dc(v) � h for every vertex v of G.

Proof. If h � k, then G is the pyramid (wheel) with one h-face and h triangular
faces. Thus G has h + 1 vertices all of which see each other so that dc(v) = h for
every vertex v. (We do not need the uniqueness of the pyramid, only its existence, in
order to justify the previous sentence.) Thus we may assume that h � k + 1.

Assuming the result is false, choose a vertex v with minimum degree such that
dc(v) � h − 1. Add edges if necessary joining consecutive neighbors of v to form
a 3-polytope H containing a wheel with vertex-set {v} ∪ N(v) with v as its central
vertex. Note that adding these edges does not increase ∆∗, and any cyclic coloring of
H − v will give a cyclic coloring of G if v can be colored appropriately.

Suppose H has a contractible v-edge e. Since ∆∗(H/e) � ∆∗(H) � ∆∗(G) � k,
and H/e has fewer vertices than G, it follows that H/e has a cyclic h-coloring. Apply
this coloring to G− v. Since dc(v) � h− 1, we can find a color for v that will create
a cyclic h-coloring of G, contrary to hypothesis.

Thus H has no contractible v-edge. By Lemma 2.1, dG(v) = dH(v) � 4 and v
has a neighbor u such that dH(u) = 3. Both faces incident with edge uv in G must
be triangles, since otherwise dH(u) > dG(u) � 3. Thus u is a (3, 3,�k)-vertex in
G, and dc(u) � k � h − 1. However, this contradicts the minimum-degree property
of v, since dG(u) = 3 < dG(v). This contradiction completes the proof of Lemma
2.2.

It is proved in [6] that if G is a 3-polytope with ∆∗(G) � k, then G has a vertex
v with dc(v) � k+2 if k � 21 (but not if k � 20). It follows from this and Lemma 2.2
that χc(G) � ∆∗(G) + 3 if ∆∗(G) � 21. However, this is the best that can be proved
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by the use of cyclic degrees alone, since the k-gonal prism (= cylinder) has ∆∗ = k
and dc(v) = k + 2 for every vertex v. Instead of using a single vertex of small cyclic
degree in proving Theorem 1.1, our strategy must therefore be to use configurations
of several vertices.

As is usual with results of this type, our proof involves identifying (in section
3) various configurations that are reducible, that is, that cannot occur in a minimal
counterexample, and then using the method of discharging (in sections 4 and 5) to
obtain a contradiction to the supposition that a minimal counterexample exists.

For the rest of the paper, we suppose that G = (V,E, F ) is a counterexample to
Theorem 1.1(a) or (b) that has as few vertices as possible and, subject to this, as few
edges as possible. Thus ∆∗(G) � k, and either k � 122 and χc(G) � k + 2 or k � 61
and χc(G) � k + 3. Note that in either case, by Lemma 2.2,

G contains no vertex v with dc(v) � k,(2.1)

hence no vertex of type (3, 3,�k), (3, 4,�k − 1), etc. Our aim is to obtain a contra-
diction to the existence of G.

3. Structural information. In this section we identify various reducible con-
figurations, that is, configurations that cannot occur in our smallest counterexample
G. We shall assume that k � 61 and that G is minimal such that ∆∗(G) � k and
χc(G) � k + 2; if G is minimal such that ∆∗(G) � k and χc(G) � k + 3, then the
argument is similar but simpler.

Lemma 3.1. (a) Let v be a vertex of G that is incident with triangular faces
xvy, yvz. Then d(z) �= 3, and the other face f of G incident with edge vz is not a
triangle.

(b) If uvwx is a 4-face such that d(u) = d(x) = 3 and d(w) = 4, then it is not
possible that edges uv, vw, and wx separate uvwx from three triangles.

Proof. (a) Note that ∆∗(G− vy) � k, and χc(G− vy) � k+ 2 since every cyclic
coloring of G− vy is a cyclic coloring of G. By the minimality of G, G− vy is not a
3-polytope. Thus {x, z} is a cutset of G − vy. Let C ′1 and C ′2 be the components of
G−{vy, x, z} containing v and y, respectively, and let C1 = C ′1− v and C2 = C ′2− y.
By (2.1), G has no (3, 3,�k)-vertices, and so d(v) � 4 and d(y) � 4; thus C1 and
C2 are nonempty, C1 is a component of G − {x, v, z}, and C2 is a component of
G−{x, y, z}. Since G is 3-connected, each of x, z is adjacent to each of C1, C2. Thus
d(z) � 4.

If f = vzw is a triangle, then w and y belong to different components (C1 and C ′2)
of G− {x, v, z}. The same argument shows that x and z are in different components
of G − {y, v, w}. However, C2 ∪ {x, z} induces a connected graph by the previous
paragraph. This contradiction proves (a).

(b) Suppose uv, vw, and wx separate uvwx from triangles tuv, vwy, and wxz,
where t, y, z are distinct by (2.1). If y ∈ N(z), then wyz is a triangular face since
d(w) = 4 and G is 3-connected, and this contradicts (2.1); thus y /∈ N(z). Since
d(z) � 3, there is a vertex s ∈ N(z) \ {w, x, y}. Since G is 3-connected, there is
a path P from s to v that does not pass through y or z. Since u, x, and w have
no unknown neighbors, the first lettered vertex along P (after s) is t or v. If we
choose P to have minimum length, then the three paths wxuv, wyv, and wzs[P ]v are
internally disjoint. This means that G− vw is 3-connected, hence a 3-polytope, and
this is impossible for the reasons explained at the start of the proof of (a).

In the figures, we use triangles and squares to denote vertices with degree 3 and 4,
respectively; all other vertices have unspecified degree. We are indebted to Enomoto
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Fig. 3.1. Three reducible configurations.

� � �

� � �

a

d

b

e

c

f

(a)

� �

� �

a

d

c

f

(b) (c)

Fig. 3.2. More reducible configurations.

[7] for pointing out to us the reducibility of the configuration in Figure 3.1(c) and
for showing us the proof of this below; this has significantly shortened our proof of
Theorem 1.1.

Lemma 3.2. G does not contain any of the configurations in Figure 3.1.
Proof. Suppose it does. We shall prove that χc(G) � k + 1, which is a contra-

diction. By Lemma 2.1(a), there is an edge of G incident with b whose contraction
leaves a 3-polytope H, which has a cyclic (k + 1)-coloring by the minimality of G.

First suppose that G contains the configuration of Figure 3.1(a) or (b). Transfer
the coloring of H to G and uncolor a, b, c, d. Since G is 3-connected, the central edge
or vertex has different faces above and below it; thus a does not see d and b does not
see c. Since ∆∗(G) � k, each of these vertices currently sees at most k − 1 colored
vertices across faces, and so there are two of the k + 1 colors available to give to it.
Thus these vertices are easily colored (since the circuit graph C4 is list-2-colorable).
This contradicts the choice of G.

Now suppose that G contains the configuration of Figure 3.1(c). Transfer the
coloring of H to G and uncolor b; note that a and d have different colors. Each of b, c
sees at most k+ 1 vertices across faces. If b cannot be given the same color as d, then
c sees two vertices with this color; so uncolor c and then color b and c in this order.
This is possible since, at the time of coloring, each of these vertices sees at most k
different colors.

Lemma 3.3. G does not contain the configuration in Figure 3.2(a) nor any
configuration obtained from it by replacing either or both of the end squares by triangles
as in Figure 3.2(b) (instead of the left end square) or (c) (instead of the right end
square).

Proof. In each case we prove that if G contains the configuration in question,
then χc(G) � k + 1, which is a contradiction.

Suppose first that G contains the configuration in Figure 3.2(a) itself. Contract
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an edge and cyclically (k+ 1)-color the resulting 3-polytope as in the proof of Lemma
3.2; then transfer this coloring to G and uncolor the six labelled vertices. For x ∈
{a, b, c, d, e, f}, let L(x) be the set of colors that are available to give to x, that
is, that are not present on vertices that x sees. Since ∆∗(G) � k, if x ∈ {b, e},
then there are at most k − 3 colored vertices that are seen by x and so |L(x)| � 4,
whereas if x ∈ {a, c, d, f}, then |L(x)| � 3. Moreover, L(a) ⊆ L(b) ⊇ L(c) and
L(d) ⊆ L(e) ⊇ L(f).

If there are distinct colors x ∈ L(a) ∩ L(f) and y ∈ L(c) ∩ L(d), then use
those colors on those vertices; b and e are easily colored. If x ∈ L(a) ∩ L(f) and
(L(c) ∩ L(d)) \ {x} = ∅, then color a, f with x and b, c from L(c) \ {x}, then color
e, d in that order. Finally, if L(a) ∩ L(f) = ∅, then |L(c) \ L(f)| � 2; color b, c from
L(c) \ L(f) and color a, d, e, f in that order.

At each stage in the above process, at the moment when we color a vertex,
it sees vertices of at most k different colors, and so there is a color available to
give to it. If we replace either or both of the end squares by triangles as in Figure
3.2(b) and (c), then that simply increases the number of colors available for some
vertices.

4. Completion of the proof of Theorem 1.1(a). Here G = (V,E, F ) is a
minimal counterexample to Theorem 1.1(a). Suppose we assign a “charge” M0(x) to
each element x ∈ V ∪ F , where

M0(x) :=

{
d(x)− 6 if x ∈ V,
2d(x)− 6 if x ∈ F.

Euler’s formula |V | − |E| + |F | = 2 can be rewritten in the form (2|E| − 6|V |) +
(4|E| − 6|F |) = −12, which implies that∑

x∈V ∪F
M0(x) =

∑
v∈V

(
d(v)− 6

)
+
∑
f∈F

(
2d(f)− 6

)
= −12.(4.1)

We shall now redistribute the charge, without changing its sum, in such a way
that the sum is provably nonnegative, and this contradiction will prove the theorem.
The rules for redistribution are as follows; let δ := 3

10 .
R0: Each face distributes its charge equally to its incident vertices.
R1: If an edge vw separates a face f from a triangle, where d(f) � 6, d(v) � 4,

and d(w) = 3 (so that w is a (3,�6,�k − 2)-vertex by (2.1)), then v gives w
1
2 if d(f) = 4 and δ if d(f) = 5 or 6.

R2: If an edge uw separates a face f from a triangle uvw, where d(f) � 6 and
d(u) = d(w) = 3 (so that u and w are (3,�6,�k − 2)-vertices), then v gives
each of u and w 1

2 if d(f) = 4 and δ if d(f) = 5 or 6.
R3: If edges vw and wx separate a 4-face uvwx from two triangles, where d(v) � 4,

d(w) = 4, and d(x) = 3 (so that w and x have types (3, 4, 3,�k − 1)� and
(3, 4, k), respectively, and w gives 1

2 to x by R1), then v gives 1
4 to w.

R4: If f = uvwx is a 4-face and the edges wx and xu separate f from two triangles,
and d(u) = d(w) = 3 and d(x) = 4 (so that u and w are both (3, 4, k)-vertices
and x has type (3, 4, 3,�k − 1)�, and x gives 1

2 to each of u,w by R1), then
v gives 2

3 to x.
Note that in R1 and R2 it is not possible that d(f) = 3, since there are no

(3, 3,�k)-vertices by (2.1). For similar reasons, for fixed vertices v and z, v cannot
be required to make a contribution to z by more than one of rules R1–R4.
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M1(w) = −12/k

Fig. 4.1. N-vertices.

Let the resulting charge of each vertex v be M1(v), so that
∑
v∈V M1(v) = −12

by (4.1). (Clearly each face now has charge 0, by R0.) It is easy to check that if w is
a vertex of type (3, 4, k) or (4, 4,�k− 1), or a vertex of type (3, k, k) occurring in the
configuration of Figure 4.1(c), then M1(w) has the negative value given in Figure 4.1.
Call such vertices N-vertices and all other vertices P-vertices. (There is no implication
at this stage that if v is a P-vertex, then M1(v) � 0, but this will eventually turn out
to be the case.)

If w is the N-vertex in Figure 4.1(c), then the neighbor of w that is not shown in
the figure is a P-vertex, since otherwise G would contain the configuration in Figure
3.1(a), which was shown in Lemma 3.2 to be impossible.

If w is the N-vertex in Figure 4.1(a), and if u is also an N-vertex, then u is of type
(3, k, k), since type (3, 4, k) is impossible by the nonexistence of the configuration in
Figure 3.1(c). Thus if v is the neighbor of u that is not shown in the figure, then v is
a P-vertex. In this case we refer to the path vuw as an L-path.

If w is the N-vertex in Figure 4.1(b), and if all three neighbors of w are also
N-vertices, then either v1 or v2 is a P-vertex, since otherwise G would contain one of
the configurations that was shown to be impossible in Lemma 3.3. In this case, if vi
is a P-vertex, then we refer to the path viuw as an L-path.

Thus every N-vertex is either adjacent to a P-vertex or can be reached from a
P-vertex by an L-path of length two whose central vertex is an N-vertex. We have a
final rule for redistributing charge.

R5: Each N-vertex w receives an amount −M1(w) from a P-vertex (chosen at
random) that is adjacent to w if possible and that otherwise can be reached
from w by an L-path.

Let the resulting charge of each vertex v be M2(v), so that
∑
v∈V M2(v) = −12.

The following lemma provides the contradiction that completes the proof of Theorem
1.1(a).

Lemma 4.1. M2(v) � 0 for each vertex v.

Proof. Clearly M2(v) = 0 if v is an N-vertex. So suppose v is a P-vertex. Let
ε := 6/(k − 2) � 1

20 , since k � 122.

If the amount that v gives to a vertex w by R5 is considered as flowing along the
edge vw if there is one, or along an L-path vuw otherwise, then it is not difficult to
see from Figure 4.1 that the total amount that flows out of v by R5 along an edge
vu is zero unless the faces incident with edge vu have certain specified degrees, in
which case the amount that flows out is bounded above by the figures in Table 4.1.
To see this, first note that vu carries nothing from v by R5 if u is a P-vertex; so let
us suppose that u is an N-vertex. If vu lies between two k-faces, then the other two
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Table 4.1

Face-degrees R5-loss <
3 and k ε
3 and 4 ε
4 and 4 ε

4 and �k − 1 2ε
k and k 4ε

Table 4.2

Type R0 � R1+ · · ·+R4 � M1(v) � R5 �
(3, 4, k) 1

2
+ (2− ε) + 1

2
−ε −M1(v) N-vertex

(3, 5, k) 4
5
+ (2− ε) +δ δ − 1

5
− ε −ε

(3, 7, k − 3) 8
7
+

(
2− 6

k−3

)
0 1

7
− 6

k−3
−ε

(3, k, k) 2(2− ε) −2( 1
2
) −2ε −M1(v) N-vertex

(3, k, k) 2(2− ε) −2δ 1− 2δ − 2ε −6ε P-vertex

(4, 4, k − 1) 1
2
+ 1

2
+ (2− ε) 0 −ε −M1(v) N-vertex

(4, 5, k − 2) 1
2
+ 4

5
+ (2− ε) 0 3

10
− ε −2ε

(4, k, k) 1
2
+ 2(2− ε) − 2

3
5
6
− 2ε −8ε

(5, 5, k − 3) 4
5
+ 4

5
+

(
2− 6

k−3

)
0 3

5
− 6

k−3
0

(3, 3, 4, k) 1
2
+ (2− ε) 0 1

2
− ε −3ε (see

(3, 3, 4, k) 1
2
+ (2− ε) − 1

4
1
4
− ε −2ε text

(3, 3, 4, k) 1
2
+ (2− ε) − 1

2
+ 1

4
1
4
− ε −2ε and

(3, 3, 4, k) 1
2
+ (2− ε) − 1

2
− 1

2
+ 2

3
1
6
− ε −2ε Fig. 4.2)

(3, 3, 5, k) 4
5
+ (2− ε) −δ − δ 4

5
− 2δ − ε −2ε

(3, 3, k, k) 2(2− ε) −2( 1
2
)− 2δ 1− 2δ − 2ε −6ε

(3, 4, 4, k) 1
2
+ 1

2
+ (2− ε) − 1

2
1
2
− ε −6ε

(3, 4, 4, k) 1
2
+ 1

2
+ (2− ε) − 1

4
− 1

4
1
2
− ε −6ε

(3, 4, 5, k − 3) 1
2
+ 4

5
+

(
2− 6

k−3

)
− 1

2
− δ 4

5
− δ − 6

k−3
−2ε

(3, 4, 5, k) 1
2
+ 4

5
+ (2− ε) − 1

2
− δ 4

5
− δ − ε −3ε

(3, 4, k − 2, k) 1
2
+ 2(2− ε) −2δ 5

2
− 2δ − 2ε −5ε

(3, 4, k, k) 1
2
+ 2(2− ε) −2( 1

2
)− 2

3
5
6
− 2ε −8ε

(4, 4, 4, k) 3
2
+ (2− ε) 0 3

2
− ε −6ε

(4, 4, k, k) 2
2
+ 2(2− ε) − 2

3
− 2

3
5
3
− 2ε −9ε

(4, k, k, k) 1
2
+ 3(2− ε) − 2

3
23
6

− 3ε −12ε

(k, k, k, k) 4(2− ε) 0 6− 4ε −16ε

neighbors w1, w2 of u are also N-vertices, and vu carries 12/k < 2ε to u and 6/k < ε
to each of w1, w2 along the L-paths vuw1 and vuw2. If vu is the first edge of any
other L-path vuw, then vu lies between a 4-face and a (�k − 1)-face and carries at
most 6/(k − 1) < ε to u and 6/(k − 1) along vuw to w. In all other cases, vu carries
at most 6/(k − 1) from v to u.

There are now two cases to consider.

Case 1. d(v) = 3 or 4. Information about some types of vertices with these
degrees is tabulated as Table 4.2. The reader may readily verify that the sum of the
entries in the columns headed “M1(v) �” and “R5 �” is nonnegative in each row of
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Table 4.2 that does not describe an N-vertex. This implies that M2(v) � 0 for vertices
of these types. We must now explain some of the entries in Table 4.2 and also show
that Table 4.2 covers all relevant cases.

Note that v starts with charge d(v) − 6 and receives charge 2 − 6/d from each
incident d-face by R0. The amount that v receives by R0 is at least as large as the
amount shown in the column headed “R0 �” in Table 4.2. It is left to the reader
to verify that the contribution to v by R1–R4 is bounded below by the figure in the
column headed “R1+ · · ·+R4 �.” The contributions of +1

2 and +δ in the top two
rows in this column come by R1 or R2, depending on whether the edge between the
3-face and the 4-face or 5-face joins v to a (�4)-vertex or to a 3-vertex, respectively.
Otherwise, entries given as − 1

2 and −δ come from R1, entries given as −2( 1
2 ) and −2δ

come from R2, entries of + 1
4 and − 1

4 come from R3, and entries of + 2
3 and − 2

3 come
from R4.

The amount shown in the column headed “R5 �” is (minus) the maximum per-
mitted by Table 4.1, except for vertices of type (3, 3, 4, k), which we shall look at more
carefully below. For example, if a vertex of type (3, 3, k, k) occurs as (3, k, 3, k)�, then
by Table 4.1 it can give at most 4ε (ε along each edge between a 3-face and a k-face),
while if it occurs as (3, 3, k, k)�, then it can give at most 4ε along the edge between the
two k-faces and ε along each edge between a 3-face and a k-face, a total of 6ε. Since 6ε
is larger, this is the figure used in Table 4.2. (This is wasteful, since the bounds given
in the columns headed “R1+ · · ·+R4 �” and “R5 �” cannot be attained simultane-
ously: the former is attained only by a vertex of type (3, k, 3, k)� and the latter only
by a vertex of type (3, 3, k, k)�. However, this waste does not affect the result, since
this line of the table is no worse than that for a P-vertex of type (3, k, k). In fact, the
critical lines in the table are those for P-vertices of types (3, 5, k) and (3, k, k).) In a
similar way, a vertex of type (3, 4, 4, k) can give at most 5ε if it occurs as (3, 4, 4, k)�

and 6ε if it occurs as (4, 3, 4, k)�, and one of type (4, 4, k, k) can give at most 9ε if it
occurs as (4, 4, k, k)� and 8ε if it occurs as (4, k, 4, k)�.

We must now show that Table 4.2 covers all relevant cases. Since dc(v) � k + 1
for each v ∈ V by (2.1), there are no vertices of types (3, 4,�k−1), (3, 5,�k−2), etc.
The figures given in Table 4.2 for vertices of type (3, 5, k) also cover vertices of types
(3, 5, k − 1) and (3, 6,�k − 2); that is, the same entries in columns 2–5 of the table
will work for these types. (Note that the final −ε in this and the next row comes from
the top row of Table 4.1 and represents the loss along an edge between a 3-face and
a k-face; thus it is needed only when there is a face with degree k.) The figures given
for (3, 7, k − 3) cover all remaining types (3, x, y) with x � y and x � k − 3. This
is because, for a vertex v of given degree and cyclic degree, the sum of the charges
of 2 − 6/d that v receives from its incident faces by R0 is smallest when the degrees
of those faces are as unequal as possible; and increasing the cyclic degree cannot
make matters worse, except that when y = k there is the additional loss of ε by R5.
Similarly, the figures given for (3, k, k) cover all types (3, x, y) with k − 2 � x � y.
(The reason for breaking at x = k − 2 is that R2 requires v to be incident with two
faces with degree at least k − 2.) The figures given for (4, 4, k − 1) cover (4, 4, k) as
well; (4, 5, k − 2) covers all remaining cases (4, x, y) except for (4, k, k); and (4, k, k)
and (5, 5, k − 3) cover all other possibilities with degree 3.

There are no vertices of type (3, 3, 3,�k) by Lemma 3.1(a). The figures given
in Table 4.2 for (3, 3, 4, k) cover (3, 3, 4, k − 1) as well. The different possibilities are
shown in Figure 4.2, in which • denotes a vertex with degree at least 4. Here the
vertices marked P can easily be seen to be P-vertices, either because they have degree
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Fig. 4.2. Vertices of type (3, 3, 4,�k − 1).

at least 4 or because they are incident with two faces of large degree; this is not one
of the conditions used in distinguishing the cases. Note that d(u) � 4 and d(w) � 4
by Lemma 3.1(a) and (b), respectively; hence both are P-vertices. Nothing can be
lost from v by R5 along an edge joining v to a P-vertex; using this and Table 4.1, it
is easy to verify the bounds given in Table 4.2 for loss by R5.

The figures for (3, 3, 5, k) in Table 4.2 cover all cases (3, 3, x, y) with x � y and
5 � x � k−3, and (3, 3, k, k) covers all cases with k−2 � x � y; note that a (3, 3, k, k)-
vertex cannot lose four halves by R2 because of the nonexistence of the configuration
in Figure 3.1(b). Similarly, a (3, 4, 4, k)-vertex cannot lose two halves by R1 because of
the nonexistence of the configuration in Figure 3.1(c) (although a (3, 4, 4, k)-vertex can
lose two quarters by R3). Type (3, 4, 4, k) covers (3, 4, 4, x) (which implies x � k − 2
by (2.1)); (3, 4, 5, k − 3) and (3, 4, 5, k) cover all cases (3, x, y, z) with 4 � x � y � z
and 5 � y � k − 3; (3, 4, k − 2, k) covers all such cases with y = k − 2 or k − 1; and
(3, 4, k, k) covers the case y = k. Finally, (4, 4, 4, k) to (k, k, k, k) cover all remaining
cases. This completes the discussion of Case 1.

Case 2. d(v) � 5. Every charge that v gives to another vertex by R1–R3 can
be thought of as being transmitted along an edge separating a triangle from a non-
triangular face f . For the sole purpose of evaluating M1(v), imagine that this charge
is given instead to the face f . Imagine also that if v receives 2

3 across a 4-face f
by R4, then v receives this 2

3 from f ; and if v gives 2
3 across f by R4, then v gives

this 2
3 equally to the two k-faces that are incident with both v and f . With this

new interpretation, let c(f, v) denote the net amount that f gives v by R0–R4. Then
c(f, v) � (2− 6/3)− 0 = 0 if d(f) = 3.

If d(f) = 4, say f = uvwx, then v cannot give more than 1
2 to f by R1–R4. To

see this, note that if v gives 1
2 to w by R1, then v cannot also give 1

4 to u by R3 in
view of Lemma 3.1(b); and if v gives 1

2 to u and 1
2 to w by R1, then v also receives 2

3
from x by R4. Thus c(f, v) � (2− 6/4)− 1

2 = 0 if d(f) = 4.

If d(f) = 5 or 6, then v can give 2δ to f by R1 if both edges incident with v
and f join v to 3-vertices and separate f from 3-faces, but v cannot give anything
to f by R2–R4. If 7 � d(f) � k − 3, then v cannot give anything at all to f . If
k − 2 � d(f) � k, then, for each of the two edges incident with v and f , v can give f
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up to 1
2 by R2 or 1

3 by R4; the maximum contribution would thus comprise two gifts
of 1

2 . Thus

c(f, v) �




0 if d(f) � 4,
(2− 6/5)− 2δ = 1

5 if d(f) = 5,

(2− 6/6)− 2δ = 2
5 if d(f) = 6,

(2− 6/d(f)) > 1 if 7 � d(f) � k − 3,
(2− 6/d(f))− 1 � 19

20 if d(f) � k − 2 � 120.

(4.2)

Thus c(f, v) � 0 always, and so M1(v) � M0(v) = d(v)− 6 > 4εd(v) if d(v) � 8, since
ε � 1

20 . Since the loss from v by R5 is at most 4εd(v) by Table 4.1, this proves that
M2(v) > 0 if d(v) � 8.

So suppose that 5 � d(v) � 7. Suppose v is incident with exactly t (�7)-faces.
Then t � 1, since if v is incident with d(v)−1 (�6)-faces and one further face f , then
123 � k + 1 � dc(v) � (d(v)− 1)(6− 2) + (d(f)− 2) so that

d(f) � 129− 4d(v) > 100.(4.3)

It is not difficult to see from Table 4.1 that the loss from v by R5 cannot exceed

t(4ε) + (d(v)− t)ε � d(v)+3t
20 . Each (�7)-face incident with v gives v a net amount

of at least 19
20 , and so M2(v) � d(v) − 6 + 19

20 t − d(v)+3t
20 = 19

20d(v) + 4
5 t − 6 > 0 if

d(v) � 6 or t � 2. However, if d(v) = 5 and t = 1, then v can give nothing by R2 and
R4 (both of which require v to be incident with at least two (�k − 2)-faces), and so
c(f, v) = 2 − 6/d(f) > 2 − 6

100 by (4.3) if f is the (�7)-face incident with v. Since
d(v)+3t

20 = 8
20 in this case, it follows that M2(v) > (5− 6) + (2− 6

100 )− 8
20 > 0. This

completes the proof of Lemma 4.1 and hence the proof of Theorem 1.1(a).

5. Completion of the proof of Theorem 1.1(b). This is very similar to the
proof of Theorem 1.1(a), but simpler. We shall simply indicate the differences. Define
δ := 3

10 as before, but now let ε := 6/(k − 1) � 1
10 , since k � 61. Now G = (V,E, F )

is a minimal counterexample to Theorem 1.1(b), and so dc(v) � k+ 2 for each v ∈ V
by Lemma 2.2; hence there are now no (3, 4, k)-vertices or (3, 6, k − 2)-vertices. The
discharging rules are exactly as before, but some of them are now redundant because
of the absence of (3, 4, k)-vertices; thus R3 and R4 cannot arise, and v can give at most
δ by R1 and at most 2δ by R2; moreover, because of the absence of (3,�6,�k − 2)-
vertices, R2 applies only if v is incident with at least two (�k − 1)-faces. Because of
the absence of (3, 4, k)-vertices, two of the three types of N-vertex in Figure 4.1 can no
longer exist; the only N-vertices are of type (4, 4, k) for which M1(v) = −6/k > −ε.
Thus the amount that v gives by R5 is at most

2ε along an edge between a 4-face and a k-face,

ε along an edge between two 4-faces,(5.1)

0 along all other edges.

As before,
∑
v∈V M2(v) = −12, and we obtain a contradiction by proving the

following lemma.
Lemma 5.1. M2(v) � 0 for each vertex v.
Proof. Clearly M2(v) = 0 if v is an N-vertex. So suppose v is a P-vertex.
Case 1. d(v) = 3 or 4. Here we use Table 5.1 in exactly the same way as we used

Table 4.2 previously.
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Table 5.1

Type R0 � R1+ · · ·+R4 � M1(v) � R5 �
(3, 5, k) 4

5
+ (2− ε) +δ δ − 1

5
− ε 0

(3, 7, k − 2) 8
7
+

(
2− 6

k−2

)
0 1

7
− 6

k−2
0

(3, k, k) 2(2− ε) −2δ 1− 2δ − 2ε 0

(4, 4, k) 1
2
+ 1

2
+ (2− ε) 0 −ε −M1(v) N-vertex

(4, 5, k) 1
2
+ 4

5
+ (2− ε) 0 3

10
− ε −2ε

(3, 3, 4, k) 1
2
+ (2− ε) 0 1

2
− ε −2ε

(3, 3, 5, k) 4
5
+ (2− ε) −δ − δ 4

5
− 2δ − ε 0

(3, 3, k, k) 2(2− ε) −2δ − 2δ 2− 4δ − 2ε 0

(3, 4, 4, k) 1
2
+ 1

2
+ (2− ε) 0 1− ε −4ε

(3, 4, 5, k) 1
2
+ 4

5
+ (2− ε) −δ 13

10
− δ − ε −2ε

(3, 4, k, k) 1
2
+ 2(2− ε) −2δ 5

2
− 2δ − 2ε −4ε

(4, 4, 4, k − 2) 3
2
+

(
2− 6

k−2

)
0 3

2
− 6

k−2
−2ε

(4, 4, 4, k) 3
2
+ (2− ε) 0 3

2
− ε −6ε

There are now no (3, 4, k)-vertices. The figures given in Table 5.1 for (3, 5, k)
cover (3, 6,�k− 1) as well; (3, 7, k− 2) covers all remaining cases (3, x, y) with x � y
and x � k − 2, and (3, k, k) covers all cases with k − 1 � x � y. (The reason for
breaking at x = k − 1 is that R2 now requires v to be incident with two faces with
degree at least k − 1.) The next type, (4, 4, k), is the N-type, and (4, 5, k) covers all
other possibilities with degree 3.

As before, there are no vertices of type (3, 3, 3,�k), and now there are none of
type (3, 3, 4,�k−1) either. The figures given in Table 5.1 for (3, 3, 5, k) cover all cases
(3, 3, x, y) with 5 � x � y and x � k − 2, and (3, 3, k, k) covers those with x � k − 1;
(3, 4, 4, k) covers (3, 4, 4, k − 1); (3, 4, 5, k) covers all cases (3, 4, x, y) with 5 � x � y
and x � k−2, and (3, 4, k, k) covers those with x � k−1. Finally, the figures given for
(4, 4, 4, k− 2) and (4, 4, 4, k) cover all remaining cases. This completes the discussion
of Case 1.

Case 2. d(v) � 5. With the same conventions as in the proof of Lemma 4.1, for
each face f incident with v, the net amount c(f, v) that f gives v satisfies

c(f, v) �




(2− 6/3)− 0 = 0 if d(f) = 3,
(2− 6/4)− 0 = 1

2 if d(f) = 4,
(2− 6/5)− 2δ = 1

5 if d(f) = 5,

(2− 6/6)− 2δ = 2
5 if d(f) = 6,

(2− 6/d(f)) > 1 if 7 � d(f) � k − 2,
(2− 6/d(f))− 2δ > 1 if d(f) � k − 1 � 60.

(5.2)

(Apart from the different lower bound for k, the only differences in (5.2) from (4.2)
are attributable to the nonexistence of (3,�6,�k − 2)-vertices, which means that v
gives nothing to f by R2 unless d(f) � k−1, and the nonexistence of (3, 4, k)-vertices,
which means that v gives at most 2δ to f by R2 if d(f) � k − 1 and nothing to f by
R1 if d(f) = 4.) Thus c(f, v) � 0 always, and M1(v) � M0(v) = d(v)− 6 > 2εd(v) if
d(v) � 8, since ε � 1

10 . Since the loss from v by R5 is at most 2εd(v) by (5.1), this
proves that M2(v) > 0 if d(v) � 8.

So suppose that 5 � d(v) � 7. Suppose v is incident with exactly t (�7)-faces.



154 OLEG V. BORODIN AND DOUGLAS R. WOODALL

Then t � 1, since if v is incident with d(v)−1 (�6)-faces and one further face f , then
62 � k + 1 � dc(v) � (d(v)− 1)(6− 2) + (d(f)− 2) so that

d(f) � 68− 4d(v) � 40.(5.3)

By (5.1), the loss from v by R5 cannot exceed 2t(2ε) + (d(v)− 2t)ε � d(v)+2t
10 . Each

(�7)-face incident with v gives v a net amount of more than 1, and so M2(v) >

d(v) − 6 + t − d(v)+2t
10 = 9

10d(v) + 8
10 t − 6 > 0 if d(v) � 6 or t � 2. However, if

d(v) = 5 and t = 1, then v can give nothing by R2 (which requires v to be incident
with at least two (�k − 1)-faces), and so c(f, v) = 2 − 6/d(f) � 2 − 6

40 by (5.3) if

f is the (�7)-face incident with v. Since d(v)+2t
10 = 7

10 in this case, it follows that
M2(v) � (5 − 6) + (2 − 6

40 ) − 7
10 > 0. This completes the proof of Lemma 5.1 and

hence the proof of Theorem 1.1(b).
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Abstract. A linear code can be thought of as a vector matroid represented by the columns of
the code’s generator matrix; a well-known result in this context is Greene’s theorem on a connection
of the weight polynomial of the code and the Tutte polynomial of the matroid. We examine this
connection from the coding-theoretic viewpoint, building upon the rank polynomial of the code.
This enables us to obtain bounds on all-terminal reliability of linear matroids and new proofs of two
known results: Greene’s theorem and a connection between the weight polynomial and the partition
polynomial of the Potts model.

Key words. all-terminal reliability, Greene’s theorem, linear code, linear matroid, Potts model,
rank polynomial, Tutte polynomial, weight enumerator
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1. Introduction. A linear matroid M together with a chosen representation
over a finite field Fq is the same object as a linear code. The most well-known result
underlining this connection is Greene’s theorem on the relation of the weight polyno-
mial of the code and the Tutte polynomial of the matroid. In this paper we further
examine the relation between the polynomial invariants of codes, matroids, and some
other combinatorial objects. Our point of view is coding-theoretic. We begin with
listing basic definitions for linear codes and some very simple linear-algebraic proper-
ties of subcodes. These properties lead almost immediately to a relation between the
weight polynomial of a linear code and the rank polynomial of the corresponding ma-
troid. This relation is equivalent to Greene’s theorem which is shown to be a purely
linear-algebraic fact. An advantage of the coding-theoretic point of view is deter-
mined by the fact that the weight polynomial enjoys more structural properties than
more general matroid invariants; when this structure translates to other problems, it
sometimes produces interesting insights.

As an example, we relate the reliability polynomial of a linear matroid to an eval-
uation of the weight polynomial of the code. The corresponding functional on linear
codes turns out to be well studied under the name of the probability of undetected
error of the code. Together with some related ideas this enables us to derive upper
and lower bounds on the matroid reliability. As another application of the weight-
rank connection, we give a direct proof of the link between the partition function of
the Potts model and the weight polynomial of the cocycle code of the graph.

General sources for coding theory are the books [17], [19]. Relevant applications
of the Tutte polynomial are covered in [6], [24]. All the necessary information on
interaction models is contained in [24].

2. The rank polynomial of the code.
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2.1. Definitions. A linear code C of length n is a linear subspace of F
n
q . Let Ai

be the number of vectors of Hamming weight i in it, 0 ≤ i ≤ n. Clearly, A0 = 1. The
minimal i ≥ 1 such that Ai �= 0 is called the minimum distance of the code, denoted
d(C). The polynomial

A(x, y) =
n∑
i=0

Aixn−iyi

is called the weight polynomial of C. The matrix G whose rows form a basis of C as
an Fq-linear space is called a generator matrix of the code.

Let E = {1, 2, . . . , n} be the set of code coordinates. For any subset F ⊂ E
denote by G(F ) the submatrix of G formed by columns with numbers in F . Let
F̄ = E \ F.

Let Z ⊂ E be the set of all-zero columns in G. The number n− |Z| is called the
effective length of C, denoted el(C).

By (a,b) =
∑n

i=1 aibi we denote the standard dot product in F
n
q . The dual code

of C is defined as C⊥ := {c ∈ Fq | (c, c′) = 0 for all c′ ∈ C}. Denote by H the
generator matrix of C⊥. (This matrix is also called the parity-check matrix of C.)
Let k := dimC, so dimC⊥ = n − k. The weight polynomial of C⊥ is denoted by
A⊥(x, y). The minimum distance of C⊥ is also called the dual distance of C.

Let CF := projF C, CF := {c ∈ C | ce = 0 for all e ∈ F̄}. In coding literature the
subcode CF is called the shortening of C and the subcode CF the puncturing of C,
both with respect to F̄ . Clearly, dimCF = rk(G(F )). Standard properties of these
subcodes are given in the following obvious lemma.

Lemma 2.1.
(i) CF

∼= C/CF̄ ; dimCF = k − dimCF̄ ,

(ii) dimCF = |F | − rk(H(F )).

The rank polynomial of C is defined as U(x, y) =∑n
u=0

∑k
v=0 Uvuxuyv, where

Uvu = |{F ⊆ E | |F | = u, rk(G(F )) = v}|.
The code C can be also thought of as a (vector) matroid M represented by the

column space of G; so given C we speak of a matroid of the code, denoted M(C),
and vice versa; given M , we call C the code of M , denoted C(M). If el(C) = n, then
M(C) is loopless. The interest for us in pursuing this connection, besides establishing
new links between linear codes and combinatorics, is that methods of coding theory
enable one to derive absolute bounds on evaluations of A(x, y) which can be useful in
other areas.

2.2. Greene’s theorem. The rank polynomial of C, essentially, is an invariant
of M(C). Another matroid invariant that appears in numerous contexts in combina-
torics is the Tutte polynomial of M, defined as follows:

T (M ;x, y) =

n∑
u=0

k∑
v=0

Uvu(x− 1)k−v(y − 1)u−v,

where k = dimC is the rank of M . The following theorem relates A(x, y) and
T (M ;x, y).

Theorem 2.2 (see [8]).

A(x, y) = yn−k(x− y)kT
(
M ;

x+ (q − 1)y

x− y
,
x

y

)
.(2.1)
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The proof, as given in [8] and reproduced in [23], [6], first shows that a certain
polynomial related to A(x, y) is a (Tutte–Grothendieck) invariant of M , and then
invokes Brylawski’s theorem that states that every invariant is an evaluation of the
Tutte polynomial, defined completely by its values on loops and isthmuses. We shall
show that this theorem follows from Lemma 2.1.

The polynomials A(x, y) and U(x, y) are connected by the following relation.
Theorem 2.3.

A(x, y) = yn|C|U
(

x− y

y
,
1

q

)
.(2.2)

Proof. Let us count in two ways the size of the set{
(F, c)|F ⊆ E, |F | = w and c ∈ CF , 0 ≤ wt(c) ≤ w

}
.

Taking into account Lemma 2.1, we obtain

w∑
i=0

(
n− i

n− w

)
Ai =

∑
|F |=w

|CF | =
∑
|F |=w

qk−rk(G(F̄ ))(2.3)

=

k∑
u=0

qk−uUun−w (0 ≤ w ≤ n).(2.4)

Now let Bw =
∑w

j=0

(
n−j
n−w

)Aj . We then have

A(x, y) =
n∑

w=0

Bw(x− y)n−wyw =

n∑
w=0

k∑
u=0

qk−uUun−w(x− y)n−wyw(2.5)

=

n∑
α=0

k∑
u=0

qk−uUuα(x− y)αyn−α = ynqkU
(

x− y

y
,
1

q

)
.

Note that Theorem 2.3 already relates A(x, y) to a polynomial with coefficients
Uvu . Therefore, Theorem 2.2 should be a mere reformulation of (2.2), which it is.

Proof of Theorem 2.2. Starting with the definition of T , we obtain

yn−k(x− y)kT
(
M ;

x+ (q − 1)y

x− y
,
x

y

)

= yn−k(x− y)k
n∑

u=0

k∑
v=0

Uvu
( qy

x− y

)k−v(x− y

y

)u−v

= ynqkU
(

x− y

y
,
1

q

)
.

Equation (2.3) together with Lemma 2.1(ii) also enables us to relate the weight
polynomial of C and the rank polynomial of C⊥, denoted U⊥(x, y).

Theorem 2.4 (see [4]).

A(x, y) = (x− y)nU⊥
(

qy

x− y
,
1

q

)
,(2.6)

U⊥(x, y) = xnydimC⊥U
(

1

xy
, y

)
.(2.7)
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The only known application of Theorem 2.2 in coding theory [8], [23], [6] is to de-
rive MacWilliams-type theorems on the relation of A and A⊥. The classical MacWilli-
ams equation has the form

A⊥(x, y) = 1

|C|A(x+ (q − 1)y, x− y).(2.8)

This was proved in [8] by using (2.1) together with the relation T (M(C);x, y) =
T (M(C⊥); y, x), which is implied by the definition of the Tutte polynomial. We have
shown that this argument is the same as one of the two proofs in the original paper
[16].

2.3. Support weight distributions. Let us also mention a generalization of
Theorem 2.2 observed in [3]. It is related to the notion of support weight distributions
of linear codes.

The support of a subset A ⊂ C is defined as suppA =
⋃

c∈A supp(c), where

supp(c) =
{
e ∈ {1, 2, . . . , n} : ce �= 0

}
.

Definition. The rth support weight distribution of a code C is the set of n numbers
Ari , 0 ≤ i ≤ n, where

Ari =
∣∣{A : A a linear subcode of C, dimA = r, | suppA| = i

}∣∣.
In particular, for r = 1 we obtain the “support distribution” of the projective

code PC. So Ai = A0
i + (q − 1)A1

i , 0 ≤ i ≤ n. The following theorem relates the
support weight distributions of C to its Tutte polynomial.

Theorem 2.5 (see [3]).

n∑
i=0

(
r∑

m=0

[r]mAmi
)

xn−iyi = (x− y)kyn−kT
(
M,

x+ (qr − 1)y

x− y
,
x

y

)
,

where k = dimC and [r]m :=
∏m−1
j=0 (qr − qj).

The proof method of [3] parallels that of [8]. Without going into details we remark
that it is possible to give a proof of Theorem 2.5 similar to that of the previous section.
The proof is based on the following generalization of Lemma 2.4.

Lemma 2.6 (see [21]).

w∑
i=0

(
n− i

n− w

)
Ari =

n−k∑
v=0

[
w − v

r

]
(U⊥)vw (0 ≤ w ≤ n, 0 ≤ r ≤ k).

Another proof of Theorem 2.5 is given in [20].

3. The reliability polynomial of linear matroids.

3.1. Definitions. LetM be a linear matroid of rank k on the ground set E of size
n defined by its representation over Fq and let fi := U ii be its number of independent
sets of size i. The (all-terminal) reliability polynomial of M , by definition, is

R(M ;x, y) :=

k∑
i=0

fix
n−iyi.(3.1)

The terminology is motivated by the special case of cographic matroids. Namely, let
G(V,E) be a connected graph and let M be a matroid whose independent sets are
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given by subsets of edges whose removal does not make G disconnected. The rank k
of M equals |E| − |V | + 1. Further, suppose that G is subjected to an edge removal
process under which each edge in E is independently left intact with probability p
and removed with probability 1 − p. Then the probability that upon completion of
this process the graph remains connected is given by R(M ; p, 1−p). If G is thought of
as a network in which each link is operational with probability p, then R(M ; p, 1− p)
gives the probability for G to be operational. Below we use the notation Rel(M,p) :=
R(M ; p, 1− p).

One of the main problems related to the reliability polynomial in the general case
is deriving bounds on Rel(M,p) in terms of other numerical parameters of M. The
aim of this section is to use results from coding theory to derive bounds on Rel(M,p).

3.2. Upper bounds. Let (A0,A1, . . . ,An) be the weight distribution of a linear
k-dimensional code C(M). The reliability Rel(M,p) is related to the weight polyno-
mial A(·, ·) of C(M), via the following inequalities.

Theorem 3.1.

Rel(M,p) ≤
n∑

w=n−k+1

pw(1− p)n−w
w∑
j=1

(
n− j

n− w

)
Aj + fkp

n−k(1− p)k,(3.2)

Rel(M,p) ≤ A(1, p)− 1 + fkp
n−k(1− p)k.(3.3)

Proof. We have

Rel(M,p)− fkp
n−k(1− p)k =

k−1∑
i=0

U iipn−i(1− p)i

≤
k−1∑
i=0

pn−i(1− p)i
i∑

u=0

(qk−u − 1)Uui

=

n∑
w=n−k+1

pw(1− p)n−w
k∑

u=0

(qk−u − 1)Uun−w.

Now proceeding as in (2.3), (2.5) we see that

Cw :=

k∑
u=0

(qk−u − 1)Uun−w =

w∑
j=1

(
n− j

n− w

)
Aj .

Substituting this proves (3.2). To prove (3.3), we extend the summation on w on the
right-hand side of (3.2) to the range 1 ≤ w ≤ n and note that

n∑
i=1

Aixn−iyi =
n∑

w=1

Cw(x− y)n−wyw.

Thus

n∑
w=1

pw(1− p)n−w
w∑
j=1

(
n− j

n− w

)
Aj =

n∑
i=1

Aipi.

This completes the proof.
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In general, bounds (3.2)–(3.3) are good only for small values of p. We give one
simple example.

Example. Consider the “ladder” graph Γ from [7].

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

Its cocycle matroid M has rank 8 and can be represented over F2 by the columns
of the matrix G whose rows are (13014), (12012012), and their three right shifts by
four positions. The code C generated by G has parameters [n = 17, k = 8, d = 3] and
weight distribution A0 = 1,A3 = 8,A4 = 7,A5 = 6, . . . . Its dual code C⊥ (the cycle
code of Γ) has parameters [17], [9], [2]. We have [7] f0 = 1, f1 = 17, f2 = 134, f3 =
641, f4 = 2041, f5 = 4447, . . . . On the other hand, estimate (3.2) gives f0 = 1, f1 ≤
17, f2 ≤ 136, f3 ≤ 688, f4 ≤ 2499, f5 ≤ 7013 . . . . For small p this results in reasonably
good estimates of Rel(M,p). We note that the well-known Ball–Provan bounds give in
this case better results: f0 = 1, f1 ≤ 17, f2 ≤ 134, f3 ≤ 651, f4 ≤ 2184, f5 ≤ 5369, . . .
and hence better estimates of Rel(M,p).

An advantage of the estimate (3.2) is that the weight coefficients of any linear
code satisfy a set of Delsarte inequalities, i.e., linear inequalities of the form

n∑
u=0

(−1)j−u
(
n− u

n− j

)
qu

n−u∑
i=0

(
n− i

u

)
Ai ≥ 0 (0 ≤ j ≤ n).

This enables one to upper bound the right-hand side of (3.2) using the methods of
[1], [2]. Note that absolute bounds on the reliability Rel(M(C), p) that are obtainable
under this approach involve the minimum distance of the code C as a parameter.

Another way to bound above the right-hand side of (3.3) is by estimating evalu-
ations of A(x, y). For them, let us look at the problem of error detection in coding
theory. More specifically, given a linear code C, its probability of undetected error is

Pue(C, ε) :=

n∑
i=1

Ai
( ε

q − 1

)i
(1− ε)n−i = A

(
1− ε,

ε

q − 1

)
− (1− ε)n.

The motivation for this definition is the following scenario of information transmission.
Suppose a q-ary code C is used to send messages over the q-ary symmetric channel.
The channel is memoryless, and if a is a q-ary letter on the input, then the probability
of getting a letter b on the output is given by

P (b|a) = ε

q − 1
(1− δa,b) + (1− ε)δa,b

for some fixed ε ∈ [0, (q−1)/q]. Suppose that at the receiving end the code is used for
error detection. Namely, the received vector y is tested for containment in C, and, if
the test fails, the decoder “detects an error.” The probability that the error will be
missed (not detected) is then given by Pue(C, ε).

Therefore, we can formulate the following proposition.
Proposition 3.2.

Rel(M,p) ≤ (1 + p(q − 1))nPue

(
C(M),

p(q − 1)

1 + p(q − 1)

)
+ fkp

n−k(1− p)k.(3.4)
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Proof. By Theorem 3.1 we have

Pue(C(M), ε) = (1− ε)n
n∑
i=1

Aipi ≥ (1− ε)n[Rel(M,p)− fkp
n−k(1− p)k],

where p = ε/(q − 1)(1− ε).

In the context of information transmission one assumes that ε ∈ [0, (q − 1)/q]
since for greater ε the probability of undetected error is usually close to 0. Then p
varies in the entire segment [0, 1]; so inequality (3.4) covers all the interval of values
of p.

Among the problems that present interest in coding theory are the behavior of
Pue(C, p) for a given code (for instance, the question whether Pue(C, p) is monotone
in p, and, if not, what is the number of its maxima), and absolute bounds on Pue.
More specifically, let

Pue(n,R, p) = min
C∈Fn

q ,|C|=qnR
Pue(C, p)

be the smallest possible probability of undetected error over linear codes of fixed length
n and size qnR. A number of lower and upper bounds on Pue(n,R, p) are known in
the literature; see [12]. Together with Proposition 3.2 and the obvious Uk

k ≤
(
n
k

)
this

enables us to formulate bounds on the reliability polynomial. For simplicity let us
put q = 2. Let

Rel(n, k, p) = min
M is a linear matroid on E

|E|=n,rkE=k

Rel(M,p).

Proposition 3.3.

Rel(n, k, p) ≤ 2k−n((1 + p)n − 1) +

(
n

k

)
pn−k(1− p)k,(3.5)

(3.6) Rel(n, k, p) ≤ (1 + p)n
(
2k − 1

2n − 1

[
(pu + (1 + p)u)n

(1 + p)nu
− (1 + p)−un

]) 1
u

+

(
n

k

)
pn−k(1− p)k (0 < u ≤ 1).

Proof. The proof follows upon substituting in (3.4) known bounds on Pue, those
of [13] and [14], respectively.

Note that (3.5) is the special case of (3.6) for u = 1. Although the quantity
A(1, p) includes many more (nonnegative) terms than Rel(M,p), the estimates of the
last proposition are nontrivial for some values of the rank k and of p. To see this, let
n→∞, k = Rn, 0 < R < 1. Let us rewrite (3.5) as follows:

Rel(n, nR, p) � 2−nmin[1−R−log2(1+p),D(R‖1−p)],
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where

D(x‖y) = x log2(x/y) + (1− x) log2(1− x)/(1− y).

Thus for large n the estimate (3.5) is nontrivial if p < 21−R−1, and roughly the same
holds true for (3.6).

Because of the connection to linear codes the problem of bounding Pue(n,R, p)
generally seems easier than that of bounding Rel(n, k, p). However, the exact asymp-
totic behavior of Pue(n,R, p) is also not known, let alone the exact value of Pue for
finite n, k.

3.3. Lower bounds. Results from coding theory can also be used to derive
lower bounds on Rel(M,p). Let us quote a result from [10].

Proposition 3.4. Let M be a binary matroid of rank k on the ground set of
size n and suppose that the distance of the code C(M) is d. Then fk ≥ 2dim(k,d),
where dim(k, d) is the minimum dimension of a binary linear code of length k and
dual distance d.

Together with known bounds on the minimal dimension of linear codes of given
length and dual distance [15] this gives lower bounds on fk and hence also on Rel(M,p)
since Rel(M,p) ≥ fkp

n−k(1− p)k.
Note that it is easy to understand the average behavior of the coefficients fi if the

code is chosen randomly with uniform probability from the ensemble of linear codes.
This amounts to a study of coranks of submatrices of a random matrix, which is a
fairly standard subject in the study of linear codes; see, e.g., [10]. A similar technique
was used in the study of the average, over the ensemble of linear codes of given length
and dimension, probability of undetected error [12, sect. 3.2].

4. The partition function of the Potts model. Let Γ = (V,E) be a finite
graph with |E(Γ)| = n edges and c(E) connected components. Consider the Potts
model of interaction for a physical system represented by Γ [5], [24]. Under this model
each vertex in V (Γ) can be in one of q possible states; an allocation of states to all
the vertices defines a state σ of the system or a coloring of V (Γ) with q colors. Two
adjacent vertices interact with nonzero energy when they have the same color; the
interaction energy is equal to a constant−J independent of the specific pair of vertices.
Thus, the Hamiltonian of a state σ, or its total energy, equals H(σ) = −J |U(σ)|, where
U(σ) is the subset of edges with both ends of the same color. The partition function
of the model is defined as Z =

∑
σ e−H(σ)/kT , where k is the Boltzmann constant

and T is the temperature. Under random interaction, the probability of finding the
system in a state σ equals exp(−H(σ)/kT )/Z.

Letting y = e−J/kT , we can rewrite Z as a rational function of y as follows:

Z(y) :=
∑
σ

y−|U(σ)|.

We intend to relate Z(y) to the cocycle code of Γ. Let q be a prime power and consider
the representation of the cycle matroid M(Γ) over the field Fq by the columns of a
matrix G. The cocycle code C(Γ) [9] is the row space of G. The length of C(Γ) equals
n; the dimension is |V | − c(E).

The main result of this section is given in the following theorem.
Theorem 4.1. Let A(x, y) be the weight polynomial of C(Γ). Then

A(1, y) = q−c(E)ynZ(y).



POLYNOMIALS RELATED TO LINEAR CODES 163

Proof. We have the following chain of equalities:

Z(y) =
∑
σ

y−|U(σ)| =
∑
σ

(
1 +

1− y

y

)|U(σ)|
=
∑
σ

∑
F⊆U(σ)

(1− y)|F |y−|F |

(a)
=
∑
F⊆E

(1− y)|F |y−|F |qc(F ) =

n∑
i=0

(1− y)iy−i
∑
|F |=i

qc(F )

(b)
=

n∑
i=0

(1− y)iy−i
∑
|F |=i

q|V |−rk(G(F ))

(c)
= qc(E)

n∑
i=0

(1− y)iy−i
∑
|F |=i

|CF |

(d)
= qc(E)

n∑
j=0

(1− y)n−jy−(n−j)Bj

(e)
= qc(E)y−nA(1, y),

where c(F ) is the number of connected components in the subgraph (V, F ) formed on
the vertices of Γ by the edges in F . Here (a) follows by counting in two ways the size
of the set{

(F, σ) | F ⊆ E, connected components of (V, F ) are monochromatic
}
;

in (b) we use the fact that the cocycle rank of the graph (V, F ) equals rk(G(F )) =
|V | − c(F ); (c) follows by Lemma 2.1(i); (d) relies on (2.3); and (e) is implied by the
first equality in (2.5).

Together with Theorem 2.2 this theorem implies the relation between the Tutte
polynomial and the function Z, which is, of course, a well-known fact [11], [24, p. 64].
Therefore, although Theorem 4.1 was not explicitly stated in the literature, it can be
deduced from Greene’s theorem.

Theorem 2.3 enables us relate Z(y) to the rank polynomial of C(M) as follows:

Z(y) = q|V |U
(
1− y

y
,
1

q

)
.

This implies an interpretation of the coefficients of Z(y) in terms of the number
of subsets of E of a given size and rank, and, in particular, of the number fi of
independent subsets of size i.

Further connections between spin models and combinatorial theory of codes (the-
ory of association schemes) are covered in the survey [18].

5. Concluding remark. The results of this paper can be extended from linear
matroids to a somewhat broader class of almost affine matroids introduced in [22].
To define almost affine representability of a matroid M with the rank function ρ on
the ground set E of size n, consider an N × n matrix D with entries from a finite set
of size q. As above, for F ⊆ E let D(F ) be the submatrix of D formed by columns
with numbers in F . Let

r(F ) = logq |{number of different rows in D(F )}|.



164 ALEXANDER BARG

We say that M is almost affinely represented by D if r(F ) is integer for every F ⊆ E
and ρF = r(F ) for every F ⊆ E. A matroid is called almost affine if it allows an
almost affine representation. Linear matroids form a subset of the class of almost
affine matroids; as proved in [22], this inclusion is proper.
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Abstract. We consider the scheduling problem of minimizing the average weighted completion
time of n jobs with release dates on a single machine. We first study two linear programming
relaxations of the problem, one based on a time-indexed formulation, the other on a completion-
time formulation. We show their equivalence by proving that a O(n logn) greedy algorithm leads to
optimal solutions to both relaxations. The proof relies on the notion of mean busy times of jobs, a
concept which enhances our understanding of these LP relaxations. Based on the greedy solution, we
describe two simple randomized approximation algorithms, which are guaranteed to deliver feasible
schedules with expected objective function value within factors of 1.7451 and 1.6853, respectively, of
the optimum. They are based on the concept of common and independent α-points, respectively. The
analysis implies in particular that the worst-case relative error of the LP relaxations is at most 1.6853,
and we provide instances showing that it is at least e/(e − 1) ≈ 1.5819. Both algorithms may be
derandomized; their deterministic versions run in O(n2) time. The randomized algorithms also apply
to the on-line setting, in which jobs arrive dynamically over time and one must decide which job to
process without knowledge of jobs that will be released afterwards.

Key words. approximation algorithm, LP relaxation, scheduling, on-line algorithm
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1. Introduction. We study the single-machine scheduling problem with release
dates in which the objective is to minimize a weighted sum of completion times. It is
defined as follows. A set N = {1, 2, . . . , n} of n jobs has to be scheduled on a single
disjunctive machine. Job j has a processing time pj > 0 and is released at time rj ≥ 0.
We assume that release dates and processing times are integral. The completion time
of job j in a schedule is denoted by Cj . The goal is to find a nonpreemptive schedule
that minimizes

∑
j∈N wjCj , where the wj ’s are given positive weights. In the classical

scheduling notation [12], this problem is denoted by 1| rj |
∑

wjCj . It is strongly NP-
hard, even if wj = 1 for all jobs j [17].
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One of the key ingredients in the design and analysis of approximation algorithms
as well as in the design of implicit enumeration methods is the choice of a bound on
the optimal value. Several linear programming-based as well as combinatorial lower
bounds have been proposed for this well-studied scheduling problem; see, for example,
Dyer and Wolsey [9], Queyranne [22], and Queyranne and Schulz [23], as well as
Belouadah, Posner, and Potts [4]. The LP relaxations involve a variety of different
types of variables which, e. g., express whether either job j is completed at time t
(nonpreemptive time-indexed relaxation), or whether it is being processed at time t
(preemptive time-indexed relaxation), or when job j is completed (completion time
relaxation). Dyer and Wolsey show that the nonpreemptive time-indexed relaxation
is stronger than the preemptive time-indexed relaxation. We will show that the latter
relaxation is equivalent to the completion time relaxation that makes use of the so-
called shifted parallel inequalities. In fact, it turns out that the polyhedron defined
by these inequalities is supermodular, and hence one can optimize over it by using
the greedy algorithm. A very similar situation arises in [24]. The greedy solution may
actually be interpreted in terms of the following preemptive schedule, which we call
the LP schedule: at any point in time it schedules among the available jobs one with
the largest ratio of weight to processing time. Uma and Wein [38] point out that the
value of this LP solution coincides with one of the combinatorial bounds of Belouadah,
Posner, and Potts based on the idea of allowing jobs to be split into smaller pieces
that can be scheduled individually.

We show that the optimal value of 1| rj |
∑

wjCj is at most 1.6853 times the
lower bound given by any of these three equivalent relaxations—the preemptive time-
indexed relaxation, the completion time relaxation, or the combinatorial relaxation
in [4]. We prove this result on the quality of these relaxations by converting the
(preemptive) LP schedule into a nonpreemptive schedule. This technique leads to
approximation algorithms for 1| rj |

∑
wjCj . Recall that a ρ-approximation algorithm

is a polynomial-time algorithm guaranteed to deliver a solution of cost at most ρ times
the optimal value. A randomized ρ-approximation algorithm is a polynomial-time
algorithm that produces a feasible solution whose expected objective function value is
within a factor of ρ of the optimal value.

The technique of converting preemptive schedules to nonpreemptive schedules
in the design of approximation algorithms was introduced by Phillips, Stein, and
Wein [21]. More specifically, for 1| rj |

∑
wjCj they showed that list scheduling in

order of the completion times of a given preemptive schedule produces a nonpreemp-
tive schedule while increasing the total weighted completion time by at most a factor
of 2. In the same paper they also introduced a concept of α-points. This notion was
also used by Hall, Shmoys, and Wein [14] in connection with the nonpreemptive time-
indexed relaxation of Dyer and Wolsey to design approximation algorithms in various
scheduling environments. For our purposes, the α-point of job j in a given preemp-
tive schedule is the first point in time at which an α-fraction of j has been completed.
When one chooses different values of α, sequencing in order of nondecreasing α-points
in the same preemptive schedule may lead to different nonpreemptive schedules. This
increased flexibility led to improved approximation algorithms: Chekuri et al. [6] for
1| rj |

∑
Cj and Goemans [11] for 1| rj |

∑
wjCj chose α at random and analyzed the

expected performance of the resulting randomized algorithms. We will show that,
using a common value of α for all jobs and an appropriate probability distribution,
sequencing in order of α-points of the LP schedule has expected performance no worse
than 1.7451 times the optimal preemptive time-indexed LP value. We also prove that
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Table 1
Summary of approximation bounds for 1| rj |

∑
wjCj . An α-schedule is obtained by sequenc-

ing the jobs in order of nondecreasing α-points of the LP schedule. The use of job-dependent αj ’s
yields an (αj)-schedule. The results discussed in this paper are below the second double line. Subse-
quently, Anderson and Potts [2] gave a deterministic 2-competitive algorithm. For the unit-weight
problem 1| rj |

∑
Cj , the first constant-factor approximation algorithm is due to Phillips, Stein, and

Wein [21]. It has performance ratio 2, and it also works on-line. Further deterministic 2-competitive
algorithms were given by Stougie [36] and Hoogeveen and Vestjens [15]. All these algorithms are
optimal for deterministic on-line algorithms [15]. Chekuri et al. [6] gave a randomized e/(e − 1)-
approximation algorithm, which is optimal for randomized on-line algorithms [37, 39].

Reference and/or Off-line On-line
type of schedule deterministic randomized deterministic

Phillips et al. [21] 16 + ε
Hall et al. [14] 4 4 + ε
Schulz [26] 3
Hall et al. [13] 3 3 + ε
Chakrabarti et al. [5] 2.8854 + ε 2.8854 + ε
Combining [5] and [13] 2.4427 + ε 2.4427 + ε

α-schedule

for α = 1/
√

2
[11] 2.4143 2.4143

[11] 2
Best α-schedule

1.7451
(random) (αj)-schedule 1.6853 1.6853

by selecting a separate value αj for each job j, one can improve this bound to a
factor of 1.6853. Our algorithms are inspired by and partly resemble the algorithms
of Hall, Shmoys, and Wein [14] and Chekuri et al. [6]. In contrast to Hall, Shmoys,
and Wein we exploit the preemptive time-indexed LP relaxation, which, on the one
hand, provides us with highly structured optimal solutions and, on the other hand,
enables us to work with mean busy times. We also use random α-points. The algo-
rithm of Chekuri et al. starts from an arbitrary preemptive schedule and makes use
of random α-points. They relate the value of the resulting α-schedule to that of the
given preemptive schedule and not to that of an underlying LP relaxation. While
their approach gives better approximations for 1| rj |

∑
Cj and structural insights on

limits of the power of preemption, the link of the LP schedule to the preemptive time-
indexed LP relaxation helps us to obtain good approximations for the total weighted
completion time.

Variants of our algorithms also work on-line when jobs arrive dynamically over
time and, at each point in time, one has to decide which job to process without
knowledge of jobs that will be released afterwards. Even in this on-line setting, we
compare the value of the computed schedule to the optimal (off-line) schedule and
derive the same bounds (competitive ratios) as in the off-line setting. See Table 1 for
an account of the evolution of off-line and on-line approximation results for the single
machine problem under consideration.

The main ingredient to obtain the results presented in this paper is the ex-
ploitation of the structure of the LP schedule. Not surprisingly, the LP sched-
ule does not solve the strongly NP-hard [16] preemptive version of the problem,
1| rj , pmtn |∑wjCj . However, we show that the LP schedule solves optimally the
preemptive problem with the related objective function

∑
j wjMj , where Mj is the

mean busy time of job j, i.e., the average point in time at which the machine is busy
processing j. Observe that, although 1| rj , pmtn |∑wjCj and 1| rj , pmtn |∑wjMj

are equivalent optimization problems in the nonpreemptive case (since Cj = Mj+
pj

2 ),
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they are not equivalent when considering preemptive schedules.

The approximation techniques presented in this paper have also proved useful
for more general scheduling problems. For the problem with precedence constraints
1| rj , prec |

∑
wjCj , sequencing jobs in order of random α-points based on an opti-

mal solution to a time-indexed LP relaxation leads to a 2.7183-approximation algo-
rithm [27]. A 2-approximation algorithm for identical parallel machine scheduling
P | rj |

∑
wjCj is given in [28]; the result is based on a time-indexed LP relaxation, an

optimal solution of which can be interpreted as a preemptive schedule on a fast single
machine; jobs are then assigned randomly to the machines and sequenced in order
of random αj-points of this preemptive schedule. For the corresponding scheduling
problem on unrelated parallel machines R | rj |

∑
wjCj , a performance guarantee of 2

can be obtained by randomized rounding based on a convex quadratic programming
relaxation [33], which is inspired by time-indexed LP relaxations like the one discussed
herein [28]. We refer to [32] for a detailed discussion of the use of α-points for machine
scheduling problems.

Significant progress has recently been made in understanding the approximability
of scheduling problems with the average weighted completion time objective. Skutella
and Woeginger [34] developed a polynomial-time approximation scheme for scheduling
identical parallel machines in the absence of release dates, P | |∑wjCj . Subsequently,
several research groups have found polynomial-time approximation schemes for prob-
lems with release dates such as P | rj |

∑
wjCj and Rm | rj |

∑
wjCj ; see the resulting

joint conference proceedings publication [1] for details.

We now briefly discuss some practical consequences of our work. Savelsbergh,
Uma, and Wein [25] and Uma and Wein [38] performed experimental studies to
evaluate, in part, the quality of the LP relaxation and approximation algorithms
studied herein for 1| rj |

∑
wjCj and related scheduling problems. The first authors

report that, except for instances that were deliberately constructed to be hard for
this approach, the present formulation and algorithms “deliver surprisingly strong
experimental performance.” They also note that “the ideas that led to improved
approximation algorithms also lead to heuristics that are quite effective in empirical
experiments; furthermore [. . . ] they can be extended to give improved heuristics for
more complex problems that arise in practice.” While the authors of the follow-up
study [38] report that when coupled with local improvement the LP-based heuristics
generally produce the best solutions, they also find that a simple heuristic often out-
performs the LP-based heuristics. Whenever the machine becomes idle, this heuristic
starts nonpreemptively processing an available job of largest wj/pj ratio. By an-
alyzing the differences between the LP schedule and this heuristic schedule, Chou,
Queyranne, and Simchi-Levi [7] have subsequently shown the asymptotic optimality
of this on-line heuristic for classes of instances with bounded job weights and bounded
processing times.

The contents of this paper are as follows. Section 2 is concerned with the LP
relaxations and their relationship. We begin with a presentation and discussion of the
LP schedule. In section 2.1 we then review a time-indexed formulation introduced by
Dyer and Wolsey [9] and show that it is solved to optimality by the LP schedule. In
section 2.2 we present the mean busy time relaxation (or completion time relaxation)
and prove, among other properties, its equivalence to the time-indexed formulation.
Section 2.3 explores some polyhedral consequences, in particular the fact that the
mean busy time relaxation is (up to scaling by the job processing times) a super-
modular linear program and that the “job-based” method for constructing the LP
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Fig. 1. An LP schedule for a 4-job instance given by r1 = 11, p1 = 1, r2 = 7, p2 = 5,
r3 = 2, p3 = 3, r4 = 0, p4 = 5. Higher rectangles represent jobs with larger weight to
processing time ratio. Time is shown on the horizontal axis.

schedule is equivalent to the corresponding greedy algorithm. Section 3 then deals
with approximation algorithms derived from these LP relaxations. In section 3.1 we
present a method for constructing (αj)-schedules, which allows us to analyze and
bound the job completion times in the resulting schedules. In section 3.2 we derive
simple bounds for α-schedules and (αj)-schedules, using a deterministic common α or
uniformly distributed random αj ’s. Using appropriate probability distributions, we
improve the approximation bound to the value of 1.7451 for α-schedules in section 3.3
and to the value of 1.6853 for (αj)-schedules in section 3.4. We also indicate how
these algorithms can be derandomized in O(n2) time for constructing deterministic
schedules with these performance guarantees. In section 3.5 we show that our ran-
domized approximations also apply in an on-line setting, and in section 3.6 we present
a class of “bad” instances for which the ratio of the optimal objective function value
and our LP bound is arbitrarily close to e

e−1 ≈ 1.5819. This constant defines a lower
bound on the approximation results that can be obtained by the present approach.
We conclude in section 4 by discussing some related problems and open questions.

2. Relaxations. In this section, we present two linear programming relaxations
for 1| rj |

∑
wjCj . We show their equivalence and discuss some polyhedral conse-

quences.
For both relaxations, the following preemptive schedule plays a crucial role: at any

point in time, schedule (preemptively) the available job with the highest wj/pj ratio.
We assume (throughout the paper) that the jobs are indexed in order of nonincreasing
ratios w1

p1
≥ w2

p2
≥ · · · ≥ wn

pn
, and ties are broken according to this order. Therefore,

whenever a job is released, the job being processed (if any) is preempted if the released
job has a smaller index. We refer to this preemptive schedule as the LP schedule. See
Figure 1 for an example of an LP schedule.

Notice that this LP schedule does not in general minimize
∑

j wjCj over all
preemptive schedules. This should not be surprising since the preemptive problem
1| rj , pmtn |∑wjCj is (strongly) NP-hard [16]. It can be shown, however, that the
total weighted completion time of the LP schedule is always within a factor of 2 of
the optimal value for 1| rj , pmtn |∑wjCj , and this bound is tight; see [29].

The LP schedule can be constructed in O(n log n) time. To see this, we now
describe an implementation, which may be seen as “dynamic” (event-oriented) or,
using the terminology of [19], “machine-based,” and can even be executed on-line
while the jobs dynamically arrive over time. The algorithm keeps a priority queue [8]
of the currently available jobs that have not yet been completely processed, with the
ratio wj/pj as the key and with another field indicating the remaining processing time.
A scheduling decision is made at only two types of events: when a job is released and
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when a job completes its processing. In the former case, the released job is added to
the priority queue. In the latter case, the completed job is removed from the priority
queue. Then, in either case, the top element of the priority queue (the one with the
highest wj/pj ratio) is processed; if the queue is empty, then move on to the next
job release; if there is none, then all jobs have been processed and the LP schedule is
complete. This implementation results in a total of O(n) priority queue operations.
Since each such operation can be implemented in O(logn) time [8], the algorithm runs
in O(n log n) time.

The LP schedule can also be defined in a somewhat different manner, which may
be seen as “static” or “job-based” [19]. Consider the jobs one at a time in order
of nonincreasing wj/pj . Schedule each job j as early as possible starting at rj and
preempting it whenever the machine is busy processing another job (that thus came
earlier in the wj/pj ordering). This point of view leads to an alternate O(n log n)
construction of the LP schedule; see [10].

2.1. Time-indexed relaxation. Dyer and Wolsey [9] investigate several types
of relaxations of 1| rj |

∑
wjCj , the strongest ones being time-indexed. We consider

the weaker of their two time-indexed formulations, which they call formulation (D).
It uses two types of variables: yjτ = 1 if job j is being processed during time in-
terval [τ, τ + 1), and zero otherwise; and tj represents the start time of job j. For
simplicity, we add pj to tj and replace the resulting expression by Cj ; this gives an
equivalent relaxation.

ZD = min
∑
j∈N

wjCj

subject to

(D)
∑

j:rj≤τ
yjτ ≤ 1, τ = 0, 1, . . . , T − 1,

T−1∑
τ=rj

yjτ = pj , j ∈ N,

Cj =
1

2
pj +

1

pj

T−1∑
τ=rj

(
τ +

1

2

)
yjτ , j ∈ N,(2.1)

0 ≤ yjτ , j ∈ N, τ = rj , . . . , T − 1,

where T is an upper bound on the makespan of an optimal schedule. (For example,
T = maxj∈N rj+

∑
j∈N pj .) We refer to this relaxation as the preemptive time-indexed

relaxation. The expression for Cj given in (2.1) corresponds to the correct value of
the completion time if job j is not preempted; an interpretation in terms of mean
busy times is given in the next section for the case of preemptions. Observe that
the number of variables of this formulation is pseudopolynomial. If we eliminate Cj

from the relaxation by using (2.1), we obtain a transportation problem [9] and, as a
result, yjτ can be assumed to be integral.

Lemma 2.1. There exists an optimal solution to (D) for which yjτ ∈ {0, 1} for
all j and τ .

As indicated in [9], (D) can be solved in O(n log n) time. Actually, one can derive
a feasible solution to (D) from the LP schedule by letting yLPjτ be equal to 1 if job j
is being processed in [τ, τ + 1), and 0 otherwise.
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Theorem 2.2. The solution yLP derived from the LP schedule is an optimal
solution to (D).

Proof. The proof is based on an interchange argument. Consider any optimal 0/1-
solution y∗ to (D). If there exist j < k and σ > τ ≥ rj such that y∗jσ = y∗kτ = 1,
then by replacing y∗jσ and y∗kτ by 0, and y∗jτ and y∗kσ by 1, we obtain another feasible

solution with an increase in the objective function value of (σ − τ)(wk

pk
− wj

pj
) ≤ 0.

The resulting solution must therefore also be optimal. By repeating this interchange
argument, we derive that there exists an optimal solution y∗ such that there do not
exist j < k and σ > τ ≥ rj such that y∗jσ = y∗kτ = 1. This implies that the solution y∗

must correspond to the LP schedule.
In particular, despite the pseudopolynomial number of variables in the LP Re-

laxation (D) an optimal solution can be obtained efficiently. We will make use of
this fact as well as of the special structure of the LP schedule in the design and
analysis of the approximation algorithms; see section 3. We note again that in spite
of its nice properties the preemptive time-indexed LP Relaxation (D) solves neither
1| rj |

∑
wjCj nor 1| rj , pmtn |∑wjCj . In the former case, the processing of a job in

the LP solution may fail to be consecutive; in the latter case (2.1) does not necessarily
define the completion time of a job in the preemptive LP schedule, as will be shown
in the next lemma.

2.2. Mean busy time relaxation. Given any preemptive schedule, let Ij be
the indicator function of the processing of job j at time t; i.e., Ij(t) is 1 if the machine
is processing j at time t, and 0 otherwise. To avoid pathological situations, we require
that, in any preemptive schedule, when the machine starts processing a job, it does
so for a positive amount of time. Given any preemptive schedule, we define the mean
busy time Mj of job j to be the average time at which the machine is processing j,
that is,

Mj :=
1

pj

∫ T

rj

Ij(t) t dt.

For instance, in the example given in Figure 1, which will be used throughout this
paper, the mean busy time of job 4 is 5.5.

We first establish some important properties of Mj in the next two lemmas.
Lemma 2.3. For any preemptive schedule, let Cj and Mj denote the completion

and mean busy time, respectively, of job j. Then for any job j, we haveMj+
1
2pj ≤ Cj,

with equality if and only if job j is not preempted.
Proof. If job j is processed without preemption, then Ij(t) = 1 if Cj − pj ≤ t <

Cj , and 0 otherwise; therefore, Mj +
1
2pj = Cj . Otherwise, job j is not processed

during some interval(s) of total length L > 0 between times Cj − pj and Cj . Since∫ T

rj
Ij(t) dt = pj , job j must be processed during some time interval(s) of the same

total length L before Cj − pj . Therefore,

Mj =
1

pj

∫ Cj

rj

Ij(t) t dt <
1

pj

∫ Cj

Cj−pj

t dt = Cj − 1

2
pj

and the proof is complete.
Let S ⊆ N denote a set of jobs and define

p(S) :=
∑
j∈S

pj and rmin(S) := min
j∈S

rj .
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Let IS(t) :=
∑

j∈S Ij(t). Since, by the machine capacity constraint, IS(t) ∈ {0, 1} for
all t, we may view IS as the indicator function for job set S. We can thus define the

mean busy time of set S as MS := 1
p(S)

∫ T

0
IS(t) t dt. Note that we have

p(S)MS =

∫ T

0


∑

j∈S
Ij(t)


 t dt =

∑
j∈S

∫ T

0

Ij(t) t dt =
∑
j∈S

pjMj .(2.2)

So, unlike its start and completion time, the mean busy time of a job set is a simple
weighted average of the mean busy times of its elements. One consequence of this
observation is the validity of the shifted parallel inequalities (2.3) (see, e.g., [10, 23, 24])
below.

Lemma 2.4. For any set S of jobs and any preemptive schedule with mean busy
time vector M , we have∑

j∈S
pjMj ≥ p(S)

(
rmin(S) +

1

2
p(S)

)
,(2.3)

and equality holds if and only if all jobs in S are scheduled without interruption
from rmin(S) to rmin(S) + p(S).

Proof. Note that
∑

j∈S pjMj = p(S)MS =
∫ T

rmin(S)
IS(t) t dt, that IS(t) = 0

for t < rmin(S) and IS(t) ≤ 1 for t ≥ rmin(S), and that
∫ T

rmin(S)
IS(t)dt = p(S). Under

these constraints, MS is minimized when IS(t) = 1 for rmin(S) ≤ t < rmin(S) + p(S),
and 0 otherwise. Therefore, MS is uniquely minimized among all feasible preemptive
schedules when all jobs in S are continuously processed from rmin(S) to rmin(S)+p(S).
This minimal value is p(S)(rmin(S) +

1
2p(S)) and is a lower bound for

∑
j∈S pjMj in

any feasible preemptive schedule.
As a result of Lemma 2.4, the following linear program provides a lower bound

on the optimal value of 1| rj , pmtn |∑wjCj , and hence on that of 1| rj |
∑

wjCj .

ZR = min
∑
j∈N

wj

(
Mj +

1

2
pj

)

(R) subject to ∑
j∈S

pjMj ≥ p(S)

(
rmin(S) +

1

2
p(S)

)
, S ⊆ N.

The proof of the following theorem and later developments use the notion of
canonical decompositions [10]. For a set S of jobs, consider the schedule which pro-
cesses jobs in S as early as possible, say, in order of their release dates. This schedule
induces a partition of S into {S1, . . . , Sk} such that the machine is busy processing
jobs in S exactly in the disjoint intervals [rmin(S�), rmin(S�) + p(S�)] for  = 1, . . . , k.
We refer to this partition as the canonical decomposition of S. A set is canonical if it
is identical to its canonical decomposition, i.e., if its canonical decomposition is {S}.
Thus a set S is canonical if and only if it is feasible to schedule all its jobs in the time
interval [rmin(S), rmin(S)+ p(S)). Note that the set N = {1, 2, 3, 4} in our example is
canonical, whereas the subset {1, 2, 3} is not; it has the decomposition {{3}, {1, 2}}.
Let

h(S) :=

k∑
�=1

p(S�)

(
rmin(S�) +

1

2
p(S�)

)
,(2.4)



SINGLE MACHINE SCHEDULING WITH RELEASE DATES 173

where {S1, . . . , Sk} is the canonical decomposition of S ⊆ N . Then Lemma 2.4

implies that
∑

j∈S pjMj =
∑k

�=1

∑
j∈S�

pjMj ≥ h(S) is a valid inequality for the
mean busy time vector of any preemptive schedule. In other words, Relaxation (R)
may be written as

min



∑
j∈N

wj

(
Mj +

1

2
pj

)
:
∑
j∈S

pjMj ≥ h(S) for all S ⊆ N


 .

Theorem 2.5. Let MLP
j be the mean busy time of job j in the LP schedule.

Then MLP is an optimal solution to (R).
Proof. By Lemma 2.4, MLP is a feasible solution for (R).
To prove optimality of MLP , we construct a lower bound on the optimal value

of (R) and show that it is equal to the objective function value of MLP . Recall that
the jobs are indexed in nonincreasing order of the wj/pj ratios; let [i] := {1, 2, . . . , i},
and let Si

1, . . . , S
i
k(i) denote the canonical decomposition of [i]. Observe that for any

vector M = (Mj)j∈N we have

∑
j∈N

wjMj =

n∑
i=1

(
wi

pi
− wi+1

pi+1

)∑
j∈[i]

pjMj =

n∑
i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
�=1

∑
j∈Si

�

pjMj ,(2.5)

where we let wn+1/pn+1 := 0. We have therefore expressed
∑

j∈N wjMj as a non-
negative combination of expressions

∑
j∈Si

�
pjMj over canonical sets. By construction

of the LP schedule, the jobs in any of these canonical sets Si
� are continuously pro-

cessed from rmin(S
i
�) to rmin(S

i
�) + p(Si

�) in the LP schedule. Thus, for any feasible
solution M to (R) and any such canonical set Si

� we have

∑
j∈Si

�

pjMj ≥ h(Si
�) = p(Si

�)

(
rmin(S

i
�) +

1

2
p(Si

�)

)
=
∑
j∈Si

�

pjM
LP
j ,

where the last equation follows from Lemma 2.4. Combining this with (2.5), we derive
a lower bound on

∑
j wjMj for any feasible solution M to (R), and this lower bound

is attained by the LP schedule.
From Theorems 2.2 and 2.5, we derive that the values of the two Relaxations (D)

and (R) are equal.
Corollary 2.6. The LP Relaxations (D) and (R) of 1 | rj |

∑
wjCj yield the

same optimal objective function value, i.e., ZD = ZR, for any weights w ≥ 0. This
value can be computed in O(n log n) time.

Proof. For the equivalence of the two lower bounds, note that the mean busy
time MLP

j of any job j in the LP schedule can be expressed as

MLP
j =

1

pj

T−1∑
τ=rj

yLPjτ

(
τ +

1

2

)
,(2.6)

where yLP is the solution to (D) derived from the LP schedule. The result then follows
directly from Theorems 2.2 and 2.5. We have shown earlier that the LP schedule can
be constructed in O(n log n) time.

Although the LP schedule does not necessarily minimize the objective func-
tion

∑
j wjCj over the preemptive schedules, Theorem 2.5 implies that it minimizes
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∑
j wjMj over the preemptive schedules. In addition, by Lemma 2.3, the LP schedule

is also optimal for both preemptive and nonpreemptive problems 1| rj , pmtn |∑wjCj ,
and 1| rj |

∑
wjCj whenever it does not preempt any job. For example, this is the case

if all processing times are equal to 1 or if all jobs are released at the same date. Thus,
the LP schedule provides an optimal solution to problems 1| rj , pj = 1 |∑wjCj and
to 1| |∑wjCj . This was already known. In the latter case it coincides with Smith’s
ratio rule [35]; see Queyranne and Schulz [24] for the former case.

2.3. Polyhedral consequences. We now consider some polyhedral consequen-
ces of the preceding results. Let P∞D be the feasible region defined by the constraints
of Relaxation (D) when T =∞, i.e.,

P∞D :=


 y ≥ 0 :

∑
j:rj≤τ

yjτ ≤ 1 for τ ∈ N;
∑
τ≥rj

yjτ = pj for all j ∈ N


 .

In addition, we denote by PR := {M ∈ R
N :

∑
j∈S pjMj ≥ h(S) for all S ⊆ N} the

polyhedron defined by the constraints of Relaxation (R).
Theorem 2.7.
(i) Polyhedron PR is the convex hull of the mean busy time vectors M of all

preemptive schedules. Moreover, every vertex of PR is the mean busy time
vector of an LP schedule.

(ii) Polyhedron PR is also the image of P
∞
D in the space of the M -variables under

the linear mappingM : y → M(y) ∈ R
N defined by

M(y)j =
1

pj

∑
τ≥rj

yjτ

(
τ +

1

2

)
for all j ∈ N.

Proof. (i) Lemma 2.4 implies that the convex hull of the mean busy time vectorsM
of all feasible preemptive schedules is contained in PR. To show the reverse inclusion,
it suffices to show that (a) every extreme point of PR corresponds to a preemptive
schedule; and (b) every extreme ray of PR is a direction of recession for the convex
hull of mean busy time vectors. Property (a) and the second part of statement (i)
follow from Theorem 2.5 and the fact that every extreme point of PR is the unique
minimizer of

∑
j∈N wjMj for some w ≥ 0. For (b), note that the extreme rays of PR

are the n unit vectors of R
N . An immediate extension to preemptive schedules and

mean busy times of results in Balas [3] implies that these unit vectors of R
N are

directions of recession for the convex hull of mean busy time vectors. This completes
the proof of (i).

(ii) We first show that the image M(P∞D ) of P∞D is contained in PR. For this,
let y be a vector in P∞D and S ⊆ N with canonical decomposition {S1, . . . , Sk}. By
definition ofM(y)j , we have

∑
j∈S

pjM(y)j =
∑
j∈S

∑
τ≥rj

yjτ

(
τ +

1

2

)

≥
k∑

�=1

rmin(S�)+p(S�)−1∑
τ=rmin(S�)

(
τ +

1

2

)

=
k∑

�=1

p(S�)

(
rmin(S�) +

1

2
p(S�)

)
= h(S).
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The inequality follows from the constraints defining P∞D and the interchange argument
which we already used in the proof of Theorem 2.2. This showsM(y) ∈ PR and thus
M(P∞D ) ⊆ PR.

To show the reverse inclusion, we use the observation from the proof of part (i)
that PR can be represented as the sum of the convex hull of the mean busy time
vectors of all LP schedules and the nonnegative orthant. Since, by (2.6), the mean
busy time vector MLP of any LP schedule is the projection of the corresponding 0/1-
vector yLP , it remains to show that every unit vector ej is a direction of recession
forM(P∞D ). For this, fix an LP schedule and let yLP and MLP =M(yLP ) denote the
associated 0/1 y-vector and mean busy time vector, respectively. For any job j ∈ N
and any real λ > 0, we need to show that MLP + λ ej ∈M(P∞D ).

Let τmax := argmax{yLPkτ = 1 : k ∈ N}. Choose θ such that yLPjθ = 1, choose an

integer µ > max{λ pj , τmax − θ}, and define y′ by y′jθ = 0, y′j,θ+µ = 1, and y′kτ = yLPkτ
otherwise. In the associated preemptive schedule, the processing of job j that was done
in interval [θ, θ+1) is now postponed, by µ time units, until interval [θ+µ, θ+µ+1).
Therefore, its mean busy time vector M ′ =M(y′) satisfies M ′j = MLP

j + µ/pj and

M ′k = MLP
k for all k �= j. Let λ′ := µ/pj ≥ λ, so M ′ = MLP + λ′ej . Then the vector

MLP + λ ej is a convex combination of MLP = M(yLP ) and M ′ = M(y′). Let y
be the corresponding convex combination of yLP and y′. Since P∞D is convex, then
y ∈ P∞D and, since the mappingM is linear, MLP + λ ej =M(y) ∈M(P∞D ).

In view of earlier results for single machine scheduling with identical release
dates [22], as well as for parallel machine scheduling with unit processing times and
integer release dates [24], it is interesting to note that the feasible set PR of the mean
busy time relaxation is, up to scaling by the job processing times, a supermodular
polyhedron.

Proposition 2.8. The set function h defined in (2.4) is supermodular.
Proof. Consider any two elements j, k ∈ N and any subset S ⊆ N \ {j, k}. We

may construct an LP schedule minimizing
∑

i∈S∪{k} piMi using the job-based method

by considering first the jobs in S and then job k. (Note that considering the jobs in any
sequence leads to a schedule minimizing

∑
i piMi because jobs are weighted by their

processing times in this objective function.) By Definition (2.4) the resulting mean
busy times MLP satisfy

∑
i∈S piM

LP
i = h(S) and

∑
i∈S∪{k} piM

LP
i = h(S ∪ {k}).

Note that job k is scheduled, no earlier than its release date, in the first pk units of
idle time left after the insertion of all jobs in S. Thus MLP

k is the mean of all these pk
time units. Similarly, we may construct an LP schedule, whose mean busy time vector

will be denoted by M̃LP , minimizing
∑

i∈S∪{j, k} piMi by considering first the jobs in

S, so M̃LP
i = MLP

i for all i ∈ S; then job j, so
∑

i∈S∪{j} piM̃
LP
i = h(S ∪ {j}); and

then job k, so
∑

i∈S∪{j, k} piM̃
LP
i = h(S ∪{j, k}). Since job j has been inserted after

subset S was scheduled, job k cannot use any idle time interval that is earlier than
those it used in the former LP schedule MLP—and some of the previously available
idle time may now be occupied by job j, causing a delay in the mean busy time of
job k; thus we have M̃LP

k ≥MLP
k and therefore

h(S ∪ {j, k})− h(S ∪ {j}) = pkM̃
LP
k ≥ pkM

LP
k = h(S ∪ {k})− h(S).

This suffices to establish that h is supermodular.
An alternate proof of the supermodularity of h can be derived, as in [10], from the

fact, observed by Dyer and Wolsey and already mentioned above, that Relaxation (D)
becomes a transportation problem after elimination of the Cj ’s. Indeed, from an
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interpretation of Nemhauser, Wolsey, and Fisher [20] of a result of Shapley [31],
it then follows that the value of this transportation problem as a function of S is
supermodular. One of the consequences of Proposition 2.8 is that the job-based
method to construct an LP schedule is just a manifestation of the greedy algorithm
for minimizing

∑
j∈N wjMj over the supermodular polyhedron PR.

We finally note that the separation problem for the polyhedron PR can be solved
combinatorially. One can separate over the family of inequalities

∑
j∈S pjMj ≥

p(S)(rmin(S) + p(S)) by trying all possible values for rmin(S) (of which there are at
most n) and then applying a O(n log n) separation routine of Queyranne [22] for the
problem without release dates. The overall separation routine can be implemented in
O(n2) time by observing that the bottleneck step in Queyranne’s algorithm—sorting
the mean busy times of the jobs—needs to be done only once for the whole job set.

3. Provably good schedules and LP relaxations. In this section, we derive
approximation algorithms for 1| rj |

∑
wjCj that are based on converting the preemp-

tive LP schedule into a feasible nonpreemptive schedule whose value can be bounded
in terms of the optimal LP value ZD = ZR. This yields results on the quality of both
the computed schedule and the LP relaxations under consideration since the value of
the computed schedule is an upper bound and the optimal LP value is a lower bound
on the value of an optimal schedule.

In section 3.6, we describe a family of instances for which the ratio between the
optimal value of the 1| rj |

∑
wjCj problem and the lower bounds ZR and ZD is

arbitrarily close to e
e−1 > 1.5819. This lower bound of e

e−1 sets a target for the design
of approximation algorithms based on these LP relaxations.

In order to convert the preemptive LP schedule into a nonpreemptive schedule we
make use of so-called α-points of jobs. For 0 < α ≤ 1 the α-point tj(α) of job j is the
first point in time when an α-fraction of job j has been completed in the LP schedule,
i.e., when j has been processed for αpj time units. In particular, tj(1) is equal to the
completion time and we define tj(0

+) to be the start time of job j. Notice that, by
definition, the mean busy time MLP

j of job j in the LP schedule is the average over
all its α-points

MLP
j =

∫ 1

0

tj(α) dα.(3.1)

We will also use the following notation: For a fixed job j and 0 < α ≤ 1 we denote
the fraction of job k that is completed in the LP schedule by time tj(α) by ηk(α); in
particular, ηj(α) = α. The amount of idle time that occurs between time 0 and the
start of job j in the LP schedule is denoted by τidle. Note that ηk and τidle implicitly
depend on the fixed job j. By construction, there is no idle time between the start
and completion of job j in the LP schedule; therefore we can express j’s α-point as

tj(α) = τidle +
∑
k∈N

ηk(α)pk.(3.2)

For a given 0 < α ≤ 1, we define the α-schedule as the schedule in which jobs
are processed nonpreemptively as early as possible and in the order of nondecreasing
α-points. We denote the completion time of job j in this schedule by Cα

j . The idea
of scheduling nonpreemptively in the order of α-points in a preemptive schedule was
introduced by Phillips, Stein, and Wein [21] and used in many of the subsequent
results in the area.
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Fig. 2. A nonpreemptive α-schedule (for α = 1/2) and an (αj)-schedule shown above
and below the LP schedule, respectively. Notice that there is no common α value that would
lead to the latter schedule.

This idea can be further extended to individual, i.e., job-dependent αj-points
tj(αj), for j ∈ N and 0 < αj ≤ 1. We denote the vector consisting of all αj ’s by
ααα := (αj) := (α1, . . . , αn). Then, the (αj)-schedule is constructed by processing the
jobs as early as possible and in nondecreasing order of their αj-points; the completion
time of job j in the (αj)-schedule is denoted by C ααα

j . Figure 2 compares an α-schedule
to an (αj)-schedule both derived from the LP schedule in Figure 1.

In what follows we present several results on the quality of α-schedules and (αj)-
schedules. These results also imply bounds on the quality of the LP relaxations
discussed in the previous section. The main result is the construction of a random
(αj)-schedule whose expected value is at most a factor 1.6853 of the optimal LP value
ZD = ZR. Therefore, the LP Relaxations (D) and (R) deliver a lower bound which is
at least 0.5933 (≈ 1.6853−1) times the optimal value. The corresponding randomized
algorithm can be implemented on-line; it has competitive ratio 1.6853 and running
time O(n log n); it can also be derandomized to run off-line in O(n2) time. We also
investigate the case of a single common α and show that the best α-schedule is always
within a factor of 1.7451 of the optimum.

3.1. Bounding the completion times in (αj)-schedules. To analyze the
completion times of jobs in (αj)-schedules, we consider nonpreemptive schedules of
similar structure that are, however, constructed by a slightly different conversion
routine which we call (αj)-Conversion.

Consider the jobs j ∈ N in order of nonincreasing αj-points tj(αj)
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Fig. 3. Illustration of the individual iterations of (αj)-Conversion.

and iteratively change the preemptive LP schedule to a nonpreemp-
tive schedule by applying the following steps:
(i) remove the αj pj units of job j that are processed before tj(αj)

and leave the machine idle during the corresponding time inter-
vals; we say that this idle time is caused by job j;

(ii) delay the whole processing that is done later than tj(αj) by pj ;
(iii) remove the remaining (1−αj)-fraction of job j from the machine

and shrink the corresponding time intervals; shrinking a time
interval means to discard the interval and move earlier, by the
corresponding amount, any processing that occurs later;

(iv) process job j in the released time interval [tj(αj), tj(αj) + pj).

Figure 3 contains an example illustrating the action of (αj)-Conversion starting
from the LP schedule of Figure 1. Observe that in the resulting schedule jobs are
processed in nondecreasing order of αj-points, and no job j is started before time
tj(αj) ≥ rj . The latter property will be useful in the analysis of on-line (αj)-schedules.
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Lemma 3.1. The completion time of job j in the schedule constructed by (αj)-
Conversion is equal to

tj(αj) +
∑

k
αk≤ηk(αj)

(
1 + αk − ηk(αj)

)
pk.

Proof. Consider the schedule constructed by (αj)-Conversion. The completion
time of job j is equal to the idle time before its start plus the sum of processing times
of jobs that start no later than j. Since the jobs are processed in nondecreasing order
of their αj-points, the amount of processing before the completion of job j is∑

k
αk≤ηk(αj)

pk.(3.3)

The idle time before the start of job j can be written as the sum of the idle time τidle
that already existed in the LP schedule before j’s start plus the idle time before the
start of job j that is caused in step (i) of (αj)-Conversion; notice that step (iii) does
not create any additional idle time since we shrink the affected time intervals. Each
job k that is started no later than j, i.e., such that ηk(αj) ≥ αk, contributes αk pk
units of idle time; all other jobs k only contribute ηk(αj) pk units of idle time. As a
result, the total idle time before the start of job j can be written as

τidle +
∑

k
αk≤ηk(αj)

αk pk +
∑

k
αk>ηk(αj)

ηk(αj) pk.(3.4)

The completion time of job j in the schedule constructed by (αj)-Conversion is
equal to the sum of the expressions in (3.3) and (3.4); the result then follows from
(3.2).

It follows from Lemma 3.1 that the completion time Cj of each job j in the
nonpreemptive schedule constructed by (αj)-Conversion satisfies Cj ≥ tj(αj)+pj ≥
rj+pj ; hence is a feasible schedule. Since the (αj)-schedule processes the jobs as early
as possible and in the same order as the (αj)-Conversion schedule, we obtain the
following corollary.

Corollary 3.2. The completion time of job j in an (αj)-schedule can be bounded
by

C ααα
j ≤ tj(αj) +

∑
k

αk≤ηk(αj)

(
1 + αk − ηk(αj)

)
pk.

3.2. Bounds for α-schedules and (αj)-schedules. We start with a result on
the quality of the α-schedule for a fixed common value of α.

Theorem 3.3. For fixed α, (i) the value of the α-schedule is within a factor
max

{
1 + 1

α , 1 + 2α
}
of the optimal LP value; in particular, for α = 1/

√
2 the bound

is 1+
√
2. Simultaneously, (ii) the length of the α-schedule is within a factor of 1+α

of the optimal makespan.
Proof. While the proof of (ii) is an immediate consequence of (3.2) and Corol-

lary 3.2, it follows from the proof of Theorem 2.5 that for (i) it is sufficient to prove
that, for any canonical set S, we have

∑
j∈S

pjC
α
j ≤ max

(
1 +

1

α
, 1 + 2α

)
p(S)

(
rmin(S) +

1

2
p(S)

)
+

1

2

∑
j∈S

p2
j


 .(3.5)
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Indeed, using (2.5) and Lemma 2.4 it would then follow that

∑
j∈N

wjC
α
j =

n∑
i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
�=1

∑
j∈Si

�

pjC
α
j

≤ max

(
1 +

1

α
, 1 + 2α

) n∑
i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
�=1

∑
j∈Si

�

pj

(
MLP

j +
pj
2

)

= max

(
1 +

1

α
, 1 + 2α

)∑
j∈N

wj

(
MLP

j +
pj
2

)

= max

(
1 +

1

α
, 1 + 2α

)
ZR,

thus proving the result.

Now consider any canonical set S and let us assume that, after renumbering
the jobs, S = {1, 2, . . . ,  } and t1(α) < t2(α) < · · · < t�(α) (so the ordering is not
necessarily anymore in nonincreasing order of wj/pj). Now fix any job j ∈ S. From
Corollary 3.2, we derive that

Cα
j ≤ tj(α) +

∑
k:α≤ηk

(1 + α− ηk) pk,(3.6)

where ηk := ηk(α) represents the fraction of job k processed in the LP schedule
before tj(α). Let R denote the set of jobs k such that tk(α) < rmin(S) (and thus
α ≤ ηk). Since S is a canonical set, the jobs in S are processed continuously in
the LP schedule between rmin(S) and rmin(S) + p(S), and therefore every job k with
α ≤ ηk is either in S or in R. Observe that

∑
k∈R αpk ≤ rmin(S) implies that

p(R) ≤ 1
α rmin(S). We can thus simplify (3.6) with

Cα
j ≤ tj(α) +

1

α
rmin(S) +

j∑
k=1

(1 + α− ηk) pk.(3.7)

Since the jobs in S are scheduled with no gaps in [rmin(S), rmin(S) + p(S)], we have
that

tj(α) = rmin(S) +
∑
k∈S

ηkpk ≤ rmin(S) +

j∑
k=1

ηkpk +

�∑
k=j+1

αpk.(3.8)

Combining (3.7) and (3.8), we derive that

Cα
j ≤

(
1 +

1

α

)
rmin(S) + αp(S) +

j∑
k=1

pk.

Multiplying by pj and summing over S, we get
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∑
j∈S

pjC
α
j ≤

(
1 +

1

α

)
rmin(S)p(S) + αp(S)2 +

∑
j∈S

j∑
k=1

pjpk

=

(
1 +

1

α

)
rmin(S)p(S) +

(
1

2
+ α

)
p(S)2 +

1

2

∑
j∈S

p2
j ,

which implies (3.5).

In what follows we will compare the completion time C ααα
j of every job j with its

“completion time” MLP
j + 1

2pj in the LP schedule. However, for any fixed common
value of α, there exist instances which show that this type of job-by-job analysis can
give a bound no better than 1 +

√
2 > 2.4142. One can also show that, for any

given value of α, there exist instances for which the objective function value of the
α-schedule can be as bad as twice the LP lower bound.

In view of these results, it is advantageous to use several values of α, as it appears
that no instance can be simultaneously bad for all choices of α. In fact, α-points
develop their full power in combination with randomization, i.e., when a common α or
even job-dependent αj ’s are chosen randomly from (0, 1] according to an appropriate
density function. This is also motivated by (3.1) which relates the expected α-point
of a job under a uniform distribution of α to the LP variable MLP

j . For random
values αj , we analyze the expected value of the resulting (αj)-schedule and compare
it to the optimal LP value. Notice that a bound on the expected value proves the
existence of a vector (ᾱj) such that the corresponding (ᾱj)-schedule meets this bound.
Moreover, for our results we can always compute such an (ᾱj) in polynomial time by
derandomizing our algorithms with standard methods; see Propositions 3.8 and 3.13.

Although the currently best known bounds can be achieved only for (αj)-schedules
with job-dependent αj ’s, we investigate α-schedules with a single common α as well.
On the one hand, this helps to better understand the potential advantages of (αj)-
schedules; on the other hand, the randomized algorithm that relies on a single α
admits a natural derandomization. In fact, we can easily compute an α-schedule of
least objective function value over all α between 0 and 1; we refer to this schedule as
the best-α-schedule. In Proposition 3.8 below, we will show that there are at most
n different α-schedules. The best-α-schedule can be constructed in O(n2) time by
evaluating all these different schedules.

As a warm-up exercise for the kind of analysis we use, we start by proving a
bound of 2 on the expected worst-case performance ratio of uniformly generated (αj)-
schedules in the following theorem. This result will then be improved by using more
intricate probability distributions and by taking advantage of additional insights into
the structure of the LP schedule.

Theorem 3.4. Let the random variables αj be pairwise independently and uni-
formly drawn from (0, 1]. Then, the expected value of the resulting (αj)-schedule is
within a factor 2 of the optimal LP value ZD = ZR.

Proof. Remember that the optimal LP value is given by
∑

j wj(M
LP
j + 1

2pj). To

get the claimed result, we prove that EU [C
ααα
j ] ≤ 2(MLP

j + 1
2pj) for all jobs j ∈ N ,

where EU [F (ααα)] denotes the expectation of a function F of the random variable ααα
when the latter is uniformly distributed. The overall performance follows from this
job-by-job bound by linearity of expectations.

Consider an arbitrary, but fixed job j ∈ N . To analyze the expected completion
time of j, we first keep αj fixed and consider the conditional expectation EU [C

ααα
j |αj ].

Since the random variables αj and αk are independent for each k �= j, Corollary 3.2
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and (3.2) yield

EU [C
ααα
j |αj ] ≤ tj(αj) +

∑
k �=j

pk

∫ ηk(αj)

0

(
1 + αk − ηk(αj)

)
dαk + pj

= tj(αj) +
∑
k �=j

(
ηk(αj)− ηk(αj)

2

2

)
pk + pj

≤ tj(αj) +
∑
k �=j

ηk(αj)pk + pj ≤ 2

(
tj(αj) +

1

2
pj

)
.

To obtain the unconditional expectation EU [C
ααα
j ] we integrate over all possible choices

of αj

EU [C
ααα
j ] =

∫ 1

0

EU [C
ααα
j |αj ] dαj ≤ 2

(∫ 1

0

tj(αj) dαj +
1

2
pj

)
= 2

(
MLP

j +
1

2
pj

)
;

the last equation follows from (3.1).

We turn now to deriving improved results. We start with an analysis of the
structure of the LP schedule. Consider any job j and assume that, in the LP schedule,
j is preempted at time s and its processing resumes at time t > s. Then all jobs which
are processed between s and t have a smaller index; as a result, these jobs will be
completely processed between times s and t. Thus, in the LP schedule, between the
start time and the completion time of any job j, the machine is constantly busy,
alternating between the processing of portions of j and the complete processing of
groups of jobs with a smaller index. Conversely, any job preempted at the start
time tj(0

+) of job j will have to wait at least until job j is complete before its
processing can be resumed.

We capture this structure by partitioning, for a fixed job j, the set of jobs N \{j}
into two subsets N1 and N2: Let N2 denote the set of all jobs that are processed
between the start and completion of job j. All remaining jobs are put into subset N1.
Notice that the function ηk is constant for jobs k ∈ N1; to simplify notation we write
ηk := ηk(αj) for those jobs. For k ∈ N2, let 0 < µk < 1 denote the fraction of job j
that is processed before the start of job k; the function ηk is then given by

ηk(αj) =

{
0 if αj ≤ µk,

1 if αj > µk

for k ∈ N2.

We can now rewrite (3.2) as

tj(αj) = τidle +
∑
k∈N1

ηkpk +
∑
k∈N2
αj>µk

pk + αj pj = tj(0
+) +

∑
k∈N2
αj>µk

pk + αj pj .

(3.9)

Plugging (3.9) into (3.1) yields

MLP
j = tj(0

+) +
∑
k∈N2

(1− µk)pk +
1

2
pj ,(3.10)
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and Corollary 3.2 can be rewritten as

C ααα
j ≤ tj(0

+) +
∑
k∈N1
αk≤ηk

(1 + αk − ηk) pk +
∑
k∈N2
αj>µk

(1 + αk) pk + (1 + αj) pj ,

(3.11)

where, for k ∈ N2, we have used the fact that αk ≤ ηk(αj) is equivalent to αj > µk.
The expressions (3.9), (3.10), and (3.11) reflect the structural insights that we need
for proving stronger bounds for (αj)-schedules and α-schedules in what follows.

As mentioned above, the second ingredient for an improvement on the bound of 2
is a more sophisticated probability distribution of the random variables αj . In view
of the bound on C ααα

j given in (3.11), we have to cope with two contrary phenomena:
On the one hand, small values of αk keep the terms of the form (1 + αk − ηk) and
(1 + αk) on the right-hand side of (3.11) small; on the other hand, choosing larger
values decreases the number of terms in the first sum on the right-hand side of (3.11).
The balancing of these two effects contributes to reducing the bound on the expected
value of C ααα

j .

3.3. Improved bounds for α-schedules. In this subsection we prove the fol-
lowing theorem.

Theorem 3.5. Let γ ≈ 0.4675 be the unique solution to the equation

1− γ2

1 + γ
= γ + ln(1 + γ)

satisfying 0 < γ < 1. Define c := 1+γ
1+γ−e−γ < 1.7451 and δ := 1− γ2

1+γ ≈ 0.8511. If α
is chosen according to the density function

f(α) =

{
(c− 1)eα if α ≤ δ,

0 otherwise,

then the expected value of the resulting random α-schedule is bounded by c times the
optimal LP value ZD = ZR.

Before we prove Theorem 3.5 we state two properties of the density function f
that are crucial for the analysis of the corresponding random α-schedule.

Lemma 3.6. The function f given in Theorem 3.5 is a density function with the
following properties:

(i)
∫ η

0
f(α)(1 + α− η) dα ≤ (c− 1) η for all η ∈ [0, 1],

(ii)
∫ 1

µ
f(α)(1 + α) dα ≤ c (1− µ) for all µ ∈ [0, 1].

Property (i) is used to bound the delay of job j caused by jobs in N1, which
corresponds to the first summation on the right-hand side of (3.11). The second
summation reflects the delay of job j caused by jobs in N2 and will be bounded by
property (ii).

Proof of Lemma 3.6. A short computation shows that δ = ln c
c−1 . The function

f is a density function since

∫ 1

0

f(α) dα = (c− 1)

∫ δ

0

eα dα = (c− 1)
( c

c− 1
− 1

)
= 1.
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In order to prove property (i), observe that for η ∈ [0, δ]∫ η

0

f(α)(1 + α− η) dα = (c− 1)

∫ η

0

eα(1 + α− η) dα = (c− 1)η.

For η ∈ (δ, 1] we therefore get

∫ η

0

f(α)(1 + α− η) dα <

∫ δ

0

f(α)(1 + α− δ) dα = (c− 1)δ < (c− 1)η.

Property (ii) holds for µ ∈ (δ, 1] since the left-hand side is 0 in this case. For µ ∈ [0, δ]
we have∫ 1

µ

f(α)(1 + α) dα = (c− 1)

∫ δ

µ

eα(1 + α) dα = (c− 1)(eδδ − eµµ)

= c

(
1− γ2

1 + γ
− eµ−γµ

1 + γ

)
≤ c

(
1− γ2 + (1 + µ− γ)µ

1 + γ

)

= c

(
1− (γ − µ)2 + (1 + γ)µ

1 + γ

)
≤ c (1− µ).

This completes the proof of the lemma.
Proof of Theorem 3.5. In Lemma 3.6, both (i) for η = 1 and (ii) for µ = 0 yield

Ef [α] ≤ c − 1, where Ef [α] denotes the expected value of a random variable α that
is distributed according to the density function f given in Theorem 3.5. Thus, using
inequality (3.11) and Lemma 3.6 we derive that

Ef

[
Cα
j

] ≤ tj(0
+) + (c− 1)

∑
k∈N1

ηkpk + c
∑
k∈N2

(1− µk)pk + c pj

≤ c tj(0
+) + c

∑
k∈N2

(1− µk)pk + c pj = c

(
MLP

j +
1

2
pj

)
;

the last inequality follows from the definition of N1 and ηk, and the last equality
follows from (3.10).

Notice that any density function satisfying properties (i) and (ii) of Lemma 3.6
for some value c′ directly leads to the job-by-job bound Ef [C

α
j ] ≤ c′

(
MLP

j + 1
2pj

)
for

the corresponding random α-schedule. It is easy to see that the unit function satisfies
Lemma 3.6 with c′ = 2, which establishes the following variant of Theorem 3.4.

Corollary 3.7. Let the random variable α be uniformly drawn from (0, 1].
Then, the expected value of the resulting α-schedule is within a factor 2 of the optimal
LP value ZD = ZR.

The use of an exponential density function is motivated by the first property
in Lemma 3.6; notice that the function α → (c − 1)eα satisfies it with equality.
On the other hand, the exponential function is truncated in order to reduce the term∫ 1

µ
f(α)(1+α) dα in the second property. In fact, the truncated exponential function f

in Theorem 3.5 can be shown to minimize c′; it is therefore optimal for our analysis.
In addition, there exists a class of instances for which the ratio of the expected cost of
an α-schedule, determined using this density function, to the cost of the optimal LP
value is arbitrarily close to 1.745; this shows that the preceding analysis is essentially
tight in conjunction with truncated exponential functions.
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Theorem 3.5 implies that the best-α-schedule has a value of at most 1.7451ZR.
The following proposition shows that the randomized algorithm that yields the α-
schedule can be easily derandomized because the sample space is small.

Proposition 3.8. There are at most n different α-schedules; they can be com-
puted in O(n2) time.

Proof. As α goes from 0+ to 1, the α-schedule changes only whenever an α-point,
say for job j, reaches a time at which job j is preempted. Thus, the total number of
changes in the α-schedule is bounded from above by the total number of preemptions.
Since a preemption can occur in the LP schedule only whenever a job is released, the
total number of preemptions is at most n − 1, and the number of α-schedules is at
most n. Since each of these α-schedules can be computed in O(n) time, the result on
the running time follows.

3.4. Improved bounds for (αj)-schedules. In this subsection, we prove the
following theorem.

Theorem 3.9. Let γ ≈ 0.4835 be the unique solution to the equation

γ + ln(2− γ) = e−γ
(
(2− γ)eγ − 1

)
satisfying 0 < γ < 1. Define δ := γ+ln(2−γ) ≈ 0.8999 and c := 1+ e−γ/δ < 1.6853.
Let the αj’s be chosen pairwise independently from a probability distribution over (0, 1]
with the density function

g(α) =

{
(c− 1)eα if α ≤ δ,

0 otherwise.

Then, the expected value of the resulting random (αj)-schedule is bounded by c times
the optimal LP value ZD = ZR.

The bound in Theorem 3.9 also yields a bound on the quality of the LP relaxations.
Corollary 3.10. The LP Relaxations (D) and (R) deliver in O(n log n) time a

lower bound which is at least 0.5933 (≈ 1.6853−1) times the objective function value
of an optimal schedule.

Following the lines of the last subsection, we state two properties of the density
function g that are crucial for the analysis of the corresponding random (αj)-schedule.

Lemma 3.11. The function g given in Theorem 3.9 is a density function with the
following properties:

(i)
∫ η

0
g(α)(1 + α− η) dα ≤ (c− 1) η for all η ∈ [0, 1],

(ii) (1 + Eg[α])
∫ 1

µ
g(α) dα ≤ c (1− µ) for all µ ∈ [0, 1],

where Eg[α] denotes the expected value of a random variable α that is distributed
according to g.

Notice the similarity of Lemma 3.11 and Lemma 3.6 of the last subsection. Again,
properties (i) and (ii) are used to bound the delay of job j caused by jobs in N1 and
N2, respectively, in the right-hand side of inequality (3.11). Property (i) for η = 1 or
property (ii) for µ = 0 again yield Eg[α] ≤ c− 1.

Proof of Lemma 3.11. A short computation shows that δ = ln c
c−1 . It thus follows

from the same arguments as in the proof of Lemma 3.6 that g is a density function
and that property (i) holds. In order to prove property (ii), we first compute

Eg[α] =

∫ 1

0

g(α)α dα = (c− 1)

∫ δ

0

eαα dα = c δ − 1.



186 GOEMANS, QUEYRANNE, SCHULZ, SKUTELLA, AND WANG

Property (ii) certainly holds for µ ∈ (δ, 1]. For µ ∈ [0, δ] we get

(1 + Eg[α])

∫ 1

µ

g(α) dα = c δ (c− 1)

∫ δ

µ

eα dα

= c e−γ
(
(2− γ)eγ − eµ

)
= c (2− γ − eµ−γ)

≤ c
(
2− γ − (1 + µ− γ)

)
= c (1− µ).

This completes the proof of the lemma.

Proof of Theorem 3.9. Our analysis of the expected completion time of job j
in the random (αj)-schedule follows the line of argument developed in the proof of
Theorem 3.4. First we consider a fixed choice of αj and bound the corresponding
conditional expectation Eg[C

ααα
j |αj ]. In a second step we bound the unconditional ex-

pectation Eg[C
ααα
j ] by integrating the product g(αj)Eg[C

ααα
j |αj ] over the interval (0, 1].

For a fixed job j and a fixed value αj , the bound in (3.11) and Lemma 3.11 (i)
yield

Eg[C
ααα
j |αj ] ≤ tj(0

+) + (c− 1)
∑
k∈N1

ηk pk +
∑
k∈N2
αj>µk

(1 + Eg[αk])pk + (1 + αj)pj

≤ c tj(0
+) + (1 + Eg[α1])

∑
k∈N2
αj>µk

pk + (1 + αj)pj .

The last inequality follows from (3.9) and Eg[αk] = Eg[α1] for all k ∈ N . Using
property (ii) and (3.10) yields

Eg[C
ααα
j ] ≤ c tj(0

+) + (1 + Eg[α1])
∑
k∈N2

pk

∫ 1

µk

g(αj) dαj + (1 + Eg[αj ])pj

≤ c tj(0
+) + c

∑
k∈N2

(1− µk)pk + c pj = c

(
MLP

j +
1

2
pj

)
.

The result follows from linearity of expectations.

While the total number of possible orderings of jobs is n! = 2O(n logn), we show
in the following lemma that the maximal number of (αj)-schedules is at most 2n−1.
We will use the following observation. Let qj denote the number of different pieces of
job j in the LP schedule; thus qj represents the number of times job j is preempted
plus 1. Since there are at most n− 1 preemptions, we have that

∑n
j=1 qj ≤ 2n− 1.

Lemma 3.12. The maximal number of (αj)-schedules is at most 2
n−1, and this

bound can be attained.

Proof. The number of (αj)-schedules is given by s =
∏n

j=1 qj . Notice that

q1 = 1 since this job is not preempted in the LP schedule. Thus, s =
∏n

j=2 qj , while∑n
j=2 qj ≤ 2(n− 1). By the arithmetic-geometric mean inequality, we have that

s =
n∏

j=2

qj ≤
(∑n

j=2 qj

n− 1

)n−1

≤ 2n−1.
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Furthermore, this bound is attained if qj = 2 for j = 2, . . . , n, and this is achieved,
for example, for the instance with pj = 2, wj = n − j + 1, and rj = n − j for all
j.

Therefore, and in contrast to the case of random α-schedules, we cannot afford
to derandomize the randomized 1.6853-approximation algorithm by enumerating all
(αj)-schedules. We instead use the method of conditional probabilities [18].

From inequality (3.11) we obtain for every vector ααα = (αj) an upper bound on
the objective function value of the corresponding (αj)-schedule,

∑
j wjC

ααα
j ≤ UB(ααα),

where UB(ααα) =
∑

j wj RHSj(ααα) and RHSj(ααα) denotes the right-hand side of in-
equality (3.11). Taking expectations and using Theorem 3.9, we have already shown
that

Eg


∑
j∈N

wjC
ααα
j


 ≤ Eg[UB(ααα)] ≤ cZD,

where c < 1.6853. For each job j ∈ N let Qj = {Qj1, . . . , Qjqj} denote the set of
intervals for αj corresponding to the qj pieces of job j in the LP schedule. We consider
the jobs one by one in arbitrary order, say, j = 1, . . . , n. Assume that, at step j of
the derandomized algorithm, we have identified intervals Qd

1 ∈ Q1, . . . , Q
d
j−1 ∈ Qj−1

such that

Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1] ≤ cZD .

Using conditional expectations, the left-hand side of this inequality is

Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1]

=

qj∑
�=1

Prob{αj ∈ Qj�}Eg

[
UB(ααα) |αi ∈ Qd

i for i = 1, . . . , j − 1 and αj ∈ Qj�

]
.

Since
∑qj

�=1 Prob{αj ∈ Qj�} = 1, there exists at least one interval Qj� ∈ Qj such that

Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1 and αj ∈ Qj�]

≤ Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1].

(3.12)

Therefore, it suffices to identify such an interval Qd
j = Qj� satisfying (3.12), and we

may conclude that

Eg

[∑
h∈N

whC
ααα
h |αi ∈ Qd

i for i = 1, . . . , j

]

≤ Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j] ≤ cZD .

Having determined in this way an interval Qd
j for every job j = 1, . . . , n, we then

note that the (αj)-schedule is the same for all ααα ∈ Qd
1 × Qd

2 × · · · × Qd
n. The (now

deterministic) objective function value of this (αj)-schedule is∑
j∈N

wjC
ααα
j ≤ Eg[UB(ααα) |αi ∈ Qd

i for i = 1, . . . , n]

≤ Eg[UB(ααα)] ≤ c ZD < 1.6853ZD ,
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Fig. 4. The on-line schedule for the previously considered instance and αj-points. The
LP schedule is shown above for comparison.

as desired. For every j = 1, . . . , n, checking whether an interval Qd
j satisfies in-

equality (3.12) amounts to evaluating O(n) terms, each of which may be computed
in constant time. Since, as observed just before Lemma 3.12, we have a total of∑n

j=1 qj ≤ 2n − 1 candidate intervals, it follows that the derandomized algorithm

runs in O(n2) time.

Proposition 3.13. The randomized 1.6853-approximation algorithm can be de-
randomized; the resulting deterministic algorithm runs in O(n2) time and has perfor-
mance guarantee 1.6853 as well.

3.5. Constructing provably good schedules on-line. In this subsection we
show that our randomized approximation results also apply in an on-line setting.
There are several different on-line paradigms that have been studied in the area of
scheduling; we refer to [30] for a survey. We consider the setting where jobs continually
arrive over time, and, for each time t, we must construct the schedule until time t
without any knowledge of the jobs that will arrive afterwards. In particular, the
characteristics of a job, i.e., its processing time and its weight, become known only at
its release date.

It has already been shown in section 2 that the LP schedule can be constructed on-
line. Unfortunately, for a given vector (αj), the corresponding (αj)-schedule cannot
be constructed on-line. We learn only about the position of a job k in the sequence
defined by nondecreasing αj-points at time tk(αk); therefore, we cannot start job k
at an earlier point in time in the on-line setting. On the other hand, however, the
start time of k in the (αj)-schedule can be earlier than its αk-point tk(αk).

Although an (αj)-schedule cannot be constructed on-line, the above discussion
reveals that the following variant, which we call the on-line-(αj)-schedule, can be
constructed on-line: For a given vector (αj), process the jobs as early as possible in
the order of their αj-points, with the additional constraint that no job k may start
before time tk(αk). See Figure 4 for an example. We note that this idea of delaying
the start of jobs until sufficient information for a good decision is available was in this
setting introduced by Phillips, Stein, and Wein [21].
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Notice that the nonpreemptive schedule constructed by (αj)-Conversion ful-
fills these constraints; its value is therefore an upper bound on the value of the on-
line-(αj)-schedule. Our analysis in the last subsections relies on the bound given in
Corollary 3.2, which also holds for the schedule constructed by (αj)-Conversion by
Lemma 3.1. This yields the following results.

Theorem 3.14. For any instance of the scheduling problem 1| rj |
∑

wjCj,

(a) choosing α = 1/
√
2 and constructing the on-line-α-schedule yields a determin-

istic on-line algorithm with competitive ratio 1 +
√
2 ≤ 2.4143 and running

time O(n log n);
(b) choosing the αj’s randomly and pairwise independently from (0, 1] according

to the density function g of Theorem 3.9 and constructing the on-line-(αj)-
schedule yields a randomized on-line algorithm with competitive ratio 1.6853
and running time O(n log n).

The competitive ratio 1.6853 in Theorem 3.14 beats the deterministic on-line lower
bound 2 for the unit-weight problem 1| rj |

∑
Cj [15, 36]. For the same problem,

Stougie and Vestjens [37] (see also [39]) proved the lower bound e
e−1 > 1.5819 for

randomized on-line algorithms.

3.6. Bad instances for the LP relaxations. In this subsection, we describe a
family of instances for which the ratio between the optimal value of the 1| rj |

∑
wjCj

problem and the lower bounds ZR and ZD is arbitrarily close to e
e−1 > 1.5819.

These instances In have n ≥ 2 jobs as follows: one large job, denoted job n, and
n− 1 small jobs, denoted j = 1, . . . , n− 1. The large job has processing time pn = n,
weight wn = 1

n , and release date rn = 0. Each of the n − 1 small jobs j has zero
processing time, weight wj =

1
n(n−1) (1 +

1
n−1 )

n−j , and release date rj = j.

Throughout the paper, we have assumed that processing times are nonzero. In
order to satisfy this assumption, we could impose a processing time of 1/k for all small
jobs, multiply all processing times and release dates by k to make the data integral,
and then let k tend to infinity. For simplicity, however, we just let the processing time
of all small jobs be 0.

The LP solution has job n start at time 0, preempted by each of the small jobs;
hence its mean busy times are MLP

j = rj for j = 1, . . . , n − 1 and MLP
n = n

2 . Its

objective function value is ZR = (1 + 1
n−1 )

n − (1 + 1
n−1 ). Notice that the completion

time of each job j is in fact equal to MLP
j + 1

2pj such that the actual value of the
preemptive schedule is equal to ZR.

Now consider an optimal nonpreemptive schedule C∗ and let k = �C∗n� − n ≥ 0,
so k is the number of small jobs that can be processed before job n. It is then optimal
to process all these small jobs 1, . . . , k at their release dates and to start processing
job n at date rk = k just after job k. It is also optimal to process all remaining jobs
k + 1, . . . , n− 1 at date k + n just after job n. Let Ck denote the resulting schedule;
that is, Ck

j = j for all j ≤ k, and Ck
j = k + n otherwise. Its objective function value

is (1+ 1
n−1 )

n− 1
n−1 − k

n(n−1) . Therefore, the optimal schedule is Cn−1 with objective

function value (1 + 1
n−1 )

n − 1
n−1 − 1

n . As n grows large, the LP objective function
value approaches e− 1 while the optimal nonpreemptive cost approaches e.

4. Conclusion. Even though polynomial-time approximation schemes have now
been discovered for the problem 1| rj |

∑
wjCj [1], the algorithms we have developed,

or variants of them, are likely to be superior in practice. The experimental studies
of Savelsbergh, Uma, and Wein [25] and Uma and Wein [38] indicate that LP-based
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relaxations and scheduling in order of αj-points are powerful tools for a variety of
scheduling problems.

Several intriguing questions remain open. Regarding the quality of linear pro-
gramming relaxations, it would be interesting to close the gap between the upper
(1.6853) and lower (1.5819) bound on the quality of the relaxations considered in
this paper. We should point out that the situation for the strongly NP-hard [16]
problem 1| rj , pmtn |∑wjCj is similar. It is shown in [29] that the completion time
relaxation is in the worst case at least a factor of 8/7 and at most a factor of 4/3 off
the optimum; the latter bound is achieved by scheduling preemptively by LP-based
random α-points. Chekuri et al. [6] prove that the optimal nonpreemptive value is at
most e/(e− 1) times the optimal preemptive value; our example in section 3.6 shows
that this bound is tight.

Dyer and Wolsey [9] also propose a (nonpreemptive) time-indexed relaxation
which is stronger than the preemptive version studied here. This relaxation involves
variables for each job and each time representing whether this job is being completed
(rather than simply processed) at that time. This relaxation is at least as strong as
the preemptive version, but its worst-case ratio is not known to be strictly better.

For randomized on-line algorithms, there is also a gap between the known upper
and lower bound on the competitive ratios that are given at the end of section 3.5.
For deterministic on-line algorithms, the 2-competitve algorithm of Anderson and
Potts [2] is optimal.

Acknowledgment. The authors are grateful to an anonymous referee whose
comments helped to improve the presentation of this paper.
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Ŕıos-Mercado, eds., Springer, Berlin, 1998, pp. 394–408.

[39] A. P. A. Vestjens, On-Line Machine Scheduling, Ph.D. thesis, Eindhoven University of Tech-
nology, The Netherlands, 1997.



FINDING A 2-CORE OF A TREE IN LINEAR TIME∗

BIING-FENG WANG†

SIAM J. DISCRETE MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 15, No. 2, pp. 193–210

Abstract. Let T be an edge-weighted tree. A p-core of T is a set of p mutually disjoint paths in
T that minimizes the sum of the distances of all vertices in T from any of the p paths, where p ≥ 1
is an integer. In this paper, an O(n) time algorithm is proposed for the case p = 2, where n is the
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1. Introduction. Network location theory is concerned with the optimal loca-
tions of service facilities in a network. The shapes of the facilities can be points, paths,
or trees. A variety of network location problems have been defined and studied in the
literature [2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28,
29]. These location problems usually have important applications in transportation
and communication and thus have received much attention from researchers in the
fields.

Let T be an edge-weighted tree of n vertices. Let p ≥ 1 be an integer. A p-
median of T is a set of p vertices in T that minimizes the sum, over all vertices v of
T , of the minimum distance of v to any of the p vertices. Goldman [7] gave a linear
time algorithm for finding a 1-median of a tree. Gavish and Sridhar [6] presented an
O(n log n) time algorithm for finding a 2-median of a tree. Using an algorithm based
on dynamic programming, Tamir [26] solved the general p-median problem on a tree
in O(pn2) time. A p-center of T is a set of p vertices in T that minimizes the distance
to the furthest vertex from any of the p vertices. Linear time algorithms for finding a
1-center and a 2-center of a tree had been proposed by Handler and Mirchandani [10].
By developing an elegant tree decomposition scheme to find the kth longest path in a
tree, Megiddo et al. [13] solved the general p-center problem on a tree in O(n log2 n)
time. Later, Frederickson and Johnson [5] improved the upper bound to O(n log n).

A p-core of T is a set of p mutually disjoint paths in T that minimizes the sum
of the distances of all vertices in T from any of the p paths. The case p = 1 of the
problem was first studied by Slater [23]. A linear time algorithm was proposed by
Morgan and Slater [16]. A cost-optimal parallel algorithm that requires O(log n) time
on the EREW PRAM was proposed by Peng and Lo [18]. Minieka and Patel [15]
studied the problem of finding in a tree a 1-core of a specified length, which is a
variant of the 1-core problem. Minieka [14] gave an O(n3) time algorithm for the
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problem. Peng and Lo [20] gave an O(n log n) time algorithm for unweighted trees.
Later, Alstrup et al. [2] presented an O(n) time algorithm for unweighted trees and an
O(n log nα(n)) time algorithm for weighted trees. Parallel algorithms on the EREW
PRAM for finding a core of a specified length were proposed in [20, 28].

The 2-core problem was first considered by Becker and Perl [3]. They proposed
two efficient algorithms for the problem. The first requires O(n2) time and the second
requires O(dn) time, where d is the maximum number of edges of any simple path in
T . In the worst case and average case, the second algorithm requires O(n2) time and
O(n
√
n) time, respectively. Novik [17] studied the general p-core problem and gave an

O(pn2) time algorithm. Hakimi, Schmeichel, and Labbe [9] generalized Minieka and
Patel’s consideration to study the problem of finding a p-core of a specified length,
which is called the p-path median problem. They showed that the problem is NP -hard
if p is a variable and gave an O(n2p+1) time algorithm for any constant p.

In this paper, an O(n) time algorithm is proposed for finding a 2-core of a tree.
The proposed algorithm is based upon several important properties explored by Becker
and Perl [3] and thus can be regarded as a fast implementation of their algorithms.
With some modification, the proposed algorithm can be implemented on the EREW
PRAM in O(log2 n) time using O(n log n) work. On the CRCW PRAM, the parallel
running time can be further improved to O(log log n log n).

The remainder of this paper is organized as follows. In the next section, nota-
tion and preliminary results are presented. In section 3, a linear time algorithm is
proposed to solve an optimization problem, which is called the r-point core problem.
In section 4, using the algorithm proposed in section 3 as a key procedure, an O(n)
time algorithm for computing a 2-core of a tree is presented. In section 5, we give
a parallel implementation of our 2-core algorithm on the EREW PRAM. Finally, in
section 6, we conclude this paper.

2. Notation and preliminary results. In this section, we introduce notation
and definitions that are used throughout this paper and give some preliminary results.

Let T = (V,E) be a free tree. Let n = |V |. Each edge e ∈ E has an associated
positive length w(e). If w(e) = 1 for every e ∈ E, then T is unweighted; otherwise
T is weighted. For any two vertices u, v ∈ V , let P (u, v) be the unique path from u
to v and let d(u, v) be its length. A path in T is a v-path, where v ∈ V , if v is one
of its endpoints. For each v ∈ V , let N(v) be the set of vertices in T adjacent to v.
Consider a given vertex v ∈ V . The are |N(v)| subtrees of T attached to v through
the edges incident on v. For each u ∈ N(v), denote by T vu the subtree of T attached
to v through the edge (u, v), excluding this edge and the vertex v.

For a subgraph X of T , the vertex set and edge set of X is V (X) and E(X),
respectively. For easy description, given a vertex v ∈ V , the subgraph having vertex
set {v} and edge set Ø is simply denoted by v. Given two subgraphs X and Y of
T , we denote by X ∪ Y the subgraph having vertex set V (X) ∪ V (Y ) and edge set
E(X)∪E(Y ). For a vertex v ∈ V and a subgraph X of T , the distance from v to X is
d(v,X) = minu∈V (X) d(v, u) and close(v,X) is the vertex in X nearest to v. For two
subgraphs Y andX of T , the distancesum from Y toX isD(Y,X) =

∑
v∈V (Y ) d(v,X).

If Y = T , we simply write D(X) in place of D(T,X).
A 1-core of T is a path A in T that minimizes D(A). A p-core of T is a set of p

mutually disjoint paths {A1, A2, . . . , Ap} in T that minimizes D(A1 ∪A2 ∪ · · · ∪Ap),
where p ≥ 2 is an integer.

Our 2-core algorithm in section 4 needs to solve two variants of the 1-core problem,
which are defined as follows. Let r ∈ V be a given vertex. An r rooted-1-core of T is
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an r-path A in T that minimizes D(A). An r-point core of T is a path A in T that
does not contain r and minimizes D(r ∪A).

The distance saving of a path P (x, y) in T is δ(P (x, y)) = D(x) − D(P (x, y)),
where x, y ∈ V . For each edge (u, v) ∈ E, let nvu = |V (T vu )|, svu = D(T vu , v), l

v
u be a

vertex in T vu having δ(P (v, lvu)) = maxx∈V (Tv
u ) δ(P (v, x)) and let mv

u = δ(P (v, lvu)).
In the remainder of this section, some preliminary results are given.
Morgan and Slater [16] proposed the following two results.
Lemma 1 (see [16]). The values of nvu, s

v
u, l

v
u, and mv

u can be computed in O(n)
time for every (u, v) ∈ E.

Lemma 2 (see [16]). A 1-core of a tree can be computed in O(n) time.
For each v ∈ V , D(v) =

∑
u∈N(v) D(T vu , v) =

∑
u∈N(v) s

v
u. Thus, we can obtain

the following result from Lemma 1 easily.
Lemma 3. The value of D(v) can be computed in O(n) time for every v ∈ V .
Peng, Stephen, and Yesha gave the following result.
Lemma 4 (see [19]). An r rooted-1-core of a tree can be computed in O(n) time.
The following lemma shows that the concept of distance saving is very useful for

computing the distancesum from T to a given subgraph.
Lemma 5. Let Y be a subgraph of T . Let (s, t) ∈ E be an edge such that

s ∈ V (Y ) and V (T st ) ∩ V (Y ) = Ø. Let x be a vertex in T st . Then, D(Y ∪ P (s, x)) =
D(Y )− δ(P (s, x)).

Proof. See Figure 1. Since V (T st ) ∩ V (Y ) = Ø, we have D(Y ∪ P (s, x)) =
D(T ts , Y )+D(T st , P (s, x)). Clearly, D(T ts , Y ) = D(Y )−D(T st , s) andD(T st , P (s, x)) =
D(P (s, x))−D(T ts , s). Thus, we have

D(Y ∪ P (s, x)) = D(Y )−D(T st , s)−D(T ts , s) +D(P (s, x))

= D(Y )−D(s) +D(P (s, x)).

By definition, D(s)−D(P (s, x)) = δ(P (s, x)). Therefore, D(Y ∪ P (s, x)) = D(Y )−
δ(P (s, x)) and the lemma holds.

3. Finding an r-point core in linear time. Let r ∈ V be a vertex. In this
section, an O(n) time algorithm is proposed for finding an r-point core of T . It is
applied as a key procedure in our 2-core algorithm in the next section.

Assuming that T is unweighted, Becker and Perl [3] had proposed an O(n) time
algorithm for the r-point core problem. Their algorithm can be applied to a weighted
tree. However, O(n log n) time is required. In this section, we show that an r-point
core of a weighted tree T can be found in O(n) time. Our r-point core algorithm is
obtained by modifying Becker and Perl’s algorithm. Therefore, we begin by describing
their algorithm.

A bisector of a simple path (v1, v2, . . . , vm) is an edge (vk, vk+1) such that
d(v1, vk) ≤ d(v1, vm)/2 ≤ d(v1, vk+1), where 1 ≤ k < m. (It will be the bisector
if there does not exist a vertex vc such that d(v1, vc) = d(v1, vm)/2.)

Lemma 6 (see [3]). Let a, b ∈ V . Let (x, y) be an edge in E such that x
is nearer to a than to b and (x, y) is a bisector of P (a, b). We have D(a ∪ b) =
D(a)− (sxy + nxy × d(a, x)) +D(b)− (syx + nyx × d(b, y)).

Proof. See Figure 2. Since (x, y) is a bisector of P (a, b), D(a ∪ b) = D(T yx , a) +
D(T xy , b). We have
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Fig. 1. An illustration for the proof of Lemma 5.

D(T yx , a) = D(a)−D(T xy , a)

= D(a)− (D(T xy , x) + |T xy | × d(a, x))

(since d(v, a) = d(v, x) + d(x, a) for every v ∈ V (T xy ))

= D(a)− (sxy + nxy × d(a, x)).

Similarly, we have D(T xy , b) = D(b) − (syx + nyx × d(b, y)). Therefore, the lemma
holds.

For easy description, in the remainder of this section, we assume that T is a
rooted tree with root r.

Lemma 7 (see [3]). Let v ∈ V be a vertex such that there is an r-point core A of T
satisfying close(r,A) = v. Let u1 and u2 be the two sons of v maximizing mv

u1
+mv

u2
.

Then, P (lvu1
, lvu2

) is an r-point core of T and D(P (lvu1
, lvu2

)) = D(r∪v)−(mv
u1
+mv

u2
).

Based upon Lemmas 6 and 7, Becker and Perl [3] presented the following algorithm
for finding an r-point core.

Algorithm 1. POINT CORE(T, r)
Input: a tree T = (V,E) and a vertex r ∈ V
Output: an r-point core of T
begin
1. Orient T into a rooted tree with root r
2. for each (u, v) ∈ E do compute nvu, s

v
u, l

v
u, and mv

u

3. for each v ∈ V do compute D(v) and d(r, v)
4. W ← V − {r} /∗ W contains at least one v ∈ V satisfying the condition

in Lemma 7.∗/
5. for each v ∈W do (xv, yv)← a bisector of P (r, v) such that xv is the parent

of yv
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Fig. 2. An illustration for the proof of Lemma 6.

6. for each v ∈W do
7. (u1, u2)← the two sons of v maximizing mv

u1
+mv

u2

8. Av ← P (lvu1
, lvu2

)
9. D(r∪v)← D(r)− (sxv

yv +nxv
yv ×d(r, xv))+D(v)− (syvxv

+nyvxv
× (d(r, v)−

d(r, yv))) /∗ Lemma 6∗/
10. D(r ∪Av)← D(r ∪ v)− (mv

u1
+mv

u2
) /∗ Lemma 7∗/

11. CORE ← the Az with D(r ∪Az) = minv∈W D(r ∪Av)
12. return(CORE )
end.
It is not difficult to check that except line 5, all computation in Algorithm 1

requires O(n) time no matter whether T is unweighted or not. Becker and Perl
assumed that T is unweighted and implemented line 5 in linear time by performing a
depth-first traversal on T maintaining the path from the root r to the current vertex v
in an arrayH such thatH[i] stores the ith vertex on P (r, v). While a vertex v is visited
during the traversal, (xv, yv) is computed in O(1) time as (H[�l/2�], H[�l/2� + 1]),
where l = d(r, v). We have the following theorem.

Theorem 1 (see [3]). Finding an r-point core of an unweighted tree can be done
in O(n) time.

Line 5 of Algorithm 1 computes for every v ∈ V −{r} a bisector of P (r, v). Wang,
Ku, and Shi [29] showed that the computation has an Ω(n log n) time lower bound if
T is weighted. Thus, applying Becker and Perl’s algorithm to a weighted tree requires
Ω(n log n) time. The lower bound can be easily achieved as follows. We perform a
depth-first traversal on T maintaining two arrays H and D such that H[i] stores the
ith vertex on P (r, v) and D[i] stores d(r,H[i]). During the traversal, a bisector edge
of P (r, v) is determined in O(log n) time by performing a binary search for l/2 on D,
where l = d(r, v).

Theorem 2. Finding an r-point core of a weighted tree can be done in O(n log n)
time.
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In the remainder of this section, we show that finding an r-point core of a weighted
tree T can be done in O(n) time by giving some modifications to Algorithm 1.

Lemma 8. Let k ∈ V and P (k, g) be a k rooted-1-core of T . For any v ∈ V , we
have δ(P (c, g)) ≥ δ(P (c, v)), where c = close(v, P (k, g)).

Proof. By letting Y = P (k, c), s = c, and x = g in Lemma 5, we have
D(P (k, g)) = D(P (k, c)) − δ(P (c, g)). Similarly, by letting Y = P (k, c), s = c, and
x = v in Lemma 5, we have D(P (k, v)) = D(P (k, c))− δ(P (c, v)). Since P (k, g) is an
r rooted-1-core, D(P (k, g)) ≤ D(P (k, v)) and thus δ(P (c, g)) ≥ δ(P (c, v)). Therefore,
the lemma holds.

Recall that T was assumed to be a rooted tree with root r. Every u ∈ N(r) is a
son of r. For each u ∈ N(r), we denote by Xu the subtree of T rooted at u. Let A
be an r-point core of T . Since A does not contain r, there is a vertex k ∈ N(r) such
that A is totally contained in Xk. Let Mk be a k rooted-1-core of Xk. We have the
following lemma.

Lemma 9. V (A) ∩ V (Mk) �= Ø.
Proof. See Figure 3. We prove this lemma by contradiction. Suppose that

V (A) ∩ V (Mk) = Ø. Let A = P (w, z) and a = close(k,A). Let Mk = P (k, g)
and b = close(a,Mk). Let A

′ = P (g, z), which is P (g, b)∪ P (b, a)∪ P (a, z). By using
Lemma 5 twice, we can obtain D(r∪A) = D(r∪a)−δ(P (a,w))−δ(P (a, z)). Again, by
using Lemma 5 twice, we can obtainD(r∪A′) = D(r∪P (b, a))−δ(P (b, g))−δ(P (a, z)).
Thus, D(r∪A′)−D(r∪A) = D(r∪P (b, a))−D(r∪a)−δ(P (b, g))+δ(P (a,w)). Since
Mk is a k rooted-1-core of Xk, by Lemma 8, δ(P (b, g)) ≥ δ(P (b, w)) ≥ δ(P (a,w)).
Therefore, D(r ∪A′)−D(r ∪A) ≤ D(r ∪P (b, a))−D(r ∪ a). Since V (A)∩ V (Mk) =
Ø, we have a �= b. Thus, r ∪ a is a proper subgraph of r ∪ P (b, a). Therefore,
D(r∪P (b, a)) < D(r∪a). Consequently, D(r∪A′)−D(r∪A) < 0, which contradicts
the fact that A is an r-point core of T . Therefore, V (A) ∩ V (Mk) �= Ø.

Lemma 10. close(r,A) ∈ V (Mk).
Proof. By Lemma 9, V (A) ∩ V (Mk) �= Ø. Let a be the vertex in V (A) ∩ V (Mk)

that is nearest to r. Let a′ be the parent of a. Since a′ �∈ V (A), a ∈ V (A), and A is
a path, A is totally contained in the subtree rooted at a. Therefore, a = close(r,A)
and the lemma holds.

For each u ∈ N(r), let Mu be a u rooted-1-core of Xu. According to Lemma 10,
close(r,A) ∈ ⋃u∈N(r) V (Mu) for any r-point core A of T . Therefore, we can modify
Algorithm 1 by replacing line 4 with the following.

4. W ← ⋃
u∈N(r) V (Mu), where Mu is a u rooted-1-core of T ru .

In the following, we show that after the replacement, Algorithm 1 can be imple-
mented in O(n) time no matter whether T is unweighted or not. By Lemma 4, the
computation of all Mu, where u ∈ N(r), requires O(

∑
u∈N(r) |V (T ru)|) = O(n) time.

Thus, line 4 takes O(n) time. Consider a fixed vertex u ∈ N(r). Since Mu is a path,
we can easily compute a bisector of P (r, v) for every v ∈ V (Mu) in O(|V (Mu)|) time
by resorting to a linear time merging algorithm. Thus, line 5 can be implemented in
O(
∑
u∈N(r) |V (Mu)|) = O(n) time. All the other computation of Algorithm 1 requires

O(n) time. Therefore, we obtain the following theorem.
Theorem 3. An r-point core of a weighted tree can be computed in O(n) time.

4. Finding a 2-core in linear time. In this section, we propose an O(n) time
algorithm for finding a 2-core of T . For easy description, we define a (a, b) rooted-2-
core of T , where a, b ∈ V and a �= b, as a pair of two disjoint paths (A,B) such that
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Fig. 3. An illustration for the proof of Lemma 9.

A is an a-path, B is a b-path, and D(A ∪ B) is minimized. One of the most critical
steps of our 2-core algorithm is to compute a (a, b) rooted-2-core of T for two given
vertices a, b ∈ V . The computation is complicated. We describe it first in subsection
4.1. Our 2-core algorithm is then proposed in subsection 4.2.

4.1. Finding a rooted-2-core. Let a, b ∈ V be two vertices. Becker and
Perl [3] had proposed an O(n2) time algorithm for the problem of finding a (a, b)
rooted-2-core of T . In this subsection, we give an O(n) time algorithm for the same
problem.

We begin by giving some notations. Let (c1, c2, . . . , cd) be the sequence of vertices
on P (a, b), where c1 = a and cd = b. For each i, 1 ≤ i < d, let Qi be the subtree
T
ci+1
ci and Ui be the subtree T cici+1

. (See Figure 4.) Let S1, S2, . . . , Sd be the subtrees
obtained from T by deleting all edges on P (a, b) such that Si, 1 ≤ i ≤ d, is the one
containing ci.
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Fig. 4. Subtrees Si, Qi, and Ui.

Fig. 5. A (a, b) rooted-2-core of T , where c1 = a and cd = b.

Let A = P (a, x) and B = P (b, y) be two paths such that (A,B) is a (a, b) rooted-
2-core of T . Let Sl and Sm, respectively, be the two subtrees containing x and y,
where 1 ≤ l ≤ d and 1 ≤ m ≤ d. (See Figure 5.) Since A and B are disjoint, we have
l < m, cl is the vertex on A that is nearest to B, and cm is the vertex on B that is
nearest to A. Let (ck, ck+1) be a bisector of P (cl, cm), where l ≤ k < m. According
to the definition of bisectors, vertices in Qk are nearer to A than to B; and vertices
in Uk are nearer to B than to A. Thus, D(A ∪ B) = D(Qk, A) + D(Uk, B). Since
(A,B) is a (a, b) rooted-2-core of T , we conclude that A is an a rooted-1-core of Qk
and B is a b rooted-1-core of Uk. Otherwise, there is another pair of disjoint paths
(P (a, x′), P (b, y′)) having D(P (a, x′) ∪ P (b, y′)) < D(A ∪ B), which contradicts the
fact that (A,B) is a (a, b) rooted-2-core of T .

From the above discussion, we have the following lemma.
Lemma 11. There is an integer k, 1 ≤ k < d, such that an a rooted-1-core of Qk

and a b rooted-1-core of Uk constitute a (a, b) rooted-2-core of T .
Therefore, we can compute a (a, b) rooted-2-core of T as follows.
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Algorithm 2. ROOTED 2 CORE(T, a, b)
Input: a tree T = (V,E) and two vertices a, b ∈ V
Output: a (a, b) rooted-2-core of T
begin
1. for each k, 1 ≤ k < d, do
2. Ak ← an a rooted-1-core of Qk
3. DAk → D(Qk, Ak)
4. for each k, 1 ≤ k < d, do
5. Bk ← a b rooted-1-core of Uk
6. DBk ← D(Uk, Bk)
7. CORE ← the (Az, Bz) with (DAz +DBz) = min1≤k<d(DAk +DBk)
8. return(CORE )

end.
As we will show later, lines 1–3 of Algorithm 2 can be done in O(n) time. The

computation of lines 4–6 is the same with that of lines 1–3 and thus can also be done
in O(n) time. Line 7 requires O(d) time. Therefore, Algorithm 2 performs in O(n)
time. We have the following theorem.

Theorem 4. A rooted-2-core of a weighted tree can be computed in O(n) time.
To complete the proof of Theorem 4, in the following, we show that lines 1–3 of

Algorithm 2 can be done in O(n) time. That is, we show that finding an a rooted-1-
core Ak for every Qk, 1 ≤ k < d, can be done in O(n) time.

First, we describe a procedure to preprocess T . In the preprocessing, a vertex
gi ∈ V (Si) is computed for each subtree Si, 1 ≤ i < d, such that P (ci, gi) is a ci rooted-
1-core of Si. Besides, four auxiliary arrays L, UN , UD, and GD are computed such
that L[i] = d(a, ci), UN [i] = |V (Ui)|, UD[i] = D(Ui, ci), and GD[i] = D(P (a, gi)),
where 1 ≤ i < d. The procedure is as follows.

Procedure PREPROCESS(T, (c1 = a, c2, . . . , cd = b))
begin
1. for each i, 1 ≤ i < d, do
2. gi ← a vertex in Si such that P (ci, gi) is a ci rooted-1-core of Si
3. for each i, 1 ≤ i < d, do L[i]← d(a, ci)
4. for each i, 1 ≤ i < d, do UN [i]← ncici+1

/* by definition, |V (Ui)| = ncici+1

*/
5. for each i, 1 ≤ i < d, do UD[i] ← scici+1

/* by definition, D(Ui, ci) =
scici+1

*/
6. for each i, 1 ≤ i < d, do δ(P (ci, gi))← D(Si, ci)−D(Si, P (ci, gi))
7. D(P (a, c1))← D(a)
8. for each i, 2 ≤ i < d, do D(P (a, ci))← D(P (a, ci−1))− d(ci−1, ci)UN [i− 1]
9. for each i, 1 ≤ i < d, do GD[i] ← D(P (a, ci)) − δ(P (ci, gi)) /* by

Lemma 5 */
10. return (g1, g2, . . . , gd−1, L, UN , UD, GD)
end.
By Lemma 4, lines 1–2 take O(

∑
1≤i<d |V (Si)|) = O(n) time. Trivially, line 3

takes O(d) time. By Lemma 1, the computation of UN and UD in lines 4–5 takes
O(n) time. It is easy to check that D(ci)−D(P (ci, gi)) = D(Si, ci)−D(Si, P (ci, gi)),
which validates the computation of δ(P (ci, gi)) in line 6. The computation in line 6
takes O(

∑
1≤i<d |V (Si)|) = O(n) time. Clearly, lines 7–8 take O(n) time. The reason

that we can compute in line 8 D(P (a, ci)) as D(P (a, ci−1)) − d(ci−1, ci)UN [i − 1],
2 ≤ i < d, is as follows. The two paths P (a, ci) and P (a, ci−1) differ only in the edge
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(ci−1, ci). Thus, for each v ∈ V (Qi−1), d(v, P (a, ci)) = d(v, P (a, ci−1)) and for each
v ∈ V (Ui−1), d(v, P (a, ci)) = d(v, P (a, ci−1)) − d(ci−1, ci). Therefore, we conclude
that D(P (a, ci)) = D(P (a, ci−1)) − d(ci−1, ci)|V (Ui−1)|. Thus, the computation in
line 8 is valid. By letting Y = P (a, ci), s = ci, and x = gi in Lemma 5, we obtain
D(P (a, gi)) = D(P (a, ci))−δ(P (ci, gi)). Thus, line 9 correctly computes the arrayGD
in O(d) time. Therefore, the above preprocessing procedure is correct and requires
O(n) time in total.

For easy discussion, in the remainder of this subsection, k is assumed to be a
fixed integer between 1 to d − 1 unless explicitly specified otherwise. Consider the
computation of Ak. One of the two endpoints of Ak is a. To compute Ak, we shall
select a correct vertex among the vertices in Qk to be the other endpoint. Qk consists
of the subtrees Si, i = 1, 2, . . . , k. The following lemma shows that in order to select
a correct vertex to be the other endpoint of Ak, in each subtree Si, 1 ≤ i ≤ k, we can
consider only the vertex gi.

Lemma 12. D(Qk, P (a, gi)) = minu∈V (Si) D(Qk, P (a, u)), 1 ≤ i ≤ k < d.
Proof. Clearly, for every u ∈ V (Si), D(Qk, P (a, u)) =

∑
1≤j<iD(Sj , cj) +

D(Si, P (ci, u))+
∑
i<j≤kD(Sj , ci). Thus, to minimize D(Qk, P (a, u)) over all vertices

u ∈ V (Si) is equivalent to minimizing D(Si, P (ci, u)). Since P (ci, gi) is a ci rooted-1-
core of Si, D(Si, P (ci, gi)) = minu∈V (Si) D(Si, P (ci, u)). Therefore, D(Qk, P (a, gi)) =
minu∈V (Si) D(Qk, P (a, u))

Let Gi = P (a, gi), 1 ≤ i < d. We call (G1, G2, . . . , Gk) the candidate sequence of
Ak, since it can be easily concluded from Lemma 12 that the path in the sequence
minimizing D(Qk, Gi) is an a rooted-1-core of Qk.

Lemma 13. D(Qk, Gi) = D(Gi)−D(Uk, ck)− d(ck, ci)|V (Uk)|, 1 ≤ i ≤ k < d.
Proof. Since V (Qk) and V (Uk) is a partition of V , we have D(Qk, Gi) = D(Gi)−

D(Uk, Gi). For every vertex v ∈ V (Uk), d(v,Gi) = d(v, ci) = d(v, ck) + d(ck, ci).
Thus, D(Uk, Gi) = D(Uk, ck) + d(ck, ci)|V (Uk)|. And thus D(Qk, Gi) = D(Gi) −
D(Uk, ck)− d(ck, ci)|V (Uk)|. Therefore, the lemma holds.

By Lemma 13, we can compute D(Qk, Gi) = GD[i]−UD[k]− (L[k]−L[i])UN [k]
for any two given integers i and k, 1 ≤ i ≤ k < d, in O(1) time using the auxiliary
arrays. Thus, we can determine Ak from its candidate sequence in O(k) time. Conse-
quently, all Ak, k = 1, 2, . . . , d− 1, can be computed in O(1+ 2+ · · ·+ d− 1) = O(d2)
time. It is known that the average diameter of an unweighted tree is O(

√
n) [12].

Thus, O(d2) = O(n) in the average case. However in the worst case, O(d2) = O(n2).
We need more techniques to speed up the computation of Ak.

We define the function f(Gx, Gy), for two paths Gx and Gy, 1 ≤ x < y < d, to
be

f(Gx, Gy) =
D(Gx)−D(Gy)

d(cx, cy)
.

Using arrays L and GD, the value of f(Gx, Gy) can be easily determined in O(1) time
for any two given integers x and y, 1 ≤ x < y < d.

Lemma 14. For 1 ≤ x < y ≤ s < d, to determine whether D(Qs, Gx) <, =, or
> D(Qs, Gy), respectively, is equivalent to determining whether f(Gx, Gy) <, =, or
> |V (Us)|.

Proof. By Lemma 13, we have D(Qs, Gx) − D(Qs, Gy) = D(Gx) − D(Gy) −
d(cx, cy)|V (Us)|, from which we can easily conclude that to determine whether
D(Qs, Gx) <, =, or > D(Qs, Gy) is equivalent to determining whether (D(Gx) −
D(Gy))/d(cx, cy) <, =, or > |V (Us)|. Therefore, the lemma holds.
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Based upon Lemma 14, in the following, two properties are proposed to further
recognize in (G1, G2, . . . , Gk) some paths that we can ignore while computing Ak.

Property 1. For 1 ≤ x < y < k, if f(Gx, Gy) < f(Gy, Gk), then Gy cannot be an
a rooted-1-core of Qk, Qk+1, . . . , Qd−1.

Proof. Let Qs be any of Qk, Qk+1, . . . , Qd−1. We consider two cases: f(Gx, Gy) <
|V (Us)| and f(Gx, Gy) ≥ |V (Us)|. If f(Gx, Gy) < |V (Us)|, then by Lemma 14
D(Qs, Gx) < D(Qs, Gy) and thus Gy cannot be an a rooted-1-core of Qs. Assume
that f(Gx, Gy) ≥ |V (Us)|. Since f(Gy, Gk) > f(Gx, Gy) ≥ |V (Us)|, by Lemma 14
D(Qs, Gy) > D(Qs, Gk) and thus Gy cannot be an a rooted-1-core of Qs. Therefore,
the lemma holds.

Property 2. For 1 ≤ x < y ≤ k, if f(Gx, Gy) > |V (Uk)|, then Gx cannot be an a
rooted-1-core of Qk, Qk+1, . . . , Qd−1.

Proof. Let Qs be any of Qk, Qk+1, . . . , Qd−1. Since f(Gx, Gy) > |V (Uk)| ≥
|V (Us)|, we obtain from Lemma 14 that D(Qs, Gx) > D(Qs, Gy). Therefore, Gx
cannot be an a rooted-1-core of Qs and the lemma holds.

Now we are ready to present our algorithm for computing allAk, k = 1, 2, . . . , d−1.
Before describing the details, it is outlined as follows. In the algorithm, we compute
the d − 1 rooted-1-cores, one at a time, from A1 to Ad−1. To save time, during the
computation, we maintain a sequence D of paths. Initially, D is an empty sequence.
Before the computation of Ak, D is adjusted by adding Gk and removing according
to Properties 1 and 2 some paths that we can ignore while computing Ak, Ak+1, . . . ,
and Ad−1. After the adjustment, we then compute Ak as the Gi in D that minimizes
D(Qk, Gi).

We begin to describe the details. The path sequence D is implemented as a deque
[12], which is defined as a doubly linked list allowing O(1) time insertion and deletion
at both ends. We denote by |D|, Head, and Tail, respectively, the number of paths,
the first path, and the last path in D. And, for any path w in D, we denote by w.next
and w.last , respectively, the next and last paths of w in D. Initially, D is empty.
Before computing Ak, we adjust D by performing the following procedure.

Procedure ADJUST(D, k)
begin
1. while |D| ≥ 2 and (f(Tail.last, Tail) < f(Tail,Gk) do /* Remove paths

according to Property 1 *//
2. delete Tail from D
3. Add Gk to the tail of D
4. while |D| ≥ 2 and (f(Head,Head.next) > UN [k]) do /* Remove paths

according to Property 2 *//
5. delete Head from D
6. return(D)

end.
In our algorithm, d−1 calls to ADJUST(D, k) are performed, for k = 1, 2, . . . , d−

1, respectively. Each Gk is added to D only once, while line 3 of the procedure call
ADJUST(D, k) is performed. The addition of each Gk is at the tail of D. Thus, at
any time all the paths Gi in D are in an increasing order of i, which guarantees the
validity of the deletion in lines 1–2 and 4–5. Since each Gk is added to D only once,
there are d − 1 insertion operations involved in the d − 1 calls. The total number of
deletion operations on D involved in the d − 1 calls is not larger than the number
of insertion operations. Therefore, in total, there are O(d) insertion and deletion
operations involved in the d − 1 calls. Each insertion and deletion on a deque takes
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O(1) time. Thus, the d−1 calls to ADJUST(D, k), k = 1, 2, . . . , d−1, take O(d) time
in total.

After calling ADJUST(D, k), we computeAk as theGi inDminimizingD(Qk, Gi).
The following lemma is very helpful to the computation.

Lemma 15. Let (Gi1 , Gi2 , . . . , Gir ) be the path sequence stored in D after calling
ADJUST(D, k), 1 ≤ k < d. If |D| = 1 we have D = (Gk); otherwise we have
UN [k] ≥ f(Gi1 , Gi2) ≥ f(Gi2 , Gi3) ≥ · · · ≥ f(Gir−1 , Gir ).

Proof. We prove this lemma by induction on k. Clearly, D = (G1) after calling
ADJUST(D, 1). This establishes the lemma for k = 1.

Suppose, by induction, that the lemma is true for all values less than k. We show
that the lemma holds for k as well. Let (Gj1 , Gj2 , . . . , Gjs) be the path sequence
stored in D after calling ADJUST(D, k−1). We consider two cases: s = 1 and s > 1.

Case 1. s = 1. By the induction hypothesis, D = (Gk−1) after calling
ADJUST(D, k − 1). After performing lines 1–3 of ADJUST(D, k), we have D =
(Gk−1, Gk). In lines 4–5, if UN [k] ≥ f(Gk−1, Gk), no deletion is performed on D;
otherwise Gk−1 is deleted from D. Clearly, in either case, the lemma holds.

Case 2. s > 1. By the induction hypothesis, UN [k − 1] ≥ f(Gj1 , Gj2) ≥
f(Gj2 , Gj3) ≥ · · · ≥ f(Gjs−1 , Gjs). Suppose that t, 0 ≤ t < s, paths are deleted from
D in lines 1–2 of ADJUST(D, k). If t = s− 1, with a proof similar to Case 1, we can
show that the lemma holds. Assume that t < s− 1. According to the loop-repetition
condition in line 1, we have f(Gjs−t−1

, Gjs−t
) ≥ f(Gjs−t

, Gk). Thus, after line 3, we
have D = (Gj1 , Gj2 , . . . , Gjs−t , Gk) and UN [k − 1] ≥ f(Gj1 , Gj2) ≥ f(Gj2 , Gj3) ≥
· · · ≥ f(Gjs−t−1 , Gjs−t

) ≥ f(Gjs−t
, Gk). Suppose that u, 0 ≤ u ≤ s − t, paths are

deleted from D in lines 4–5. We have either u = s − t or UN [k] ≥ f(Gju+1 , Gju+2).
That is, we have either D = (Gk), or D = (Gju+1 , Gju+2 , . . . , Gjs−t , Gk) and UN [k] ≥
f(Gju+1

, Gju+2
) ≥ f(Gju+2

, Gju+3
) ≥ · · · ≥ f(Gjs−t−1

, Gjs−t
) ≥ f(Gjs−t

, Gk). In
either case, the lemma holds.

After calling to ADJUST(D, k), we compute Ak as the path Gi in D min-
imizing D(Qk, Gi). In the following, we show that the computation takes O(1)
time. Let (Gi1 , Gi2 , . . . , Gir ) be the path sequence stored in D after calling to
ADJUST(D, k). If |D| = 1, trivially, we compute Ak as Head in O(1) time. As-
sume |D| > 1. By Lemma 15, we have UN [k] ≥ f(Gi1 , Gi2) ≥ f(Gi2 , Gi3) ≥
· · · ≥ f(Gir−1 , Gir ). Combining this and Lemma 14, we conclude that D(Qk, Gi1) ≤
D(Qk, Gi2) ≤ D(Qk, Gi3) ≤ · · · ≤ D(Qk, Gir ). Thus, in case |D| > 1, we can also
compute Ak as Head in O(1) time.

We summarize the above discussion in the following algorithm and lemma.
Algorithm 3. ROOTED 1 CORES(T,C)
Input: a tree T = (V,E) and a path C = (c1, c2, . . . , cd) in T
Output: a c1 rooted-1-core of each T

ck+1
ck , 1 ≤ k < d

begin
1. (g1, g2, . . . , gd−1, L, UN,UD,GD)← PREPROCESS(T,C)
2. D ← Ø
3. for each k, 1 ≤ k < d, do
4. D ← ADJUST(D, k)
5. Ak ← Head of D.
6. return(A1, A2, . . . , Ad−1)

end.
Lemma 16. Let (c1, c2, . . . , cd) be a path in T . In O(n) time, we can find a c1

rooted-1-core for every T
ck+1
ck , 1 ≤ k < d.
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Lemma 16 completes the proof of Theorem 4.

4.2. Finding a 2-core. In this subsection, we show that a 2-core of T can be
determined in O(n) time.

Let C = (c1, c2, . . . , cd) be a 1-core of T . Let Si, i = 1, 2, . . . , d, be the d subtrees
obtained from T by removing all edges in C such that Si is the one containing ci.
Becker and Perl [3] gave the following important property for finding a 2-core.

Theorem 5 (see [3]). There exists a 2-core {A,B} of T satisfying one of the
following conditions:

(1) A = C and B is a ci-point core for some subtree Si, 2 ≤ i ≤ d− 1, or
(2) (A,B) is a (c1, cd) rooted-2-core of T .
On the basis of Theorem 5, the problem of finding a 2-core of a tree can be solved

as follows.
Algorithm 4. TWO CORE(T )
Input: a tree T = (V,E)
Output: a two-core of T
begin
1. C = (c1, c2, . . . , cd)← a 1-core of T
2. for each i, 2 ≤ i ≤ d− 1, do
3. Ri ← POINT CORE(Si, ci)
4. R← the Rz with D(C ∪Rz) = min2≤i≤d−1 D(C ∪Ri)
5. (X,Y )← ROOTED 2 CORE(T, c1, cd)
6. If D(C ∪R) ≤ D(X ∪ Y )
7. then return ({C,R})
8. else return ({X,Y })

end.
The running time of Algorithm 4 is analyzed as follows. By Lemma 2, line 1 takes

O(n) time. By Theorem 3, the for-loop in lines 2–3 take O(
∑

2≤i≤d−1 |V (Si)|) = O(n)
time. Lines 4 and 5, respectively, take O(d) and O(n) time. Lines 6–8 take O(1) time.
Therefore, the worst-case time complexity of Algorithm 4 is O(n).

Theorem 6. A 2-core of a weighted tree can be found in O(n) time.

5. A parallel algorithm for computing a 2-core. In this section, we propose
a parallel algorithm for computing a 2-core of T on the EREW PRAM. Our parallel
algorithm is described as the work-time presentation framework proposed by JáJá [11].
In this framework, the performance of a parallel algorithm is measured in terms of
two parameters: parallel running time, which is the number of time units required
to execute the algorithm, and work, which is the total number of operations used
by the algorithm. The main advantage of the framework is that we do not need to
deal with processors. Given a parallel algorithm running in time R(n) and using a
total of W (n) operations, this algorithm can be simulated on a k-processor PRAM in
O(W (n)/k + R(n)) time [11]. Our parallel algorithm for the 2-core problem runs in
O(log2 n) time using O(n log n) work on the EREW PRAM. On the CRCW PRAM,
the running time can be further improved to O(log log n log n).

Tree contraction [1], list ranking [4], and the Euler-tour technique [25] are well-
known techniques for computing tree functions in parallel. They are the major tech-
niques used in this section. Readers not familiar with them may refer to [11] for a
clear description. We assume that the data structure representing T is adjacent lists
to which the above techniques can be applied efficiently.

A bottom-up computation tree is a 4-tuple (T,D,M,F ), where T is a rooted tree
whose leaves are labeled with values in D, whose internal nodes are labeled with
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operators in M , and whose edges are labeled with functions in F . The value of an
internal node v is defined as val(v) = ⊕(f1(val(u1)), f2(val(u2)), . . . , fs(val(us))),
where f1, f2, . . . , fs are the functions associated with the edges connecting v and its
children u1, u2, . . . , us, and ⊕ is the operator label of v. A top-down computation tree
is a 3-tuple (T,D, F ), where T is a rooted tree whose root is labeled with a value in
D and whose edges are labeled with functions in F . The value of a node v in this
computation tree is val(v) = f(val(u)), where u is the parent of v and f is the function
associated with the edge (u, v). Given a bottom-up or top-down computation tree, the
computation tree evaluation problem is to compute the values of all nodes in the tree.
Abrahamson et al. [1] showed that tree contraction is applicable to the computation
tree evaluation problem for both bottom-up and top-down computation trees. They
gave sufficient conditions for which the computation tree evaluation problem can be
solved in O(log n) time using O(n) work on the EREW PRAM. Please refer to [1] for
the details.

The computation of nvu, s
v
u, l

v
u, and mv

u for all (u, v) ∈ E can be done by giving
reduction to the evaluation of computation trees and then applying tree contraction.
For example, consider the computation of mv

u. Assume that all nvu are computed
and T is rooted at an arbitrary vertex. For each v ∈ V , let p(v) be the parent of v.

Computing m
p(v)
v for all v ∈ V can be done by defining a bottom-up computation

tree on T according to the following equation:

mp(v)
v = d(p(v), v)× np(v)v + max

u is a child of v
mv
u.

On the other hand, computing mv
p(v) for all v ∈ V can be done by defining a top-down

computation tree on T according to the following equation:

mv
p(v) = d(v, p(v))× nvp(v) +max

{
m
p(v)
p(p(v)), max

u is a child of p(v),u �=v
mv
u

}
.

Note that all the values of m
p(v)
v should be computed first such that except m

p(v)
p(p(v)),

all quantities at the right-hand side of the above equation are constant. Then, by
applying tree contraction twice, once for each computation tree, all mv

u are computed
in O(log n) time using O(n) work. We have the following lemma.

Lemma 17. The values of nvu, s
v
u, l

v
u, and mv

u of every (u, v) ∈ E can be computed
in O(log n) time using O(n) work.

We start to present the parallel algorithm. First, we show that Algorithm 1,
which was proposed in section 3 for computing an r-point core, can be implemented
in O(log n) time using O(n) work. Using the Euler-tour technique, line 1 orients T into
a rooted tree in O(log n) time using O(n) work [11]. By Lemma 17, line 2 requires
the same time and work. Clearly, the values of all d(r, v) can be easily computed
by defining a top-down computation tree. For each v ∈ V , we can compute D(v) as∑
u∈N(v) s

v
u by applying list ranking to the adjacent list of v. Thus, line 3 can be done

in O(log n) time using O(n) work. Line 4 computes a u rooted-1-core Mu for every
T ru , which can be done in O(log n) time using O(n) work [18]. The implementation
of line 5 is slightly complicated. Consider a fixed Mu. Let Mu be (v1 = u, v2, . . . , vs).
By using list ranking, two arrays A and B are constructed, where each A[i] stores
the vertex vi, 1 ≤ i ≤ s, B[0] stores the edge (r, v1), and each B[i] stores the edge
(vi, vi+1), 1 ≤ i < s. Each A[i] has a key d(r, vi)/2 and each B[i] has a key d(r, vi).
Then we arrange all vertices in A and edges in B into an array C by the increasing
order of the keys, which is done by performing an optimal parallel merging algorithm
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[11]. Then, for each vertex B[i] in C, a bisector of P (r,B[i]) can be computed by
finding the nearest edge A[j] to its left in C. The finding is similar to the computation
of prefix maximums, which can be done optimally in logarithmic time based upon the
balanced binary tree method [11]. Therefore, line 5 requires O(log n) time using O(n)
work. To avoid concurrent accesses in line 9, during the finding of bisectors, each
edge (u, v) is associated with the values of nvu, n

u
v , s

v
u, s

u
v , d(r, u), and d(r, v) such

that while a vertex v obtains its bisector (xv, yv) it also obtains copies of sxv
yv , n

xv
yv , s

xv
yv ,

nxv
yv , d(r, xv), and d(r, yv). The for-loop in lines 6–10 and the computation in lines 11

and 12 can be easily implemented in O(log n) time using O(n) work. Therefore, we
have the following lemma.

Lemma 18. Finding an r-point core of a tree can be done in O(log n) time using
O(n) work on the EREW PRAM.

Next, let us consider Algorithm 2, which we proposed in subsection 4.1 for finding
a (a, b) rooted-2-core of T . In the following, we show that it can be implemented in
O(log2 n) time using O(n log n) work. Let C, Qi, Ui, Si, gi, Gi, and Ai, 1 ≤ i < d,
be defined as in subsection 4.1. According to Algorithm 2, to show that it can be
implemented in O(log2 n) time using O(n log n), we need only to show that computing
all Ak, k = 1, 2, . . . , d − 1, requires the same time and work. Unfortunately, the
algorithm we had proposed in subsection 4.1 for the computation is purely sequential.
In the following, we present another algorithm for the computation. The presented
algorithm takes O(n log n) sequential time and thus is less efficient. However, it is
based upon the divide-and-conquer strategy and thus is of high parallelism.

For each k, let ik be the smallest integer satisfying 1 ≤ ik ≤ k and D(Qk, Gik) =
min1≤i≤kD(Qk, Gi), 1 ≤ k < d. According to Lemma 12, we can compute A1, A2, . . .,
Ad−1, respectively, as Gi1 , Gi2 , . . . , Gid−1

. Therefore, the computation of A1, A2, . . .,
Ad−1 can be done by determining the values of i1, i2, . . . , id−1. The following lemma
is useful for the determination.

Lemma 19. i1 ≤ i2 ≤ · · · ≤ id−1.
Proof. We prove this lemma by showing that ik ≤ ik+1 for any fixed k, 1 ≤

k < d − 1. By contradiction, suppose that ik > ik+1. Since D(Qk+1, Gik+1
) =

min1≤i≤k+1{D(Qk+1, Gi)}, we have D(Qk+1, Gik+1
) ≤ D(Qk+1, Gik), from which we

have f(Gik+1
, Gik) ≤ |V (Uk+1)| by Lemma 14. Since |V (Uk+1)| < |V (Uk)|, we have

f(Gik+1
, Gik) < |V (Uk)|. Therefore, by Lemma 14, D(Qk, Gik+1

) < D(Qk, Gik),
which contradicts the definition of ik. Thus, ik ≤ ik+1 and the lemma holds.

Given four integers l, m, x, y such that 1 ≤ l < m < d and x ≤ il ≤ im ≤ y, we
can compute the values of il, il+1, . . . , im by the following procedure, which is designed
based upon the divide-and-conquer strategy according to Lemma 19.

Procedure. COMPUTE INDICES(l,m, x, y)
begin
1. z ← �(l +m)/2�
2. iz ← the smallest integer satisfying x ≤ iz ≤ y, iz ≤ z, and D(Qz, Giz ) is

minimized
3. if l < z then COMPUTE INDICES(l, z − 1, x, iz)
4. if z < m then COMPUTE INDICES(z + 1,m, iz, y)

end.
Recall that using arrays L, UN , UD, and GD, the value of D(Qk, Gi) can be

computed in O(1) sequential time for any two given integers k and i, 1 ≤ i ≤ k < d.
Therefore, assuming that the arrays are computed, it is easy to see that the above
procedure takes O((y − x) × log(m − l)) sequential time. Line 2 determines the



208 BIING-FENG WANG

minimum among O(y − x) values, which can be done in O(log(y − x)) time using
O(y−x) work. The two recursive calls, respectively, in lines 3 and 4 can be performed
in parallel. Therefore, with some efforts, we can show that the above procedure can be
implemented in O(log(y−x)×log(m−l)) time using O((y−x)×log(m−l)) work on the
EREW PRAM. Note that a careful implementation of line 2 is required for avoiding
concurrent accesses to the arrays L, UN , UD, and GD. We omit the details here.

Our new algorithm for computing Ak, k = 1, 2, . . . , d− 1, is as follows.
Algorithm 5. D&C ROOTED 1CORES(T,C)
Input: a tree T = (V,E) and a path C = (c1, c2, . . . , cd)
Output: a c1 rooted-1-core of each T

ck+1
ck , 1 ≤ k < d

begin
1. (g1, g2, . . . , gd−1, L, UN,UD,GD)← PREPROCESS(T,C)
2. COMPUTE INDICES (1, d− 1, 1, d− 1)
3. return(Gi1 , Gi2 , . . . , Gid−1

)
end.
Clearly, Algorithm 5 takes O(n log n) sequential time. Its performance on the

EREW PRAM is analyzed as follows. PREPROCESS(T,C) can be easily imple-
mented in O(log n) time using O(n) work. Line 2 requires O(log2 d) time using
O(d log d) work. Therefore, Algorithm 5 runs in O(log2 n) time using O(n log n) work.
Applying this result to Algorithm 2, we obtain the following lemma.

Lemma 20. A (a, b) rooted-2-core of a tree can be found in O(log2 n) time using
O(n log n) work on the EREW PRAM.

A 1-core of a tree can be found in O(log n) time using O(n) work [18]. By applying
this result and Lemmas 18 and 20 to Algorithm 4, which we proposed for computing
a 2-core, we obtain the following theorem.

Theorem 7. A 2-core of a weighted tree can be computed in O(log2 n) time using
O(n log n) work on the EREW PRAM.

On the CRCW PRAM model, the minimum of a set of n elements can be found in
O(log log n) time using O(n) work [11]. In case the n elements are integers bounded by
a polynomial in n, the parallel running time can be further reduced to O(1) without
increasing the work [11]. Applying these results to line 2 of COMPUTE INDICES,
we can obtain the following theorems.

Theorem 8. A 2-core of a weighted tree can be computed in O(log log n log n)
time using O(n log n) work on the CRCW PRAM.

Theorem 9. Given an unweighted tree T , a 2-core of T can be computed in
O(log n) time using O(n log n) work on the CRCW PRAM.

6. Concluding remarks. The definition of the p-core problem restricts the p
paths selected as a p-core to be mutually disjoint. In case the restriction is removed
the p-core problem becomes an easy one. Define an intersection p-core of T as a set
of p paths {I1, I2, . . . , Ip} in T minimizing D(I1 ∪ I2 ∪ · · · ∪ Ip). Becker and Perl [3]
had studied the case p = 2 of the intersection p-core problem and gave an O(n2)
time algorithm. In the following, we show that the intersection p-core problem can
be solved in linear time, even when p is a variable.

Let {I1, I2, . . . , Ip} be an intersection p-core of T . Let S be the subtree of T
induced by the vertices in V (I1)∪V (I2)∪· · ·∪V (Ip). Clearly, S has at most 2p leaves
and S ⊇ (I1∪I2∪· · ·∪Ip). Since S has at most 2p leaves, it is easy to see that we can
find a set of p paths Y1, Y2, . . . , Yp such that S = Y1 ∪ Y2 ∪ · · · ∪ Yp. Note that Yi, i =
1, 2, . . . , p, are not necessary to be mutually disjoint. Since S ⊇ (I1 ∪ I2 ∪ · · · ∪ Ip),
we have D(Y1 ∪ Y2 ∪ · · ·Yp) = D(S) ≤ D(I1 ∪ I2 ∪ · · · ∪ Ip). Since {I1, I2, . . . , Ip} is



2-CORE OF A TREE 209

an intersection p-core, we have D(Y1 ∪ Y2 ∪ · · · ∪ Yp) = D(I1 ∪ I2 ∪ · · · ∪ Ip) and thus
{Y1, Y2, . . . , Yp} is also an intersection p-core. From the above discussion, we conclude
that the problem of finding an intersection p-core of T is equivalent to the problem of
finding a subtree S of T such that S has at most 2p leaves and S minimizes D(S) over
all subtrees of T having at most 2p leaves. Shioura and Uno [21] had solved the latter
problem in O(n) time. Furthermore, Wang [27] solved the problem in O(log n log∗ n)
time using O(n) work on the EREW PRAM. Thus, the intersection p-core problem
can be solved in O(log n log∗ n) time using O(n) work on the EREW PRAM.

Finally, we conclude this paper by giving directions for further studies. One
direction is to solve the 2-core problem in polylogarithmic time using O(n) work on
the PRAM. Another direction is to design an o(n2) time p-core algorithm for constant
p > 2. Hakimi, Schmeichel, and Labbe [9] showed that after the addition of length-
constraint, the general p-core problem becomes NP-hard. One direction for further
studies is to find an efficient approximation algorithm for the constrained problem.
Hakimi, Schmeichel, and Labbe’s proof is under the assumption that T is weighted.
Therefore, to study the complexity of the constrained problem on an unweighted tree
is also a possible direction.

Acknowledgments. The author expresses his gratitude to the anonymous ref-
erees for their valuable suggestions and to Prof. Arie Tamir for pointing out that the
general p-core problem had been solved in O(pn2) time by Novik in [17].
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Abstract. Let G be a graph on n vertices and suppose that at least εn2 edges have to be
deleted from it to make it k-colorable. It is shown that in this case most induced subgraphs of G on
ck ln k/ε2 vertices are not k-colorable, where c > 0 is an absolute constant. If G is as above for k = 2,

then most induced subgraphs on
(ln(1/ε))b

ε
are nonbipartite, for some absolute positive constant b,

and this is tight up to the polylogarithmic factor. Both results are motivated by the study of testing
algorithms for k-colorability, first considered by Goldreich, Goldwasser, and Ron in [J. ACM, 45
(1998), pp. 653–750], and improve the results in that paper.

Key words. graph coloring, property testing
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1. Introduction. Suppose that for a fixed integer k and a small ε > 0, a graph
G = (V,E) on n vertices is such that at least εn2 edges should be deleted to make G
k-colorable. Clearly G contains many non-k-colorable subgraphs. Some of them are
probably quite small in order. What is then the smallest non-k-colorable subgraph of
G? How many small non-k-colorable subgraphs are there?

In order to address the above questions quantitatively, we introduce a suitable
notation. First, we call a graph G on n vertices ε-robustly non-k-colorable or alterna-
tively ε-far from being k-colorable if after deleting any subset of less than εn2 edges
of G the remaining graph is still not k-colorable. Of course, it follows that G itself is
not k-colorable. Define

fk(G) = min{|V0| : V0 ⊆ V (G), G[V0] is non-k-colorable} ,

where G[V0] denotes the subgraph of G induced by V0. If χ(G) ≤ k, we set fk(G) =∞.
For an integer n and 0 < ε < 1/(2k) let

fk(n, ε) = max{fk(G) : G is an ε-robustly non-k-colorable graph on n vertices} .

(Note that the assumption ε < 1/(2k) can be made without loss of generality as every
graph on n vertices is at most n2/(2k) edges far from being k-colorable). Similarly,
let

gk(G) = min{t : if R ⊆ V (G) is chosen uniformly at random from all subsets of V of

size t, then Pr[χ(G[R]) > k] ≥ 1/2} .
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Again, gk(G) =∞ if χ(G) ≤ k. Let

gk(n, ε) = max{gk(G) : G is an ε-robustly non-k-colorable graph on n vertices} .

Obviously, fk(G) ≤ gk(G) for any graph G, thus implying fk(n, ε) ≤ gk(n, ε).
A few comments on the above definitions are in order. The function fk(n, ε)

represents a very natural extremal graph theory problem, seeking to link the size
of a smallest non-k-colorable subgraph of a non-k-colorable graph with its distance
from the set of k-colorable graphs. For example, for k = 2 one can say that if the
odd girth (i.e., the minimal length of an odd cycle) of a graph G on n vertices is
more than f2(n, ε) for some ε > 0, then G can be made bipartite by deleting less
than εn2 edges. The function gk(n, ε) says that if G is ε-robustly non-k-colorable,
then it contains not only one but very many non-k-colorable subgraphs on gk(n, ε)
vertices. The somewhat artificial looking definition of gk(n, ε) actually has a very
natural algorithmic background in terms of graph property testing, as considered
by Goldreich, Goldwasser, and Ron in [3]. Applied to the particular problem of
testing k-colorability, their approach reads as follows. Suppose our aim is to design an
algorithm, which for a given (large enough) integer n and a (small enough) parameter
ε > 0, distinguishes with high probability between an input graph on n vertices, which
is k-colorable, and that in which at least εn2 edges should be deleted to create a k-
colorable graph. The algorithm can query whether or not a specific pair of vertices
of the input graph is connected by an edge. In general, it is NP-complete to check
k-colorability for any k ≥ 3. However, given the assumption that the input is either
k-colorable or very far from it, one may hope to devise very efficient randomized
algorithms. We refer the reader to [3] for a general discussion of graph property
testing.

Returning to the definition of the function gk(n, ε), one can propose the following
very simple algorithm for testing k-colorability. Given an input graph G = (V,E),
choose uniformly at random gk(n, ε) vertices of G and denote the chosen set by R.
Now, check whether the induced subgraph G[R] is k-colorable. If it is, output “G is
k-colorable”; otherwise output “G is not-k-colorable.” Note that if G is k-colorable,
then every subgraph of it is k-colorable as well. Thus, in this case we always output a
correct answer. On the other hand, if G is ε-far from being k-colorable, it follows from
the definition of gk(n, ε) that a sample of size gk(n, ε) induces a non-k-colorable graph
with probability at least 1/2. Therefore, in this case we output a correct answer with
probability at least 1/2. Having in mind the above discussion, sometimes we will refer
to bounding the function gk(n, ε) as testing k-colorability.

The problem of estimating fk(n, ε) and gk(n, ε) will be treated in this paper as an
asymptotic one. This means that whenever needed we will assume that the number
of vertices n is large enough, and that the robustness parameter ε is small enough,
but fixed as n is growing.

It is important to observe that the values of the functions defined above are
of interest only for graphs with a quadratic number of edges. Indeed, if G has n
vertices and is ε-far from being k-colorable, it contains at least εn2 edges. This
observation, together with the asymptotic nature of the problem, prompts the use
of graph theoretic methods designed for dense graphs, most notably the well-known
regularity lemma of Szemerédi [6].

Let us now survey the previous research on these problems. Somewhat surpris-
ingly it turned out that the above defined function gk(n, ε) can be bounded from
above by a function of ε only. This has been proven by Bollobás et al. [2] for the case
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k = 2 and by Rödl and Duke [5] for every k ≥ 3. Both papers rely on the regularity
lemma. As is the case with most applications of the regularity lemma, the resulting
bounds are extremely fast growing functions of 1/ε (towers of height polynomial in
1/ε), thus making the results hardly applicable from the practical point of view. Note
that both papers [2] and [5] formulate their results in a somewhat different language
and do not define the function gk(n, ε) explicitly.

For k = 2, Komlós showed in [4] that f2(n, ε) = O(1/ε1/2). This result is easily
seen to be tight by considering a blow-up of an odd cycle of length about 1/ε1/2. (A
graph G on n vertices is a blow-up of a graph H on m vertices with vertex set V (H) =
{v1, . . . , vm} if the vertex set of G can be partitioned into m disjoint sets V1, . . . , Vm,
each of size |Vi| = n/m, so that Vi and Vj are joined completely if (vi, vj) ∈ E(H)
and are not joined by any edge otherwise.)

Motivated by testing k-colorability, Goldreich, Goldwasser, and Ron [3] came up
with a completely different approach for bounding gk(n, ε). Using direct combina-
torial arguments (and thus avoiding the regularity lemma), they were able to prove
that g2(n, ε) = O(log(1/ε)/ε2)—a tremendous progress compared to the bound of [2].
Similarly, they proved that for every fixed k ≥ 3 one has gk(n, ε) = O(k2 log k/ε3).
The difference between the cases k = 2 and k ≥ 3 can be intuitively explained by the
fact that for k = 2 the family of minimal non-2-colorable graphs coincides with the
family of odd cycles and is thus very simple to describe. For every k ≥ 3 the family
of minimal non-k-colorable graphs (usually called (k+1)-color-critical graphs) is very
complicated. Goldreich, Goldwasser, and Ron did not discuss the function fk(n, ε)
and did not provide any separate bounds for it.

The purpose of the present paper is to provide improved bounds for both functions
fk and gk. We prove the following results.

Theorem 1.
1. For all ε ≤ 1/9, g2(n, ε) ≥ 1

6ε .
2. For every fixed k ≥ 3 and every small enough ε > 0, for infinitely many n

one has

gk(n, ε) ≥ fk(n, ε) ≥ 1

110

(
1

330 ln k

) 2
k−2 1

ε
.

.
Theorem 2.

g2(n, ε) ≤
34 ln4

(
1
ε

)
ln ln

(
1
ε

)
ε

.

Theorem 3. For every fixed k ≥ 3,

gk(n, ε) ≤ 36k ln k

ε2
.

These results improve upon the above mentioned bounds of Goldreich, Gold-
wasser, and Ron [3]. Still, for every k ≥ 3, the gap between the lower and the upper
bounds, given by Theorems 1 and 3, respectively, remains quite substantial.

The rest of the paper is organized as follows. In section 2 we discuss lower
bounds for the functions fk, gk and prove Theorem 1. In section 3 we prove Theorem
2. Section 4 is devoted to proving Theorem 3. Section 5 contains some concluding
remarks and open problems.
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During the course of the proof we make no serious attempts to optimize the
constants involved. Also, we omit routinely floor and ceiling signs to simplify the
presentation. Given a graph G = (V,E) and a vertex v ∈ V , we denote by N(v) the
set of all neighbors of v in G. The degree of v in G is denoted by d(v). For a vertex
v ∈ V and a subset U ⊂ V , we denote by d(v, U) the number of neighbors of v in U .
The number of edges of G spanned by U , i.e., having both endpoints in U , is denoted
by e(U). A vertex v ∈ V (G) is dominated by a subset S ⊆ V (G) if v has a neighbor
inside S in G. Recall that, whenever needed, the number of vertices n is assumed to
be large enough, while ε > 0 is small enough.

2. Lower bounds. In this section we prove lower bounds for the functions fk, gk.
For many graph testing problems, a lower bound of order 1/ε is very natural and can
be proven quite easily. The property of k-colorability is not an exception, and the
bound gk(n, ε) ≥ c(k)/ε can be obtained by considering a complete (k + 1)-partite
graph with one part of size Θ(εn) and the other k of equal size. This is how we prove
Theorem 1, part 1. For every k ≥ 3 we prove a stronger statement. Namely, we show
the existence of an ε-robustly non-k-colorable graph on n vertices in which, for a fixed
constant c = c(k), not only does a typical subset of size c/ε induce a k-colorable graph
but every subgraph of this order is k-colorable. This is done by considering a random
graph with a linear number of edges and then blowing it up to get an ε-robustly non-
k-colorable graph which is locally k-colorable. This supplies a lower bound for the
function fk(n, ε). It is worth noting here that the case k = 2 is different, as it follows
from the result of Komlós [4] that f2(n, ε) = Θ(1/ε1/2).

Proof of Theorem 1, part 1. Given n, ε, let G be a complete tripartite graph with
parts V0, V1, V2 of sizes |V0| = 3εn, |V1| = |V2| = 1−3ε

2 n. Notice that each edge of G
participates in at most (1− 3ε)n/2 triangles. As the total number of triangles in G is
3ε(1− 3ε)2n3/4, at least 3ε(1− 3ε)n2/2 ≥ εn2 edges should be deleted to destroy all
the triangles of G. Therefore, G is ε-robustly non-2-colorable. In order to estimate
g2(G), note that if R ⊂ V (G) is such that R ∩ V0 = ∅, then the subgraph G[R] is
bipartite. Thus, in order to have χ(G[R]) = 3, the set R has to hit V0. If R is chosen
uniformly at random from all subsets of V (G) of size r, then

Pr[R ∩ V0 = ∅] ≤
|V0|

(
n−1
r−1

)
(
n
r

) =
|V0|r
n

= 3εr .

Thus, requiring Pr[χ(G[R]) = 3] ≥ 1/2 implies 3εr ≥ 1/2, which in turn gives
r ≥ 1/(6ε). As G is ε-robustly nonbipartite, the statement follows.

Proof of Theorem 1, Part 2. Let us define

c1 = c1(k) =

(
1

3

) 2
k−2

(
1

40e ln k

) k
k−2

,

c2 = c2(k) = 2 ln k ,

c3 = c3(k) = 40k ln k .

The key ingredient of the proof is the following lemma.
Lemma 2.1. For every fixed k ≥ 3 and a sufficiently large integer m, there exists

a graph H = Hk,m on m vertices having the following properties:
1. Every subset of c1m vertices of H spans a k-colorable graph.
2. Every subset U ⊂ V (H) of size |U | > m/(2k) spans at least c2|U | edges.
3. At least c2m/2 edges need to be deleted from H to create a k-colorable graph.
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Proof. Set p = p(m) = c3/m and consider the random graph G(m, p). This is a
random graph with vertex set {1, . . . ,m} in which every pair 1 ≤ i < j ≤ m is an
edge independently and with probability p. We will prove that almost surely G(m, p)
has the desired properties. In this proof the term “almost surely” (or a.s. for short)
means that the probability that all desired properties hold tends to 1 as m→∞.

In order to prove that the first assertion of the lemma holds a.s. for the random
graph G(m, p), note that a non-k-colorable graph contains a subgraph in which all
degrees are at least k. Thus, if the first assertion fails, the random graph contains a
subset U of size |U | ≤ c1m, spanning at least (k/2)|U | edges. The probability of this
event can be bounded from above by the following expression:

c1m∑
i=k+1

(
m

i

)((i
2

)
k
2 i

)
p

k
2 i <

c1m∑
i=k+1

(em
i

)i(ei
k

) ki
2

p
ki
2 =

c1m∑
i=k+1

[
em

i

(
eip

k

) k
2

]i
.

Denote the ith summand of the last sum by ai. Then, if m
1/2 ≤ i ≤ c1m we have

ai ≤
[
em

c1m

(ec1c3m
km

) k
2

]i
=

[
e

c1

(ec1c3
k

) k
2

]i
=

[
e
(ec3

k

) k
2

c
k
2−1
1

]i

=

[
e(40e ln k)

k
2
1

3

(
1

40e ln k

) k
2

]i
=
(e
3

)i
= o(m−1) .

If 4 ≤ i < m1/2, we get

ai <

[
em1/2

( ec3
km1/2

) k
2

]4
=

(
e

k
2 +1(40 ln k)

k
2

m
k
4− 1

2

)4

= o(m−1/2) .

Thus,
∑c1m
i=k+1 ai = o(1), showing that the first part of the lemma holds with high

probability in G(m, p).

For the second part of the lemma, note that for a fixed subset U ⊆ V (G(m, p))
of size |U | = i, the number of edges spanned by U in G(m, p) is a binomial random
variable with parameters

(
i
2

)
and p. Using the well-known Chernoff bounds on the

tails of binomial distribution (cf., e.g., [1, Appendix A]), we get Pr[|E(G[U ])| <(
i
2

)
p− a] < exp{−a2/(2

(
i
2

)
p)}. Therefore, the probability of existence of a subset U ,

violating the assertion of the second part of the lemma, can be bounded from above
by

∑
i>m/2k

(
m

i

)
exp

{
− (
(
i
2

)
p− c2i)

2

2
(
i
2

)
p

}
<

∑
i>m/2k

(em
i

)i
exp

{
−
(
i−1
2 p− c2

)2
i

(i− 1)p

}

<
∑

i>m/2k

(2ek)i exp

{
−m

(
c3
2
i−1
m − c2

)2
c3

}
.

Denote the ith summand in the sum above by bi. Notice that c2 = c3/(20k) ≤
(1/5)(i− 1)c3/(2m) for i > m/(2k). Hence

bi < (2ek)ie
−m

c3

(
2c3(i−1)

5m

)2
< eln(2ek)i− 4c3(i−1)2

25m < e3i ln k−3.2(i−1) ln k = o(m−1) .



216 NOGA ALON AND MICHAEL KRIVELEVICH

Finally, we prove the third part of the lemma. Let V (H) = C1 ∪ · · · ∪ Ck be a
k-partition of the vertex set of H. Then, by part 2 of the lemma,∑

j:|Cj |>m
2k

|{(u, v) ∈ E(H) : u, v ∈ Cj}| ≥
∑

j:|Cj |>m
2k

c2 · |Cj |

= c2m−
∑

j:|Cj |≤m
2k

c2 · |Cj | ≥ c2m

2
.

We have thus proven that the random graph G(m, p), with p as defined above,
has a.s. the desired properties.

In order to prove Theorem 1, part 2, we take the output of Lemma 2.1 and blow
it up to show the existence of a graph with the desired properties. Set

m =
⌊ c2
2ε

⌋
=

⌊
ln k

ε

⌋
.

Assume that ε > 0 is such that the conclusion of Lemma 2.1 holds for m = m(ε) as
defined above. Let H = Hk,m be the graph from Lemma 2.1. Label the vertices of H
by the integers 1, . . . ,m. For an integer n divisible bym, define a graph G = (V,E) on
n vertices as follows. The vertex set V (G) is a union of m disjoint subsets V1, . . . , Vm,
each of size n/m. For each pair 1 ≤ i = j ≤ m, vertices u ∈ Vi, v ∈ Vj are connected
by an edge in G if and only if (i, j) ∈ E(H).

Let us now state some properties of the obtained graph G. First, G is easily seen
to be homomorphic to H. (We say that G1 is homomorphic to G2 if there exists a
mapping φ : V (G1) → V (G2) so that for every edge (u, v) ∈ E(G1), (φ(u), φ(v)) ∈
E(G2).) Therefore, every subgraph of G is homomorphic to a subgraph of H. As a
homomorphism does not decrease the chromatic number, we derive from Lemma 2.1
that every subgraph of G on at most c1m vertices is k-colorable.

Next, we need to estimate the distance from G to the set of k-colorable graphs
on n vertices. Let V = C1 ∪ · · · ∪Ck be a k-partition of V (G) with a minimal number
of monochromatic edges. Denote the latter by s. Consider a random k-partition of
V (H) induced by assigning a color j, 1 ≤ j ≤ k, to a vertex i, 1 ≤ i ≤ m, with
probability |Cj ∩ Vi|/|Vi|. The expected number of monochromatic edges of H under
such a partition is

∑
(i1,i2)∈E(H)

k∑
j=1

|Cj ∩ Vi1 |
|Vi1 |

|Cj ∩ Vi2 |
|Vi2 |

=
1

(n/m)2

k∑
j=1

∑
(i1,i2)∈E(H)

|Cj ∩ Vi1 ||Cj ∩ Vi2 |

=
m2

n2

k∑
j=1

|{(u, v) ∈ E(G) : u, v ∈ Cj}| = m2s

n2
.

As by our assumption on H we have that the distance from H to the family of k-
colorable graphs on m vertices is at least c2m/2, we get s ≥ c2n

2/(2m).
Recalling now the definitions of m and of the constants c1, c2, we conclude that

G has the following properties:
1. G is ε-robustly non-k-colorable.

2. Every subgraph of G on at most c1m = c1c2
2ε = 1

40e (
1

120e ln k )
2

k−2 1
ε vertices is

k-colorable.
This implies Theorem 1, part 2.
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3. Testing bipartiteness. In this section we prove Theorem 2. Our proof
exploits the basic elegant idea of Goldreich, Goldwasser, and Ron [3]. It is, however,
far more involved technically.

Let us first describe briefly the main idea of the argument of Goldreich, Gold-
wasser, and Ron for testing bipartiteness. Let G = (V,E) be an ε-robustly non-
bipartite graph on n vertices. We need to show that a random sample R of size
|R| = Õ(1/ε2) contains a non-2-colorable subgraph (i.e. an odd cycle) with probabil-
ity at least 1/2. The set R will be generated in two stages: R = S ∪ T , where S is a
random subset of size |S| = Õ(1/ε) and T is a random subset of size |T | = Õ(1/ε2).
First, it is easy to see that with probability at least 3/4 such S as above will dominate
most of the vertices of G of degree at least εn/2. We assume that S indeed has this
property. For a partition S = S1 ∪S2, denote by U1 the set of vertices of G of degree
at least εn/2, dominated by S1; also let U2 be the remaining vertices of degree at
least εn/2, dominated by S. We call any edge e ∈ E(G) spanned by U1 or by U2 a
witness for the partition S = S1 ∪ S2. If a random set T contains a witness for every
partition S = S1 ∪ S2, then the union S ∪ T is easily seen to span a nonbipartite
subgraph.

Recall that G is ε-robustly nonbipartite. Therefore, for every partition S =
S1 ∪ S2, dominating most of the vertices of degree at least εn/2, at least one of
the sets U1, U2 should span at least εn2/4 edges, each of them being a witness for
S1 ∪ S2. If we choose the vertices of T of size |T | = Õ(1/ε2) pair after pair, then the
probability that T does not contain a witness for a fixed partition S1 ∪ S2 is at most

2−Ω̃(1/ε) � 2−|S|. As S has 2|S| partitions, by the union bound we obtain that the
probability that T does not contain a witness for one of the partitions is much less
than 2|S| · 2−|S| = 1. This implies that the probability that G[S ∪ T ] is nonbipartite
is at least 1/2.

How tight is the above analysis? At the first stage, Ω̃(1/ε) random vertices are
needed indeed to dominate most of the vertices of G of degree at least εn/2. As
for the second stage, an example of a complete bipartite subgraph K εn

2 ,
n
2
(for the

induced subgraph on U1, say) shows that Ω̃(1/ε2) random vertices are necessary to

catch one of its edges with probability 1−2−Ω̃(1/ε). Note, however, that the subgraph
K εn

2 ,
n
2
has εn/2 vertices of degree n/2. As this degree is much larger than εn/2, we

need to sample only O(1) vertices to dominate most of those high degree vertices.
Thus, in this case the set S of the first stage does not need to be that large. This in
turn reduces the number of partitions of S and makes the requirement for the success
probability for a fixed partition of S much less severe.

Our idea will be to represent the first random subset S of size |S| = Õ(1/ε) as
a union of several subsets S = S1 ∪ · · · ∪ St with t = Õ(ln(1/ε)), where each Si
dominates most of the vertices of G of degree about n/ei. (We denote this set by Ui.)
Each partition S = S1 ∪ S2 then induces partitions of the subsets: Si = S1

i ∪ S2
i and

corresponding partitions Ui = U1
i ∪U2

i of the dominated subsets Ui of V (G). Then if
G is an ε-robustly nonbipartite graph on n vertices, for each partition S = S1 ∪ S2,
one of the sets U li , l = 1, 2, will span Ω̃(εn2) edges. Catching any of them will provide
a desired witness for this partition of S. As all degrees in U li are at most n/ei,
this will allow us to apply the so-called generalized Janson inequality to show that
if |T | = Õ(1/ε), then T catches one of the edges inside U li with probability at least
1−O(2|Si|). Then applying the union bound will prove the desired result.

The actual proof will deviate somewhat from the above outline as we will need
to overcome some further complications.
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In the course of the proof we will need the following lemma.
Lemma 3.1. Let G = (V,E) be a graph on n vertices and let 0 < δ2 < δ1 < 1/2

be constants. Suppose A,B are disjoint subsets of V . Then with probability at least
1/2 a random subset R ⊂ V of size |R| = (6/δ2) ln

2(1/δ1) contains a subset T ⊂ A
having the following properties:

1. |T | ≤ 1
δ1

.
1. Denote

B∗ = {v ∈ B : N(v) ∩ T = ∅} .(3.1)

Then ∑
v∈A: d(v,B∗)>δ1n

d(v,B∗) ≤ δ2n
2 .(3.2)

The lemma asserts the existence of a set T such that if we remove T from A and
the neighbors of T from B most vertex degrees from A to B will be bounded from
above by δ1n.

Proof of Lemma 3.1. We will generate a random subset R in several steps, each
time choosing a random subset Ri of V , where the cardinality of Ri may vary from
step to step. At each step we will update the value of T until we will reach T with
the desired properties. Then R will be a union of all chosen random subsets Ri.

Denote s = ln(1/δ1). Initially we set T = ∅, i = 1. Define B∗ by (3.1). As
long as condition (3.2) is not satisfied we do the following. For 1 ≤ j ≤ s define
Aj = {v ∈ A : ej−1δ1n < d(v,B∗) ≤ ejδ1n}. If for all 1 ≤ j ≤ s one has |Aj | < δ2n

ejδ1s
,

then

∑
v∈A:d(v,B∗)>δ1n

d(v,B∗) =
s∑
j=1

∑
v∈Aj

d(v,B∗)

≤
s∑
j=1

δ2n

ejδ1s
· ejδ1n

= δ2n
2,

a contradiction. Therefore, there exists an index 1 ≤ j0 = j0(i) ≤ s for which
|Aj0 | ≥ δ2n

ej0δ1s
. Choose a random subset Ri ⊂ V of size |Ri| = (ej0δ1s/δ2) ln(2/δ1).

The probability that Ri does not intersect Aj0 is

Pr[Ri ∩Aj0 = ∅] =
(n−|Aj0 |
|Ri|

)
(
n
|Ri|
) ≤

(
1− |Aj0 |

n

)|Ri|
≤ e−

|Aj0
||Ri|
n ≤ δ1

2
.

We call step i successful if Ri ∩ Aj0 = ∅. In this case we choose an arbitrary vertex
vi ∈ Ri ∩Aj0 and denote di = d(vi, B

∗). Note that di > ej0−1δ1n, implying |Ri|/di ≤
(es/(δ2n)) ln(2/δ1). We then add vi to T , update B∗ according to (3.1), and repeat
the above described procedure.

Note that after a successful step has been performed, the size of B∗ is decreased
by at least δ1n. Hence at most 1/δ1 successful steps were executed. Consider the
event where all steps were successful until the end of the above described iterative
procedure. The probability of this event is at least 1 − (1/δ1)(δ1/2) = 1/2. As the
size of T is equal to the number of successful steps, we get |T | ≤ 1/δ1.
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Now define R =
⋃|T |
i=1 Ri. As

∑|T |
i=1 di ≤ |B| ≤ n, the size of R can be bounded

by

|R| =
|T |∑
i=1

|Ri| ≤
|T |∑
i=1

es

δ2n
ln

(
2

δ1

)
di ≤ es

δ2
ln

(
2

δ1

)
≤ e

δ2
ln

(
1

δ1

)
ln

(
2

δ1

)

<
6

δ2
ln2

(
1

δ1

)
.

Now we briefly outline the proof of Theorem 2. A random set R of size |R| =
34 ln4(1/ε) ln ln(1/ε)/ε will be generated in three stages, with each stage producing
its own set of random vertices Rj , j = 1, 2, 3. At the first stage we construct inside
R1 a family of sets {Si}, where each Si has size about e

i ln(1/ε) and dominates most
of the vertices of G with degrees about n/ei. We denote by Ui the set of vertices of
G of degree about n/ei, dominated by Si. Note that Ui is not a subset of R1; in fact,
with high probability most of Ui will be outside R1. At the second stage we use R2

to adjust the families {Si}, {Ui} in such a way that each Si still dominates Ui, and

for each Ui almost all vertices of
⋃i−1
j=1 Uj have their degrees into Ui bounded from

above by n/ei. This is a crucial stage which enables us to complete the union of Si
to a nonbipartite subgraph by choosing a random subset R3 at the third stage.

Let us now introduce some notation. From now until the end of the section we
assume that G = (V,E) is an ε-robustly non-2-colorable graph on n vertices. Let

t = ln

(
1

ε

)
.

Also let, for each 1 ≤ i ≤ t+ 2,

Ii =
( n
ei
,

n

ei−1

]
.

Stage 1: Defining Si’s, Ui’s.
Proposition 3.1. With probability at least 5/6 a random subset R1 of V of

size |R1| = 55t/ε contains t + 2 disjoint subsets S1, . . . , St+2 of cardinalities |Si| =
ei+1t, i = 1, . . . , t+2, so that for each 1 ≤ i ≤ t+2 the number of vertices of G with
degrees in Ii, not dominated by Si, does not exceed εn

4(t+2) .

Proof. For each 1 ≤ i ≤ t + 2 we choose a subset Si ⊂ V of size |Si| = ei+1t
uniformly at random and then take R1 to be the union of the sets Si. Note that with
probability 1− o(1) the sets Si are pairwise disjoint. Also,

t+2∑
i=1

|Si| =
t+2∑
i=1

ei+1t ≤ tet+4 = e4 ln

(
1

ε

)
eln( 1

ε ) <
55 ln

(
1
ε

)
ε

.

Let Xi be a random variable, counting the number of vertices of G with degrees
in Ii, not dominated by Si. If v ∈ V has its degree in Ii, then the probability that v
is not dominated by Si can be estimated from above by(

n−d(v)
|Si|

)
(
n
|Si|
) <

(
1− d(v)

n

)|Si|
< e−

|Si|n
ein = e−

ei+1t

ei = e−et = εe.

By linearity of expectation we get

E[Xi] < nεe <
εn

80(t+ 2)2
.
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By the Markov inequality Pr[Xi >
εn

4(t+2) ] < 1/(20(t+2)). Therefore, the probability

that the family {Si}t+2
i=1 does not satisfy the claim of the lemma is less than (t +

2) 1
20(t+2) + o(1) < 1/6.

Now suppose that the first stage is successful and the family {Si}t+2
i=1 has the

property described in the above proposition. For 1 ≤ i ≤ t+ 2 we define

Ui = {v ∈ V : d(v) ∈ Ii, N(v) ∩ Si = ∅} .
It follows from Proposition 3.1 that

∑
v �∈
⋃t+2

i=1
Ui

d(v) ≤
t+2∑
i=1

∑
v∈V :d(v)∈Ii,N(v)∩Si=∅

d(v) +
∑

v∈V :d(v)≤n/et+2

d(v)

≤
t+2∑
i=1

εn

4(t+ 2)
· n

ei−1
+ n · εn

e2

<
εn2

2(t+ 2)
+

εn2

e2

<
εn2

2
.

Stage 2: Adjusting Si’s, Ui’s. The purpose of this stage is to achieve the
situation in which for all 2 ≤ i ≤ t + 2 most of the degrees of vertices from

⋃i−1
j=1 Uj

to Ui are bounded from above by n/ei−1. We also want Si to dominate Ui and the
size of Si to remain basically unchanged. Our main technical tool is Lemma 3.1.

For i = t + 2 down to 2 we repeat the following procedure. Denote A = U1 ∪
. . . Ui−1, B = Ui, δ1 = 1/ei−1, δ2 = ε/(8(t + 2)). Applying Lemma 3.1 2 ln t times
we get that with probability at least 1 − 1/(6(t + 1)) a random subset R2

i ⊂ V of
size |R2

i | = 12 ln t ln2(1/δ1)/δ2 = 96(t + 2) ln t(i − 1)2/ε contains a subset Ti of size
|Ti| = ei−1 having property (3.2) with A, B, δ1, and δ2 as defined above.

Now we update

Si−1 := Si−1 ∪ Ti ,
Ui−1 := Ui−1 ∪ {v ∈ Ui : N(v) ∩ Ti = ∅} ,
Ui := Ui \ Ui−1 .

Proposition 3.2. After having executed the above loop, with probability at least
5/6, the families {Si}t+2

i=1, {Ui}t+2
i=1 have the following properties:

1. For every 2 ≤ i ≤ t+ 2

∑
v∈
⋃i−1

j=1
Uj , d(v,Ui)>

n

ei−1

d(v, Ui) ≤ εn2

8(t+ 2)
.(3.3)

2. For every 1 ≤ i ≤ t+ 2

|Si| ≤ tei+2.(3.4)

3. For every 1 ≤ i ≤ t+ 2 and for every vertex v ∈ Ui,

d(v) ≤ n

ei−1
.(3.5)
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4. Still ∑
v �∈
⋃t+2

i=1
Ui

d(v) ≤ εn2

2
.(3.6)

Proof. Note that before starting stage 2, all vertices in Ui have their degrees
bounded from above by n/ei−1. Therefore, moving some of them to Ui−1 cannot create

vertices v ∈ ⋃i−1
j=1 Uj for which d(v, Ui) > n/ei−1. Also, as we proceed downwards

from i = t + 2 to i = 2, once we have moved vertices from Ui to Ui−1, the set Ui
remains unchanged. Therefore, (3.3) follows from Lemma 3.1. Similarly, (3.4) follows
from the estimate |Si| ≤ tei+1 before the execution of stage 2 and the fact |Ti+1| = ei.
Note that the new Ui is a subset of the union of the old Uj , j = i, . . . , t+2. As before

stage 2 we have d(v) ≤ n/ei−1 for all v ∈ ⋃t+2
j=i Uj , (3.5) follows. Finally, as the union⋃t+2

i=1 Ui remains the same after stage 2, (3.6) follows from the corresponding property
of the old sets Ui.

Let R2 =
⋃t+2
i=2 R

2
i be the random vertices consumed at stage 2. We have

|R2| =
t+2∑
i=2

|R2
i | =

t+2∑
i=2

96(t+ 2) ln t(i− 1)2

ε
<

33t4 ln t

ε
.

Stage 3: Completing
⋃t+2

i=1 Si to a nonbipartite subgraph. Assume now
that the graph G on n vertices is ε-far from being bipartite. Our aim is to show that
with probability at least 11/12 the union of

⋃t+2
i=1 Si, with Si as defined in the end

of stage 2, and a random subset R3 ⊂ V of an appropriately chosen size forms a
nonbipartite subgraph of G. This will follow easily from the proposition below.

Proposition 3.3. Let G = (V,E) be an ε-robustly nonbipartite graph on n

vertices. Let the subsets {Si}t+2
i=1, {Ui}t+2

i=1 satisfy (3.3)–(3.6). Denote S =
⋃t+2
i=1 Si.

Then with probability at least 5/6 a random subset R3 of size |R3| = 2700t2/ε has
the following property. For every partition S = S1 ∪ S2 of S there exists an edge
e = (u, v) ∈ E(G) with u, v ∈ R3 and both u, v having neighbors in the same Sl for
some l ∈ {1, 2}.

Proof. For a fixed partition S = S1 ∪ S2 we denote, for 1 ≤ i ≤ t + 2, l = 1, 2,
Sli = Sl ∩ Si. We also set U1

i = {v ∈ Ui : N(v) ∩ S2
i = ∅}, U2

i = Ui \ U1
i . Let Gli be

the following graph. The vertex set of Gli is
⋃i
j=1 U

l
j ; an edge e = (u, v) ∈ E(G) is

an edge of Gli if and only if u, v ∈ U li or u ∈ ∪i−1
j=1U

l
j , v ∈ U li , and d(u, U li ) ≤ n/ei−1.

Note that by (3.5) all degrees in Gli are at most n/ei−1.
As the graph G is at least εn2 edges far from any bipartite graph, we get, recalling

(3.6), that either U1 or U2 span at least εn2/4 edges. Therefore, for some 1 ≤ i ≤ t+2,
l ∈ {1, 2} we have

e


i−1⋃
j=1

U lj , U
l
i


+ e(U li ) ≥

εn2

4(t+ 2)
.

A partition (S1, S2) of S is called (i, l)-bad, if |E(Gli)| ≥ εn2/(8(t+2)) and |E(Gl
′
j )| <

εn2/(8(t+ 2)), for all j < i, l′ ∈ {1, 2}. From the definition of Gli we get, using (3.3),
that any partition (S1, S2) is (j, l)-bad for some 1 ≤ j ≤ t+ 2, l ∈ {1, 2}.

Two (j, l)-bad partitions (S1, S2), ((S1)′, (S2)′) are called equivalent if S1
i = (S1

i )
′

for 1 ≤ i ≤ j (and thus U1
i = (U1

i )
′). By (3.4) for a fixed 1 ≤ j ≤ t + 2, the total
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number of equivalence classes of (j, l)-bad partitions, where l ∈ {1, 2}, is at most

2 · 2
∑j

i=1
|Si| ≤ 21+

∑j

i=1
ei+2t ≤ ee

j+3t .

Note crucially that two (j, l)-bad partitions in the same equivalence class have
the same graph Glj . It follows easily from this observation that it is enough to prove

that with probability at least 5/6 the random subset R3 spans an edge of Glj for every
1 ≤ j ≤ t+ 2, every l ∈ {1, 2}, and every equivalence class of (j, l)-bad partitions.

In this proof it is convenient to generate R3 by choosing each vertex v ∈ V
independently with probability p = 2700t2/εn. This will allow us to use the so-called
generalized Janson inequality (see, e.g., [1, Ch. 8]) to estimate the probability that
R3 misses all edges of Glj for some fixed equivalence class of (j, l)-bad partitions.

Consider some fixed equivalence class of (j, l)-bad partitions and its graph Glj .

Note that |E(Glj | ≥ εn2/(8(t+2)) and also that the maximal degree of Glj is bounded

from above by n/ej−1. Denote by Y the random variable counting the number of
edges of Glj , spanned by R3. Then E[Y ] = |E(Glj)|p2. Our aim is to estimate from

above the probability that R3 spans no edges of Glj , i.e., Pr[Y = 0]. A naive analysis

performed by choosing the vertices of R3 pair after pair and requiring that each pair
does not coincide with an edge of Glj gives only Pr[Y = 0] ≤ (1− |E(Glj)|/

(
n
2

)
)|R

3|/2.
We will get a better estimate using the assumption on the maximal degree in Glj . Let

∆ = 2
∑

e�=e′∈E(Gl
j
)

e∩e′ �=∅

Pr[e, e′ ⊂ R3] .

Then

∆ =
∑

e∈E(Gl
j
)

∑
e�=e′∈E(Gl

j
)

e′∩e�=∅

Pr[e, e′ ⊂ R3]

=
∑

e=(u,v)∈E(Gl
j
)

((dGl
j
(u)− 1) + (dGl

j
(v)− 1))p3

<
∑

e∈E(Gl
j
)

2np3

ej−1
=

2|E(Glj)|np3

ej−1
.

By the generalized Janson inequality,

Pr[Y = 0] ≤ e−
(E[Y ])2

3∆ = e−
|E(Gl

j
)|ej−1p

6n ≤ e−
εnej−1p
48(t+2) <

e−e
j+3t

6(t+ 2)
.

Recalling the estimate on the number of equivalence classes of (j, l)-bad partitions,
we conclude that the probability that R3 does not contain an edge of Glj for some
equivalence class is at most

t+2∑
j=1

ee
j+3t e

−ej+3t

6(t+ 2)
= 1/6 .

Now assume that stages 1 and 2 were successful and the set R3 has the property
stated in Proposition 3.3. Then it is easy to see that the spanned subgraph G[S ∪R3]
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is not bipartite. Indeed, let c : S ∪ R3 → {1, 2} be a 2-coloring of S ∪ R. Define a
partition S = S1 ∪ S2 of S by S1 = {v ∈ S : c(v) = 1}, S2 = {v ∈ S : c(v) = 2}.
Then R3 contains an edge e = (u, v) ∈ E(G) with both endpoints u, v connected to
one color class, say S1. If c colors u or v in color 1, we get a monochromatic edge
connecting u or v, respectively, with S1. Otherwise, c(u) = c(v) = 2, but then e
is monochromatic under c. By the above analysis with probability at least 2/3 the
random sets R1 and R2 define a subset S ⊂ R1 ∪ R2 with the properties stated in
Proposition 3.2. Therefore, with probability at least 1/2 the union S ∪ R3 spans a
nonbipartite subgraph of G.

It remains only to estimate the size of the random set R = R1 ∪ R2 ∪ R3. We
have

|R| = |R1|+ |R2|+ |R3| = 55t

ε
+

33t4 ln t

ε
+

2700t2

ε
<

34 ln4
(

1
ε

)
ln ln

(
1
ε

)
ε

.

The proof of Theorem 2 is complete.

4. Testing k-colorability. In this section we prove Theorem 3. It will be con-
venient to generate a random subset R ⊂ V (G) of size |R| = s = 36k ln k/ε2 in s
rounds, each time choosing uniformly at random a single vertex rj ∈ V (G). This in
principle may result in choosing one vertex several times and thus getting a set of
cardinality less than s. However, the probability of this event is o(1), and therefore
the approach for generating R we take here is asymptotically equivalent to choosing
a subset of V of size s uniformly at random.

Our basic approach is similar to the one of Goldreich, Goldwasser, and Ron [3].
At the end of the section we explain the main differences and the reason our argument
saves a factor of Θ(1/ε) in the number of vertices sampled.

Let G be an ε-robustly non-k-colorable graph on n vertices. Suppose we are given
a subset S ⊂ V (G) (of the sample set R) and its k-partition φ : S → [k]; our aim
is to find with high probability inside the next several random vertices a succinct
witness to the fact that φ cannot be extended to a proper coloring of the sample. If
a k-coloring c : V (G) → [k] of G is to coincide with φ on S, then for every vertex
v ∈ V \ S the colors of neighbors of v in S under φ are forbidden for v in c. The
rest of the colors are still feasible for v. It could be that v has no feasible colors left
at all. Such a vertex will be called colorless with respect to S and φ. If the number
of colorless vertices is large, then there is a decent chance that between the next few
random vertices of R there will be one such colorless vertex v∗. Obviously, adding v∗

to S provides the desired witness for nonextendibility of φ.
If the set of colorless vertices is small, then one can show that, as G is ε-far from

being k-colorable, there is a relatively large subset W of vertices (which will be called
restricting) such that adding any vertex v ∈ W to S and coloring it by any feasible
color with regard to φ excludes this color from the lists of feasible colors of at least
Ω(ε)n neighbors of v. If such v is caught in the next few vertices of the random
sample R, then adding v to S and coloring it by any of its feasible colors reduces
substantially the total length of the lists of feasible colors for the vertices of V , thus
helping to approach the first situation, i.e., the case when there are many colorless
vertices. As the reader can guess, the above described process can be represented
by a tree in which every node corresponds to a colorless or restricting vertex v and
each edge corresponds to a feasible color for v. As the degree of such a node can be
as large as k, the size of the tree grows quickly as we proceed with choosing vertices
from R and can reach size exponential in 1/ε. We therefore will need the probability
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of success (i.e., the probability of catching a colorless/restricting vertex) along several
consecutive steps to be exponentially close to 1.

Now we present a formal description of the above argument. First we need to
introduce some notation. We denote the set {1, . . . , k} by [k]. Suppose G = (V,E) is
a graph on n vertices. Given a subset S ⊆ V and its k-partition φ : S → [k], for every
v ∈ V \ S let

Lφ(v) = [k] \ {1 ≤ i ≤ k : ∃u ∈ S ∩N(v), φ(u) = i} .
If S = ∅, we set Lφ(v) = [k] for every v ∈ V . If a k-coloring c : V → [k] of G coincides
with φ on S, then for every v ∈ V \ S the color of v in c belongs to L(v). For this
reason, the set Lφ(v) is called the list of feasible colors for v. A vertex v ∈ V \ S is
called colorless if Lφ(v) = ∅. We denote by U the set of all colorless vertices under
(S, φ).

For every vertex v ∈ V \ (S ∪ U) define
δφ(v) = min

i∈Lφ(v)
|{u ∈ N(v) \ (S ∪ U) : i ∈ L(u)}| .

Thus coloring v by one of the colors from Lφ(v) and then adding it to S results in
deleting this color and thus shortening the lists of feasible colors of at least δφ(v)
neighbors of v outside S.

Claim 4.1. For every set S ⊂ V and every k-partition φ of S, the graph G is at
most (n− 1)|S ∪ U |+∑v∈V \(S∪U) δφ(v) edges far from being k-colorable.

Proof. For every v ∈ S, color v according to φ(v). For every v ∈ U we color
v in an arbitrary color from [k]. For every v ∈ V \ (S ∪ U) we color v in color
i ∈ Lφ(v) for which δφ(v) = |{u ∈ N(v) \ (S ∪ U) : i ∈ Lφ(u)}|. Let us estimate the
number of monochromatic edges under this coloring. The number of monochromatic
edges incident with S ∪ U is at most (n − 1)|S ∪ U |. Every vertex v ∈ V \ (S ∪ U)
has exactly δφ(v) neighbors u ∈ V \ (S ∪ U), whose color list Lφ(v) contains the
color chosen for v. Therefore, v will have at most δφ(v) neighbors in V \ (S ∪ U)
colored in the same color. Hence the total number of monochromatic edges is at most
(n− 1)|S ∪ U |+∑v∈V \(S∪U) δφ(v), as claimed.

Corollary 4.1. If G is an ε-robustly non-k-colorable graph on n vertices, then
for any pair (S, φ), where S ⊂ V (G), φ : S → [k], one has∑

v∈V \(S∪U)

δφ(v) > εn2 − n(|S|+ |U |) ,

where U is the set of colorless vertices for the pair (S, φ).
Given a pair (S, φ), a vertex v ∈ V \ (S ∪ U) is called restricting if δφ(v) ≥ εn/2.

We denote by W the set of all restricting vertices.
Claim 4.2. If G is an ε-robustly non-k-colorable graph on n vertices, then for

every pair (S, φ), where S ⊂ V (G) and φ : S → [k], one has

|U ∪W | > εn

2
− |S| .

Proof. By Corollary 4.1,

εn2−n(|S|+|U |) <
∑

v∈V \(S∪U)

δφ(v) ≤ |W |(n−1)+
∑

v∈V \(S∪U∪W )

δφ(v) < |W |n+n · εn
2

.
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This implies |S| + |U | + |W | ≥ εn/2. As U and W are disjoint, the result fol-
lows.

Now let G be an ε-robustly non-k-colorable graph on n vertices. While choosing
random vertices r1, . . . , rs of R we construct an auxiliary k-ary tree T . To distinguish
between the vertices of G and those of T we call the latter nodes. Each node of T is
labeled either by a vertex of G or by the special symbol #, whose meaning will be
explained soon. If a node t of T is labeled by #, then t is called a terminal node. The
edges of T are labeled by integers from [k].

Let t be a node of T . Consider the path from the root of T to t, not including
t itself. The labels of the nodes along this path form a subset S(t) of V (G). The
labels of the edges along the path define a k-partition φ(t) of S(t) in the natural way:
the label of the edge following a node t′ in the path determines the color of its label
v(t′). The labeling of the nodes and edges of T will have the following property: if t
is labeled by v and v has a neighbor in S(t) whose color in φ(t) is i, then the son of v
along the edge labeled by i is labeled by #. This label indicates the fact that in this
case color i is infeasible for v, given (S(t), φ(t)).

At each step of the construction of T we will maintain the following: all leafs of
T are either unlabeled or are labeled by #. Also, only leafs of T can be labeled by
#. We start the construction of T from an unlabeled single node, the root of T .

Suppose that j − 1 vertices of T have already been chosen, and we are about to
choose vertex rj of R. Consider a leaf t of T . If t is labeled by #, we do nothing
for this leaf. (That is the reason such a t is called a terminal node; nothing will ever
grow out of this node.) Now assume that t is unlabeled. Define the pair (S(t), φ(t))
as described above. Now, for the pair (S(t), φ(t)) we define the set U(t) of colorless
vertices and the set W (t) of restricting vertices as described before. Round j is called
successful for the node t if the random vertex rj satisfies rj ∈ U(t) ∪W (t). If round
j is indeed successful for t, then we label t by rj , create k sons of t, and label the
corresponding edges by 1, . . . , k. Now, if color i is infeasible for rj , given (S(t), φ(t)),
we label the son of t along the edge with label i by #; otherwise we leave this son
unlabeled. Note that if rj ∈ U(t), then none of the colors from [k] is feasible for rj ,
and thus all the sons of t will be labeled by #. This completes the description of the
process of constructing T .

Now we state some properties of T .

Claim 4.3. The depth of T is bounded from above by 2k
ε .

Proof. Let t∗ be a leaf of T . Notice that if the label of a node t of T belongs
to U(t), then all sons of t in T are labeled by # and are terminal nodes. Therefore,
all nodes on the path from the root of T to t∗, but possibly the node immediately
preceding t∗, have their labels in the corresponding sets W (t). Since each vertex
in W (t) is restricting with respect to (S(t), φ(t)), coloring v in any feasible color
decreases the total size of the lists of feasible colors for all vertices of G by at least
εn/2. Therefore, each time when on the path from the root of T to t∗ we leave a node
t, whose label belongs to W (t), the total length of the lists of feasible colors shrinks by
at least εn/2. As initially all k colors are feasible for all vertices, we start with lists of
feasible colors of total length nk. Thus we cannot make more than nk/(εn/2)) = 2k/ε
steps down from the root of T to t∗. This implies that the depth of T is at most
2k/ε.

Claim 4.4. If a leaf t∗ of T is labeled by #, then φ(t∗) is not a proper k-coloring
of S(t∗).

Proof. By the definition of the labeling procedure, let t′ be the father of t∗ in T .
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Let v be the label of t′, and let i be the label of the edge of T connecting t′ and t∗.
Since t∗ is labeled by “#,” i is not a feasible color for v, given (S(t′), φ(t′)). As φ(t∗)
colors v in color i, we get the existence of an edge spanned by S(t∗), incident with v
and monochromatic under φ(t∗).

Claim 4.5. If after round j all leafs of the tree T are terminal nodes, then the
subgraph G[{r1, . . . , rj}] is not k-colorable.

Proof. Notice first that the labels of all nodes of T are either # or vertices from
{r1, . . . , rj}. Let c : {r1, . . . , rj} → [k] be a k-partition of {r1, . . . , rj}. In order
to show that c creates some monochromatic edges in the induced subgraph of G on
{r1, . . . , rj}, we start with the root t0 of T and traverse T guided by c as follows:
while at a node t of T , labeled by v(t) ∈ {r1, . . . , rj}, we move from t to its son along
the edge of T labeled by c(v(t)). Once we reach a terminal node t∗ of T , we then have
S(t∗) ⊆ {r1, . . . , rj} and φ(t∗) coincides with c on S(t∗). As t∗ is a terminal node, it
follows from Claim 4.4 that c is not a proper k-coloring of S(t∗).

Claim 4.6. If G is ε-robustly non-k-colorable graph on n vertices, then after
36k ln k/ε2 rounds with probability at least 1/2 all leaves of T are terminal nodes.

Proof. As every nonleaf node of T has k sons and by Claim 4.3 T has depth
at most 2k/ε, it can be embedded naturally in the k-ary tree Tk, 2kε

of depth 2k/ε.

Moreover, this embedding can be prefixed even before exposing R and T . Note that
the number of vertices of Tk, 2kε

is 1 + k + · · ·+ k
2k
ε ≤ k

2k
ε +1.

Recall that during the construction of the random sample R and the tree T , a
successful round for a leaf t of T results in creating k sons of T . Fix some node t of
Tk, 2kε

. If after 36k ln k/ε2 rounds t is a leaf of T , then the total number of successful

rounds for the path from the root of T to t is equal to the depth of t. As S(t) ⊆ R
and thus |S(t)| = O(1), by Claim 4.2 each round has probability of success at least
ε/3. Therefore, the probability that t is a nonterminal leaf of T after 36k ln k/ε2 steps
can be bounded from above by the probability that the Binomial random variable
B(36k ln k/ε2, ε/3) is less than 2k/ε. The latter probability is at most

exp

{
−
(

12k ln k
ε − 2k

ε

)2
24k ln k
ε

}
< exp

{
−
(

9k ln k
ε

)2
24k ln k
ε

}
= e−

27k ln k
8ε < k−

3k
ε .

Thus, by the union bound we conclude that the probability that some node of Tε, 2kε
is a leaf of T , non labeled by “#,” is at most |(V (Tk, 2kε

)|k− 3k
ε < 1

2 .

Proof of Theorem 3. The proof follows immediately from Claims 4.5 and
4.6.

Note that our proof here is similar to the basic argument of Goldreich, Goldwasser,
and Ron in [3]. They also construct (implicitly) the tree T constructed in the course of
our proof. Their argument can be briefly described as follows: given a current tree T ,
Goldreich, Goldwasser, and Ron require that the next subset Ri of a random sample
R contains, with high probability, for every leaf t ∈ T , a vertex v ∈ U(t) ∪ W (t).
As each random vertex rj hits U(t) ∪W (t) with probability at least ε/3 by Claim

4.2, the probability that for a fixed t ∈ T the next Θ̃(1/ε2) random vertices will

not hit the set U(t) ∪W (t) is at most (1 − ε/3)Θ̃(1/ε2) = 2−Θ̃(1/ε). The number of
leafs of T is at most 2O(1/ε). Therefore, by the union bound the set Rj ⊂ R of

|Rj | = Õ(1/ε2) random vertices hits the set U(t) ∪W (t) for every leaf t ∈ T with

probability 1 − 2O(1/ε)2−Θ̃(1/ε) = 1 − o(ε). Thus, representing R = R1 ∪ · · · ∪ R 2k
ε

with |Rj | = Õ(1/ε2), they ensure that a.s. each time after having chosen the next
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piece Rj of random vertices, all nonterminal leaves of T will get k sons each. As by
Claim 4.3 the depth of T is bounded by 2k/ε, after having chosen all 2k/ε random
pieces R1, . . . , R 2k

ε
, a.s. all leaves of T are terminal nodes. In contrast, in our proof

we require only that along each path in the tree Tk, 2kε
sufficiently many steps will

be successful, not insisting on the regularity of appearance of successful steps. This
results in saving a factor of Θ̃(1/ε).

5. Concluding remarks and open problems. As mentioned in the introduc-
tion, the study of the function gk(n, ε) is motivated by its relevance to the design
of efficient testing algorithms for k-colorability. Thus, Theorem 2 shows that bi-
partiteness can be tested by choosing randomly some Õ(1/ε) random vertices and
by checking if the induced subgraph on them is 2-colorable. Here, as usual, Õ(1/ε)

denotes (log(1/ε))O(1)

ε . Moreover, by Theorem 1, part 1, any bipartiteness testing algo-
rithm that checks induced subgraphs and is a one-way error algorithm (that is, never
errs on bipartite graphs) must check induced subgraphs on at least Ω(1/ε) vertices.

Similarly, Theorem 3 provides, for every fixed k ≥ 3, a one-way error algorithm
that tests k-colorability by checking random induced subgraphs on O(1/ε2) vertices.
Both algorithms improve the results in [3].

It will be nice to close the gap between our upper and lower bounds for the
functions gk(n, ε) and fk(n, ε) for k ≥ 3. It is plausible to conjecture that for every
fixed k ≥ 3, gk(n, ε) = Õ(1/ε) and fk(n, ε) = Õ(1/ε). This remains open.

Finally we note that Goldreich, Goldwasser, and Ron measure the complexity of
their algorithms for graph property testing by the number of pairs of vertices (u, v) of
the input graph G queried by the algorithm. The query complexity of our algorithms
for testing k-colorability is Õ(1/ε2) for k = 2 and (̃1/ε4) for k ≥ 3. It is easy to prove
a lower bound of Ω(1/ε) for testing k-colorability. It would be quite interesting to
obtain tighter bounds for the query complexity of this problem.
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Abstract. The multicovering radii of a code are recently introduced natural generalizations of
the covering radius measuring the smallest radius of balls around codewords that cover all m-tuples
of vectors. In this paper we prove a new identity relating the multicovering radii of a code to a
relativized notion of ordinary covering radius. This identity is used to prove new bounds on the
multicovering radii of particular codes.
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1. Introduction and definitions. The concept of multicovering radius was
introduced by Klapper [5] in the context of studying the existence of stream ciphers
secure against a large class of attacks. Let C be a code of length n and m be a positive
integer. The m-covering radius of C is the smallest integer r such that every set of
m vectors in Fn is contained in at least one ball of radius r around a codeword in C.

We denote the m-covering radius of a code C by Rm(C). Then R(C) := R1(C)
is the covering radius of C. For results on the covering radius, we refer to the book
by Cohen et al. [1]. For earlier results on multicovering radii, see [4, 5, 6].

In general we are interested in various extremal values associated with this notion:

tm(n) = Rm(Fn) = the smallest m-covering radius among length n codes.

tm(n,K) = the smallest m-covering radius among (n,K) codes, i.e., codes of

length n with cardinality K.

Km(n,R) = the smallest cardinality of a length n code with m-covering radius R.

	m(a,R) = the smallest length of a linear code with codimension a and m-covering

radius R.

When m = 1 we sometimes omit the subscript m. As usual, when we are concerned
only with linear codes, parentheses are replaced by square brackets and the size K
is replaced by the dimension k. As with the classical covering radius, a variety of
bounds are known for these quantities [5, 6], but precise values are known only in a
few cases.

There are, of course, relationships among these values. These can be proved by
straightforward generalizations of the arguments used by Cohen et al. [1].

Lemma 1.1. For positive integers m, n, R, a, k, and n0 we have the following:
1. If 	m(a,R) ≤ n0 and n ≥ n0, then tm(n, 2n−a) ≤ R.
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2. If Km(n,R) ≤ K ≤ 2n, then tm(n,K) ≤ R.
3. If Km(n,R) > K, then tm(n,K) > R.

The purpose of this paper is to derive new bounds by relating the multicovering
radii of a code to a relativized notion of covering radius. We obtain the following
results: new upper bounds and, in some cases, precise values for Rm(Fn); precise
values for R3(Hr), where Hr is the Hamming code of degree r; lower bounds for
Rm(C) for certain values of m; and an upper bound on Rm(C) in terms of the
minimum distance of C.

For generality, we define the notion of relativized covering radius for multicovering
radii, although we use only the ordinary covering radius version in this paper.

Definition 1.2. Let C and S be codes of length n, and let m be a positive
integer. Then the m-covering radius of S relative to C, Rm(S,C) is the smallest
integer r such that for every c1, . . . , cm ∈ C there is an x ∈ S such that d(ci, x) ≤ r
for all i = 1, . . . ,m. We also let tm(s, C) = min{Rm(S,C) : |S| = s}.

Note that Rm(S,Fn) = Rm(S) and tm(s,Fn) = tm(n, s).

2. A fundamental identity. In this section we prove a new identity relating
the m-covering radius of a code C to the covering radii of cardinality m codes relative
to C. For any code S, we denote the set of word-complements of elements of S by S̄.
(The complement of a word x is x+ 111 . . . 1 by definition.)

Theorem 2.1. Let C be a code of length n. Then

Rm(C) = n− t1(m,C).

Proof. Let S be any (n,m) code. Then

R1(S̄, C) ≥ t1(m,C),(1)

with equality for at least one such S. Therefore there is some c ∈ C such that for
every x ∈ S̄, d(c, x) ≥ t1(m,C). This is the same as saying that there is some c ∈ C
such that for every x ∈ S, d(c, x) ≤ n − t1(m,C). Since this holds for every (n,m)
code S, we have Rm(C) ≤ n− t1(m,C).

If equality holds in (1), then for every c ∈ C there is an x ∈ S̄ such that d(c, x) ≤
t1(m,C). This is the same as saying that for every c ∈ C there is an x ∈ S such that
d(c, x) ≥ n − t1(m,C). Thus Rm(C) ≥ n − t1(m,C). Since (1) holds with equality
for at least one S, we have Rm(C) = n− t1(m,C).

For C = Fn we obtain the following corollary, which is essentially a restatement
of Theorem 19.4.4 of Cohen et al. [1] (cf. also Theorem 19.4.2).

Corollary 2.2. For all natural numbers n,m ≥ 1, tm(n) = Rm(Fn) = n −
t1(n,m).

Proof. This follows from Theorem 2.1 with C = Fn and the fact that t1(m,F
n) =

t1(n,m).
Thus bounds on t1(n,m) give bounds on Rm(Fn). It was previously shown [5]

that

Rm(Fn) ≥ n+ 	log2(m)
 − 1

2
(2)

for all m ≤ 2n. Since t1[n, k] ≥ t1(n, 2
k), an upper bound on t1(n,m) or t1[n, k] also

gives us a lower bound on Rm(C) for any length n code C. Furthermore, by Lemma
1.1, a bound of the form 	1(a,R) = 	(a,R) ≤ n0 gives a bound R2n−a(C) ≥ n−R for
any n ≥ n0 and any C of length n. Similarly,K1(n,R) ≤ k if and only ifRk(C) ≥ n−R
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Table 1
Lower bounds on R2k (C).

k t[n, k] R2k (C) ≥ if

1

⌊
n

2

⌋ ⌈
n

2

⌉
n ≥ 1

2

⌊
n− 1

2

⌋ ⌈
n + 1

2

⌉
n ≥ 2

3

⌊
n− 2

2

⌋ ⌈
n + 2

2

⌉
n ≥ 3

4

⌊
n− 4

2

⌋ ⌈
n + 4

2

⌉
n ≥ 4, n �= 5

5

⌊
n− 5

2

⌋ ⌈
n + 5

2

⌉
n ≥ 5, n �= 6

6 ≤
⌊
n− 8

2

⌋ ⌈
n + 8

2

⌉
n ≥ 14

7 ≤
⌊
n− 9

2

⌋ ⌈
n + 9

2

⌉
n ≥ 19

8 ≤
⌊
n− 16

2

⌋ ⌈
n + 16

2

⌉
n ≥ 127

2p + 1 ≤
⌊
n− 2p

2

⌋ ⌈
n + 2p

2

⌉
n ≥ 22p − 1

2p ≤
⌊
n− 2p−1/2

2

⌋ ⌈
n + 2p−1/2

2

⌉
n ≥ 22p−1

for every code of length n. Many such bounds are known, and they are well surveyed
by Cohen et al. [1]. We summarize the implications for the m-covering radius of Fn

in several tables. Table 1 is a corollary of Theorems 5.2.3, 5.2.7, 5.2.10, 5.2.16, and
5.2.21 in [1]. Here C is any code of length n. We also have t1[5, 4] = t1[6, 5] = 1;
so R16(C) ≥ 4 if C has length 5, and R32(C) ≥ 5 if C has length 6. The first three
lines of the table actually follow from inequality (2). In fact, this earlier result gives
equality in these cases.

Another set of bounds arises from bounds on 	(a, b). Table 2 arises from Theorems
5.3.7, 5.4.27, 5.4.28, and 5.4.29 in [1].

3. Corollaries. It is known from Klapper [5] that for all n ≥ 3

R2(F
n) = R3(F

n) =

⌈
1

2
n

⌉

and

R4(F
n) = R5(F

n) =

⌈
1

2
(n+ 1)

⌉
.
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Table 2
Lower bounds on R2a (C) for large a.

n ≥ m ≥ a R2a (C) ≥

22m+1 − 2m − 1 1 n− 4m n− 2

22m+1 + 22m − 2m − 2 2 n− 4m− 1 n− 2

22m+2 − 2m − 2 2 n− 4m− 2 n− 2

22m+2 + 22m+1 − 2m − 2 2 n− 4m− 3 n− 2

27 · 2m−4 − 1 4 n− 2m n− 2

5 · 2m−1 − 1 1 n− 2m− 1 n− 2

155 · 2m−6 − 2 6 n− 3m n− 3

152 · 2m−6 − 1 9 n− 3m n− 3

3 · 2m − 1 7 n− 3m− 1 n− 3

1024 · 2m−8 − 1 4 n− 3m− 2 n− 3

822 · 2m−8 − 2 8 n− 3m− 2 n− 3

821 · 2m−8 − 1 13 n− 3m− 2 n− 3

47 · 2m−4 − 1 11 n− 4m n− 4

896 · 2m−8 − 2 8 n− 4m− 1 n− 4

896 · 2m−8 − 3 10 n− 4m− 1 n− 4

895 · 2m−8 − 1 15 n− 4m− 1 n− 4

992 · 2m−8 − 2 8 n− 4m− 2 n− 4

992 · 2m−8 − 3 10 n− 4m− 2 n− 4

991 · 2m−8 − 1 15 n− 4m− 2 n− 4

1248 · 2m−8 − 3 10 n− 4m− 3 n− 4

1247 · 2m−8 − 1 15 n− 4m− 3 n− 4

Using Corollary 2.2 and the known results about K(n,R), the minimum cardinality
of a binary code of length n and covering radius R, we can determine R6(F

n) and
R7(F

n).

Theorem 3.1. For all n ≥ 4 we have

R6(F
n) =

⌈
1

2
(n+ 1)

⌉

and

R7(F
n) =

⌈
1

2
(n+ 2)

⌉
.



232 IIRO HONKALA AND ANDREW KLAPPER

Proof. We know—see Cohen, Lobstein, and Sloane [2] and Honkala [3]—that
K(2R+2, R) = 4 for all R ≥ 1, K(2R+3, R) = 7 for all R ≥ 1, and K(2R+4, R) ≥ 8
for all R ≥ 0.

By Lemma 1.1 this implies that t1(n, 6) = 1
2 (n− 1) for odd n ≥ 5 and t1(n, 6) =

1
2 (n− 2) for even n ≥ 4. Hence t1(n, 6) =

⌊
1
2 (n− 1)

⌋
and, by Corollary 2.2,

R6(F
n) = n− t1(n, 6) =

⌈
1

2
(n+ 1)

⌉
.

Similarly, t1(n, 7) = 1
2 (n − 3) for all odd n ≥ 5 and t1(n, 7) = 1

2 (n − 2) for even
n ≥ 4. Hence t1(n, 7) =

⌊
1
2 (n− 2)

⌋
and, by Corollary 2.2,

R7(F
n) = n− t1(n, 7) =

⌈
1

2
(n+ 2)

⌉
.

Using Corollary 2.2 and the results in section 12.5 of Cohen et al. [1] we obtain
asymptotic results on Rm(Fn). For instance, using Theorems 12.5.1 (sphere-covering
bound) and 12.5.10 (from Lovász, Spencer, and Vesztergombi [7]) we obtain the fol-
lowing two theorems.

Theorem 3.2. For all n and m,

Rm(Fn) ≤ 1

2
n+

√
n log2m ln 2/2.

Theorem 3.3. For all n and m,

Rm(Fn) ≤ 1

2
n+ 12

√
m.

4. On the 3-covering radius of Hamming codes. Let Hr denote the Ham-
ming code of order r. It was shown by Klapper [5] that for any m ≥ 2 and r ≥ 2,

2r−1 ≤ Rm(Hr) ≤ 2r−1 + cm,

where cm is a constant depending only on m. It was also shown that Rm(H2) = 3 for
m ≥ 2; for r ≥ 3 we have R2(Hr) = 2r−1; and for m = 3, 4, 5 we have

2r−1 ≤ Rm(Hr) ≤ 2r−1 + 1.

However, in this last case the precise value was unknown. In this section, using
Theorem 2.1, we determine exactly the 3-covering radius of the Hamming codes. The
proof is based on the following lemma.

Lemma 4.1. A binary code of odd length n, cardinality three, and covering radius
1
2 (n− 1) contains a word-complement pair.

Proof.
Step 1. We first show that the covering radius of the code consisting of the three

codewords

c1 11 . . . 1 00 . . . 0 00 . . . 0
c2 00 . . . 0 11 . . . 1 00 . . . 0
c3 00 . . . 0︸ ︷︷ ︸ 00 . . . 0︸ ︷︷ ︸ 11 . . . 1︸ ︷︷ ︸ ,

α β γ
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where α ≤ β ≤ γ equals

t = α+

⌊
β + γ

2

⌋
.

For every x ∈ Fn we have d(x,C) ≤ ⌊ 1
2 (d(x, c2) + d(x, c3))

⌋ ≤ t. On the other

hand, take x ∈ Fn which has α ones in the beginning, then
⌈

1
2 (α+ β)

⌉
ones among

the next β and
⌈

1
2 (α+ γ)

⌉
ones among the last γ coordinates. Then

d(x, c1) =

⌈
1

2
(α+ β)

⌉
+

⌈
1

2
(α+ γ)

⌉
,

d(x, c2) = α+

(
β −

⌈
1

2
(α+ β)

⌉)
+

⌈
1

2
(α+ γ)

⌉
=

⌊
1

2
(α+ β)

⌋
+

⌈
1

2
(α+ γ)

⌉
,

and

d(x, c3) = α+

⌈
1

2
(α+ β)

⌉
+

(
γ −

⌈
1

2
(α+ γ)

⌉)
=

⌈
1

2
(α+ β)

⌉
+

⌊
1

2
(α+ γ)

⌋
.

Because d(x, c1) ≥ d(x, c2), it suffices to show that d(x, c2) ≥ t and d(x, c3) ≥ t. If β
and γ have the same parity, then d(x, c2) and d(x, c3) both equal t. If β and γ have
different parities, then t = α + 1

2 (β + γ − 1), and exactly one of d(x, c2) and d(x, c3)
equals t and the other t+ 1. Hence d(x,C) = t, proving that C has covering radius t.

Step 2. Now assume that we have a code of odd length n with three codewords and
covering radius 1

2 (n− 1). By taking a suitable translate, if necessary, we may assume
that in each coordinate all codewords have 0’s or at most one of the codewords has 1.
Assume that the number of identically zero coordinates is i and that by puncturing
these i coordinates we obtain the code C in Step 1 of length n − i. By Step 1, the
covering radius of our original code equals

s = i+ α+

⌊
1

2
(β + γ)

⌋
,

and in particular

s ≥ i+
⌊

1

2
(n− i)

⌋
>

1

2
(n− 1)

if i > 0. Hence i = 0 and

s =

⌊
1

2
(n+ α)

⌋
>

1

2
(n− 1)

unless α = 0. Hence α = 0, and c2 is the complement of c3.
Theorem 4.2. t1(3,Hr) = 1

2 (n− 1) = 2r−1 − 1 for all r ≥ 3.
Proof. Assume that C consists of three codewords c1, c2, and c3 of length n =

2r − 1 such that the balls of radius 1
2 (n− 3) = 2r−1 − 2 centered at the codewords of

C contain all the codewords of the Hamming code Hr. Because the covering radius
of the Hamming code is one, this implies that the balls of radius 2r−1 − 1 centered
at the words c1, c2, and c3 cover the whole space Fn. By the previous lemma this
is only possible if the set {c1, c2, c3} contains a word-complement pair: say, c2 is the



234 IIRO HONKALA AND ANDREW KLAPPER

complement of c3. However, we know that R2(Hr) = 1
2 (n+ 1) = 2r−1 for r ≥ 3 and

that there is a codeword c ∈ Hr such that d(c, c2), d(c, c3) ∈ { 1
2 (n−1), 1

2 (n+1)}. The
Hamming code is self-complementary: it is linear and the all-one vector is a codeword
because the sum of all columns in its parity check matrix is the zero column. Therefore
also c ∈ Hr. Neither c nor c is contained in the spheres B(n−3)/2(c2) and B(n−3)/2(c3).
Since their mutual distance is n, they cannot both belong to B(n−3)/2(c1) either. This

contradiction proves that t1(3,Hr) ≥ 1
2 (n− 1). The opposite inequality is clear.

Theorem 4.3. R3(Hr) = 1
2 (n+ 1) = 2r−1 for all r ≥ 3.

Proof. This now immediately follows from Theorems 2.1 and 4.2.

5. A sphere bound.
Theorem 5.1. Suppose C is a code with length n, and m < |C|. Then

Rm(C) ≤ n− 1

2
d0,

where d0 is the largest minimum distance among the (m+ 1)-element subcodes of C.
In particular, if the minimum distance of C is d, then Rm(C) ≤ n− 1

2d.
Proof. By Theorem 2.1 it suffices to prove that t1(m,C) ≥ 1

2d0. If not, t1(m,C) <
1
2d0, which is impossible because we know that C has an (m+1)-element subcode C0

with minimum distance d0 and therefore no ball Bt(x) with t < 1
2d0 can cover more

than one element of C0.
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Abstract. Partial cubes are defined as isometric subgraphs of hypercubes. For a partial cube
G, its crossing graph G# is introduced as the graph whose vertices are the equivalence classes of
the Djoković–Winkler relation Θ, two vertices being adjacent if they cross on a common cycle. It
is shown that every graph is the crossing graph of some median graph and that a partial cube G
is 2-connected if and only if G# is connected. A partial cube G has a triangle-free crossing graph
if and only if G is a cube-free median graph. This result is used to characterize the partial cubes
having a tree or a forest as its crossing graph. An expansion theorem is given for the partial cubes
with complete crossing graphs. Cartesian products are also considered. In particular, it is proved
that G# is a complete bipartite graph if and only if G is the Cartesian product of two trees.

Key words. isometric subgraph, hypercube, partial cube, crossing graph, median graph,
triangle-free graph, Cartesian product of graphs
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1. Introduction. A partial cube is a connected graph that admits an isometric
embedding into a hypercube. Partial cubes have first been investigated in the 1970s
by Graham and Pollak [13], who used them as a model for a communication network.
By now, the structure of partial cubes is relatively well understood. Djoković [10]
characterized these graphs via convexity of certain vertex partitions. He also intro-
duced the relation Θ on the edge set of a graph. This relation was later used by
Winkler [28] to characterize the partial cubes as those bipartite graphs for which Θ is
transitive. Chepoi [8] followed with an expansion theorem for partial cubes. Another
characterization of partial cubes was obtained by Avis [4]; cf. also [27]. Partial cubes
have found several applications. See, for instance, [11] for connections with oriented
matroids and [9, 21] for recent applications to chemical graph theory. An important
subclass of the class of partial cubes is that of the median graphs (see [24, 25]); cf. [22].
Among the median graphs the cube-free median graphs stand out; see, for instance,
[5, 20, 23].

The fastest known recognition algorithm for partial cubes is of complexity O(mn),
where n and m are the number of vertices and edges of a given graph. Since for partial
cubes m ≤ (n log n)/2 (cf. [2, 3, 12, 19]), this complexity reduces to O(n2 log n). The
first such algorithm is due to Aurenhammer and Hagauer [2, 3]. Another more general
algorithm for recognizing partial Hamming graphs (isometric subgraphs of Cartesian
products of complete graphs) of complexity O(mn) is given in [1]. Applying the
canonical isometric embedding theory of Graham and Winkler [14], a simple algorithm
for recognizing partial Hamming graphs of the same complexity can be obtained; see
[17, 19]. However, only a trivial lower bound O(m) for recognizing partial cubes
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Slovenia (sandi.klavzar@uni-lj.si). This author’s research was supported by the Ministry of Educa-
tion, Science, and Sport of Slovenia under grant 0101-P-504.

‡Econometrisch Instituut, Erasmus Universiteit, P.O. Box 1738, 3000 DR Rotterdam, The Nether-
lands (hmmulder@few.eur.nl). This author’s research was supported by the Ministry of Education,
Science, and Sport of Slovenia and the University of Maribor, Slovenia.

235
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is known. This contrasts with the recognition problem for median graphs, where
the connection between median graphs and triangle-free graphs [20] provides strong
evidence that the fastest known recognition algorithms for median graphs [15, 19] are
close to being optimal.

In this paper we are interested in the structure of the Θ-classes of a partial cube
G. An important feature is whether two Θ-classes cross or not. We say that two
Θ-classes F1 and F2 cross in G if edges of F2 occur in both the components of G−F1.
The crossing graph G# of a partial cube G has the Θ-classes of G as its vertices, where
two vertices of G# are joined by an edge whenever they cross as Θ-classes in G.

In the next section we recall concepts needed later and collect basic properties of
the relation Θ. Our results are presented in sections 3–6. We start with a theorem
asserting that every connected graph is the crossing graph of some partial cube, even
the crossing graph of some median graph. Thus at first sight the notion of a crossing
graph may not seem very interesting. However, appearances are deceptive. There
is a nontrivial relationship between the structure of a partial cube and that of its
crossing graph. For instance, we prove the following results for partial cubes G: “G
is 2-connected if and only if its crossing graph is connected,” “the crossing graph of
G is triangle-free if and only if G is a cube-free median graph,” “the crossing graph
of G is a tree if and only if G is a 2-connected cube-free median graph with some
forbidden subgraphs,” and “the crossing graph of G is a complete bipartite graph if
and only if G is the Cartesian product of two trees.” Along the way some other types
of graphs, such as C4-trees and C4-cactoids, are considered. Moreover, we characterize
the partial cubes with a complete graph as crossing graph. We conclude this paper
with a number of open problems.

2. Preliminaries. For u, v ∈ V (G), let dG(u, v) denote the length of a shortest
path (also called geodesic) in G from u to v. A subgraph H of a graph G is an
isometric subgraph if dH(u, v) = dG(u, v) for all u, v ∈ V (H). The interval I(u, v)
between two vertices u and v in G is the set of all vertices on shortest paths between u
and v. A subgraph H of G is convex if we have I(u, v) ⊆ V (H) for any u, v ∈ V (H).

The Cartesian product G✷H of two graphs G and H is the graph with vertex set
V (G) × V (H) and (a, x)(b, y) ∈ E(G✷H) whenever either ab ∈ E(G) and x = y or
a = b and xy ∈ E(H). The n-cube Qn is the Cartesian product of n copies of the
complete graph on two vertices K2.

For a graph G = (V,E) and X ⊆ V , let 〈X〉 denote the subgraph induced by X.
For two vertices u and v on a path P , we denote the subpath of P between u and v
by u→ · · ·P · · · → v.

The Djoković–Winkler relation Θ [10, 28] is defined on the edge set of a graph in
the following way. Edges e = xy and f = uv of a graph G are in relation Θ if

dG(x, u) + dG(y, v) 
= dG(x, v) + dG(y, u) .

Relation Θ is reflexive and symmetric. If G is bipartite, then Θ can be defined as
follows: e = xy and f = uv are in relation Θ if

d(x, u) = d(y, v) and d(x, v) = d(y, u) .

Among bipartite graphs, Θ is transitive precisely for partial cubes (i.e., isometric
subgraphs of hypercubes), as has been proved by Winkler in [28].

Let G = (V,E) be a connected, bipartite graph. For any edge ab of G we write
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Wab = {w ∈ V | dG(a,w) < dG(b, w)},
Uab = {w ∈Wab | w has a neighbor in Wba},
Fab = {e ∈ E | e is an edge between Wab and Wba},
Gab = 〈Wab〉.

Note that if G is bipartite, then we have V = Wab ∪Wba. For a bipartite graph G,
the sets Fab are called colors and the subgraphs Gab, Gba form the split of the color
Fab. The subgraph 〈Uab〉 is the side of color Fab in Gab, and 〈Uba〉 is the opposide of
〈Uab〉. Djoković [10] characterized the partial cubes as the connected bipartite graphs
in which all subgraphs Gab are convex.

We now state three well-known facts about the relation Θ; cf. [18].

Lemma 2.1. Let G be a connected, bipartite graph, and let ab be any edge of G.
Then Fab is the set of all edges in relation Θ with ab.

Note that for partial cubes Lemma 2.1 asserts that Θ-classes coincide with the
sets Fab, a fact that will be used implicitly in what follows.

We say that a color occurs in a subgraph H if there is an edge of that color in H.

Lemma 2.2. Let C be an isometric cycle of a partial cube G, and let Fab be a
color which occurs in C. Then Fab occurs in C exactly twice (in two antipodal edges).

Lemma 2.3. Suppose P is a path connecting the endpoints of an edge e. Then P
contains an edge f with eΘf .

The conclusion of Lemma 2.3 holds also if P is a walk, as every walk containing
the endpoints of e contains a path between the endpoints of e; cf. Lemma 2.4 of [19].

For our purposes it is convenient to have statements available that are slightly
stronger than the above lemmas. These may also be part of folklore, but to make the
paper self-contained we provide them with proofs.

Lemma 2.4. Let G be a partial cube. Then a path P in G is a geodesic if and
only if no color occurs twice on P .

Proof. If P is a geodesic, then, by the definition of Θ, all colors on P must be
distinct.

Conversely, let P = v0 → v1 → · · · → vn be a path on which all colors are
distinct. Assume that P is not a geodesic with n as small as possible. Note that
n ≥ 3. Then we have d(v0, vn−1) = d(v1, vn) = n − 1, d(v0, vn) = n − 2. Let Q be a
v0, vn-geodesic. By minimality, P and Q are internally disjoint. By Lemma 2.3, the
edge v0v1 is in relation Θ with an edge of the cycle composed of P and Q. Moreover,
v1 → v0 → · · ·Q · · · → vn is a path of length n− 1 and thus a geodesic; hence v0v1 is
not in relation Θ with any edge of Q. So P contains two edges of the same color, a
contradiction.

Let C be an even cycle of length 2k. We call two edges on C antipodal if their
endpoints are joined by two paths of length k − 1 on C.

Lemma 2.5. Let G be a partial cube. Then C is an isometric cycle in G if and
only if every color on C occurs only on antipodal edges.

Proof. Let C be an isometric cycle of length 2k in G. Then every path of length
at most k on C is a geodesic in G, so that, by Lemma 2.4, all colors on such paths
occur exactly once. Since each color on C occurs at least twice, it follows that each
color on C occurs precisely on antipodal edges.

Conversely, let C be a cycle of length 2k in G such that each color on C occurs
precisely on antipodal edges. Then, by Lemma 2.4, each path of length at most k
must be a geodesic in G. Hence C is isometric in G.

Lemma 2.6. Let G be a partial cube, and let Fab be a color of G. If uv, xy are
edges of Fab, with u, x on one side and v, y on the opposide, and if P is any u, x-
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geodesic and Q is any v, y-geodesic, then P and Q contain the same colors, and each
color occurs at most once on P and at most once on Q.

Proof. By definition of a color, a geodesic contains every color at most once.
Take any color on P , say, edge e is of that color. Then u → · · ·P · · · → x → y →
· · ·Q · · · → v → u is a cycle through e, whence constitutes a path between the ends
of e. Hence, by Lemma 2.3, it contains an edge f of the same color. Since f cannot
be on P , it is on Q. Conversely, every color on Q occurs on P .

A median graph is, by definition, a connected graph such that, for every triple of
its vertices, there is a unique vertex lying on a geodesic (i.e., shortest path) between
each pair of the triple. It follows immediately from the definition that median graphs
are bipartite. By now, the class of median graphs has been well investigated and
a rich structure theory is available; see the recent survey [22]. Median graphs are
partial cubes (see [24, 25]), whence relation Θ is transitive on median graphs. They
may be characterized as the connected bipartite graphs in which all subgraphs 〈Uab〉
are convex; cf. [6]. Another relevant feature of median graphs is that any isometric
cycle of length 2n is contained in an induced Qn. (This again can be deduced directly
from the definition.)

3. Crossing graphs. Let G be a partial cube. We say that two colors cross if
their splits G1, G2 and H1, H2 satisfy Gi ∩ Hj 
= ∅ for 1 ≤ i, j ≤ 2; see [23]. The
crossing graph G# of a partial cube G has the colors of G as its vertices, and two
vertices are adjacent if they cross as colors.

At first sight it is not clear which graphs are crossing graphs. However, using the
following concept, the answer is clear. For a graph G, the simplex graph S(G) of G
is the graph whose vertices are the complete subgraphs of G (including the empty
graph), two vertices being adjacent if, as complete subgraphs of G, they differ in
exactly one vertex; see [7]. It is easily seen that a simplex graph is a median graph,
and hence a partial cube, by checking that it satisfies the definition of a median graph.
Theorem 3.1. Every graph is a crossing graph of some median graph. More

precisely, for any graph G we have G = S(G)#.
Proof. Let V (G) = {1, 2, . . . , n}. Since vertex ∅ of S(G) is of degree n, we infer

that S(G)# has at least n vertices. Let uv be an arbitrary edge of S(G). Without loss
of generality we may assume that u = {1, 2, . . . , k} and v = {1, 2, . . . , k+1}. It is now
straightforward to check that the edge (∅, {k + 1}) is in relation Θ with uv. It follows
that S(G)# has exactly n vertices and that vertex i of G corresponds to the color of
edge (∅, {i}) in S(G). Assume that vertices 1 and 2 are adjacent in G. Then ∅, {1},
{2}, and {1, 2} induce C4 in S(G), and so the corresponding colors cross. Finally, if
1 is not adjacent to 2, then they are not in the same complete subgraph of G, which
implies that the corresponding colors do not cross in S(G).

There is another (simplified) construction showing that every graph is the crossing

graph of some partial cube. For a graph G, let G̃ be the graph obtained from G by
subdividing all edges of G and adding a new vertex z joined to all the original vertices
of G; see [20]. Then we can argue similarly as above that for any graph G we have

G = G̃#.
To prove relations between properties of a partial cube and properties of its cross-

ing graph, we need some simple criteria for colors to determine whether they cross.
Lemma 3.2. Let G be a partial cube. Then any cycle of G contains two crossing

colors.
Proof. Let C be any cycle of G. Note that each color occurs an even number of

times on C. Choose two edges uv and xy of the same color F on C such that on the
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subpath P = u→ v → · · · → x→ y of C every color occurs at most once between u
and x. Since uv and xy cannot be adjacent, there is at least one other color on P . By
Lemma 2.3, color F crosses with each color on the subpath v → · · · → x of P .

We say that two colors alternate on a cycle C if they both occur in C and we
encounter them alternately while walking along C. Note that Lemma 2.5 in particular
implies that any two colors on an isometric cycle of a partial cube alternate.
Lemma 3.3. Let G be a partial cube G, and let Fab and Fuv be two different

colors of G. Then the following statements are equivalent:
(i) Fab and Fuv cross.
(ii) Fab and Fuv alternate on an isometric cycle of G.
(iii) Fab and Fuv occur on an isometric cycle of G.
(iv) Each of the colors Fab and Fuv appear exactly twice on a cycle of G and they

alternate.
Proof. (i) ⇒ (ii) Suppose that the colors Fab and Fuv cross. We may assume

that uv lies in Gab. As the colors cross, there is an edge u′v′ in Gba of color Fuv with
u and u′ on the one side of Fuv and v and v′ on the opposide, that is, dG(u, u′) =
dG(v, v′) = dG(u, v′) − 1. We choose the edges uv and u′v′ such that dG(u, u′) is as
small as possible. Let l(S) denote the length of the walk S in G.

Let P be a shortest u, u′-path, and let Q be a shortest v, v′-path, so that P lies
in Guv and Q lies in Gvu. The paths P and Q are disjoint and each of them contains
exactly one edge of Fab.

We claim that C = u→ · · ·P · · · → u′ → v′ → · · ·Q · · · → v → u is an isometric
cycle. Assume the contrary, and let x and y be vertices of C such that dG(x, y) <
dC(x, y). Let R be a shortest x, y-path. We may select x and y such that R is internally
disjoint from C and that x lies on P and y on Q. Then C ′ = u → · · ·P · · · → x →
· · ·R · · · → y → · · ·Q · · · → v → u is a cycle of length l(C ′) < l(C). By Lemma 2.3,
there is an edge x′y′ of color Fuv on C ′ with u, x′, and u′ on the one side and v, y′,
and v′ on the opposide of Fuv. Write P ′ = u → · · ·P · · · → x → · · ·R · · · → x′ and
Q′ = v → · · ·Q · · · → y → · · ·R · · · → y′. Then we have

2dG(u, u′) = dG(u, u′) + dG(v, v′) = l(C)− 2

> l(C ′)− 2 = l(P ′) + l(Q′) ≥ dG(u, x′) + dG(v, y′) = 2dG(u, x′).

Hence we have dG(u, x′) < dG(u, u′), which contradicts the minimality of dG(u, u′).
Thus we conclude that C is an isometric cycle. By Lemma 2.5 each of the two colors
appears exactly twice on C and the colors alternate on C.

(ii) ⇒ (iii) This implication is trivial.

(iii) ⇒ (iv) This follows from Lemma 2.5.

(iv) ⇒ (i) Let C be a cycle of G on which the colors Fab and Fuv appear exactly
twice. Let a′b′ and u′v′ be the second edges of colors Fab and Fuv, respectively,
and let dG(a, a′) = dG(b, b′) = dG(a, b′) − 1. Then the cycle C can be written as
C = a → · · ·P · · · → a′ → b′ → · · · → Q · · · → b → a, where P and Q are the
corresponding paths on C connecting a with a′ and b′ with b. Since ab and a′b′ are
the only edges from Fab on C, we observe that P lies in Gab and Q lies in Gba.
Moreover, as the colors alternate on C, we may assume that uv lies on P and u′v′ lies
on Q. Without loss of generality we may assume that a ∈ Wuv and b ∈ Wu′v′ . Then
we have a ∈ Wab ∩Wuv, a′ ∈ Wab ∩Wvu, b ∈ Wba ∩Wuv and b′ ∈ Wba ∩Wvu. Thus
the colors Fab and Fuv cross.
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Our first result that relates properties of the crossing graph G# to properties of
the partial cube G involves connectivity.
Theorem 3.4. Let G = (V,E) be a partial cube. Then G is 2-connected if and

only if G# is connected.
Proof. First assume that G is not 2-connected, and let x be a cutvertex in G. Let

A be a subgraph of G induced by x and one component of G − x, and let B be the
subgraph of G induced by x and the remaining part of G − x. Then A and B both
contain edges, and we have A∪B = G and A∩B = {x}, so that no color in A crosses
with a color in B. Hence, in G#, there is no path between any color in A and any
color in B; that is, G# is disconnected.

Conversely, let G be 2-connected and take any two incident edges uv and vw of
G, with, say, uv colored red and vw colored blue. Since G is 2-connected, there exists
a path between u and w in G not containing v. Let P be such a u,w-path of minimal
length k. Since P → v → u is a cycle, red and blue must occur on P . Now we walk
along P from u to w. Let xy be the first red or blue edge on P , where we traverse xy
from x to y.

Suppose the color of xy is blue, that is, the color of vw. Then x and v are on
the same side of color blue and y and w are on the opposide. Let Q be a geodesic
between x and v, and let Q′ be a geodesic between y and w. Then by Lemma 2.3 red
occurs on Q and, since Q is a geodesic, red occurs only once on Q.

By Lemma 2.6 red occurs exactly once also on Q′; so red and blue occur exactly
twice alternately on the cycle

v → · · ·Q · · · → x→ y → · · ·Q′ · · · → w → v .

So, by Lemma 3.3 (iv), red and blue cross in G and are adjacent in G#.
Suppose the color of xy is red, that is, the color of uv. Now u and x are on one

side of red, and v and y are on the opposide. Let P1 be a geodesic between v and y,
and let u1 be the neighbor of v on P1. Note that the u, x-subpath of P is a geodesic
by minimality of P . Thus, using Lemma 2.3, red and the color of vu1 cross in G, and
so are adjacent in G#. Now,

u1 → · · ·P1 · · · → y → · · ·P · · · → w

is a walk between u1 and w not containing v of length k − 2. Hence there is a path
between u1 and w not containing v of length at most k − 2.

Repeating the above argument, we find neighbors u2, . . . , up of v such that the
colors of vui and vui+1 cross, for i = 1, . . . , p− 1, and also the color of vup and blue
cross. Thus we have constructed a path in G# between red and blue. Connectivity
of G# now follows from the connectivity of G.

Note that Pn✷Pn is 2-connected but not 3-connected, since it contains a vertex
of degree 2. On the other hand, (Pn✷Pn)# = Kn,n is n-connected. So there does not
exist an analogue of Theorem 3.4 for higher connectivities.

4. Complete crossing graphs. In this section we consider the partial cubes
that have complete crossing graphs. In [23] it was proved that in a median graph G
there are n pairwise crossing colors if and only if G contains an induced n-cube. We
restate this result in the next proposition and its corollary.
Proposition 4.1. A median graph is a hypercube if and only if its crossing graph

is complete. More precisely, if G is a median graph, then G = Qn, n ≥ 1 if and only
if G# = Kn.
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Fig. 4.1. Partial cubes with complete crossing graphs.

Recall that the clique number of a graph is the size of a largest complete subgraph
in the graph.

Corollary 4.2. Let G be a median graph. Then the clique number of G# is
equal to the dimension of the largest hypercube in G.

A simple consequence of the above cited result is the following corollary; see [23].

Corollary 4.3. Let G be a partial cube. Then G is a tree if and only if G# is
the complement of a complete graph.

For partial cubes the variety of graphs with complete crossing graphs is much
richer than for median graphs. Besides hypercubes one finds even cycles, Q3 minus
a vertex, and the graphs from Figure 4.1. Moreover, the Cartesian product preserves
this property (cf. Proposition 6.1).

In order to characterize the partial cubes with complete crossing graphs, we recall
the concept of expansion; see [24, 25, 26] or [19].

Let G′ be a connected graph. A proper cover G′1, G
′
2 consists of two induced

subgraphs G′1, G
′
2 of G′ such that G′ = G′1 ∪ G′2 and G′0 = G′1 ∩ G′2 is a nonempty

subgraph, called the intersection of the cover. The cover is isometric (resp., convex)
if it consists of isometric (resp., convex) subgraphs.

Let G′ be a connected graph, and let G′1, G′2 be a proper cover of G′ with G′0 =
G′1 ∩G′2. The expansion of G′ with respect to G′1, G′2 is the graph G constructed as
follows. Let Gi be an isomorphic copy of G′i, for i = 1, 2, and, for any vertex u′ in
G′0, let ui be the corresponding vertex in Gi for i = 1, 2. Then G is obtained from the
disjoint union G1 ∪G2, where for each u′ in G′0 the vertices u1 and u2 are joined by
an edge. We denote the copy of G′0 in Gi by G0i for i = 1, 2. Note that the set F of
edges between G01 and G02 is a Θ-class, i.e., a color, with sides G01 and G02. If the
cover G′1, G

′
2 is isometric (resp., convex), then we call G an isometric (resp., convex)

expansion. Finally, G is an all-color expansion if any of the G′1 and G′2 contains at least
one edge of each Θ-class of G. The converse operation of expansion is contraction: G′

is the contraction of G with respect to the split G1, G2, or, equivalently, with respect
to the color F .

Chepoi [8] proved that a graph G is a partial cube if and only if G is obtained from
the one-vertex graph K1 by successive isometric expansions. Mulder [24, 25] proved
that G is a median graph if and only if G can be obtained from K1 by successive
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convex expansions.
Let G be a partial cube with a complete crossing graph, and let H be an isometric

subgraph of G that meets all the Θ-classes of G. Then the expansion of G with
respect to H and G is an all-color expansion, and the expanded graph has a complete
crossing graph. (Note that the right-hand graph of Figure 4.1 is an expansion of Q3

with respect to Q3 and K1,3.) More generally, we have the following result.
Proposition 4.4. Let G be a partial cube. Then G# is a complete graph if and

only if G can be obtained from K1 by a sequence of all-color expansions.
Proof. Assume first that G# is a complete graph, and let Fab be an arbitrary but

fixed color of G. Let G′ be the contraction of G with respect to Fab, and let G′1, G′2
be the corresponding cover of G′, so that G is the expansion of G′ with respect to the
cover G′1, G′2. Let Fuv be any other color of G. Then, since G# is complete, we infer
from Lemma 3.3 (ii) (or (iv)) that both G1 and G2 contain an edge from Fuv. Hence
G′1 and G′2 both contain edges of this color. Induction completes the argument.

Conversely, suppose that G can be obtained from K1 by a sequence of all-color
expansions. Let G be an all-color expansion of G′ with respect to the cover G′1, G′2,
and let Fab be the color of this expansion step. We need to show that Fab crosses
with any other color. Let Fuv be an arbitrary color different from Fab. Since G is
obtained by an all-color expansion, there is an edge xx′ from Fuv in G1 and an edge
yy′ from Fuv in G2 with x and y on the one side and x′ and y′ on the opposide. Let
P be a shortest x, y-path, and let Q be a shortest x′, y′-path. Then x′ → x → P
is a shortest path and thus no edge of P belongs to Fuv. Similarly, we see that no
edge of Q is in Fuv. Moreover, there are exactly two edges from Fab in the cycle
x′ → x → · · ·P · · · → y → y′ → · · ·Q · · · → x′ → x. Therefore, by Lemma 3.3 (iv)
the colors Fab and Fuv cross.

5. Triangle-free crossing graphs. Cube-free median graphs are median graphs
that do not contain Q3 as an induced subgraph. Note that a median graph is cube-free
if and only if it does not contain isometric cycles of length at least 6. Moreover, each
side of any color in a cube-free median graph must be a tree.

The class of cube-free median graphs may seem a rather special class of graphs.
However, in [20] it was proved that there exists a one-to-one correspondence between
the class of triangle-free graphs and a special subclass of cube-free median graphs.
Hence, in the universe of all graphs, the density of the triangle-free graphs is as large
as that of the cube-free median graphs (being triangle-free themselves). In [23] it was
shown that cube-free median graphs play a special role in the theory of consensus
functions on graphs. In our next result we show that the condition that the crossing
graph of a partial cube G is triangle-free turns out to be a rather strong condition—it
is equivalent to the fact that G is a cube-free median graph.
Theorem 5.1. Let G be a partial cube. Then G# is triangle-free if and only if

G is a cube-free median graph.
Proof. First let G be a cube-free median graph. Then, by Theorem 11 from

[23], we know that G does not contain three mutually crossing colors, so that G# is
triangle-free.

Conversely, let G# be triangle-free; that is, G does not contain three mutually
crossing colors. Take any color F in G, say between G1 and G2, with sides G01 and
G02, respectively. (Here and later we use the “expansion” notation introduced after
Corollary 4.3.) Every color in G01 crosses with F . Hence, to avoid a triangle in G#,
there are no cycles in G01, by Lemma 3.2. So G01 is a forest.

Suppose that G01 consists of more than one component. Let R and S be two
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components of G01, and choose uR in R and uS in S closest to each other. Since G1 is
an isometric subgraph of G, there is a geodesic P in G1 between uR and uS of length
at least two. Note that, by the choice of uR and uS , all internal vertices of P are in
G1 − G01. Let vR and vS be the neighbors in G02 of uR and uS , respectively, and
let Q be a geodesic between vR and vS . By Lemma 2.6, P and Q contain the same
colors, and each color occurs at most once on P and at most once on Q. So all colors
on P and Q cross color F . Let p be the vertex on P adjacent to uR and q the vertex
on Q adjacent to vR. Since p is in G1 − G01, it follows that p is not adjacent to q.
This implies that the edges uR → p and vR → q have different colors. So, by Lemma
3.3, they cross. Moreover, they both cross F , which is impossible. Hence we conclude
that G01 is connected, so that it is a tree, as is G02.

Assume that there is a color occurring twice in the tree G01. Then choose edges
uv and xy of the same color such that on the path P = u→ v → · · · → x→ y in G01

all colors on the subpath u→ v → · · · → x are distinct. Note that this subpath must
be of length at least 3. Then v → · · ·P · · · → x is a geodesic on the one side of the
color. Let u→ · · ·Q · · · → y be a geodesic on the opposide. By Lemmas 2.6 and 3.3,
the color of uv crosses with all other colors on P . Since all colors in G01 cross F we
would get three mutually crossing colors, which is impossible. So every color in G01

occurs exactly once. Hence, by Lemma 2.4, subgraph G01 is isometric.

Next we prove that G01 is convex. Assume the contrary, and let u, v be vertices in
G01, so that there is a u, v-geodesic P , all of whose internal vertices are in G1 −G01.
Note that P is of length at least 2. Let Q be the u, v-path in G01, which is, as observed
above, also a u, v-geodesic. Then u → · · ·P · · · → v → · · ·Q · · · → u is a cycle. This
implies that every color on P is also on Q, and vice versa. Since a cycle contains
crossing colors, these must both occur on Q, so that they both cross F as well. Since
this is impossible, G01 is convex in G.

Similarly, G02 is a convex subtree in G.

From the fact that G is bipartite and the sides of all colors are convex, we deduce
that G is a median graph (cf. Theorem 1 in [6]). Finally, since three mutually crossing
colors in a median graph necessarily force an induced Q3, we conclude that G is a
cube-free median graph.

Theorem 5.1 allows us to characterize several subclasses of partial cubes having
nice crossing graphs. The wheel Wn consists of the n-cycle Cn together with an extra
vertex joined to all the vertices of the cycle; cf. Figure 5.1. The cycle is called the
rim of the wheel, the extra vertex the center of the wheel. The edges incident with
the center are the spokes of the wheel.

The cogwheel Mn is obtained from the wheel Wn by subdividing all the edges on
the rim of the wheel; cf. Figure 5.1. Note that the cogwheel M3 is precisely the cube
Q3 minus a vertex. The center and the spokes of the cogwheel are inherited from the
wheel. The cogwheel Mn is a partial cube with Cn as its crossing graph.

The next proposition is a simple corollary of Theorem 4.4, but it is also straight-
forward to check it directly.

Proposition 5.2. Let G be a partial cube. Then G# = K3 if and only if G is
Q3, M3, or C6.

Theorem 5.3. Let G be a partial cube. Then G# is a cycle of length n ≥ 4 if
and only if G = Mn.

Proof. The “if” part of the theorem is obvious. So let G# = Cn with n ≥ 4. By
Theorems 3.4 and 5.1, G is a 2-connected cube-free median graph. This implies that
the only isometric cycles in G are 4-cycles. Hence any two colors of G cross on some
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Fig. 5.1. The wheel W6 and the cogwheel M6.

4-cycle. If the side of a color would contain a P4 or a K1,3, then G# would contain a
vertex of degree at least 3. Hence each side of any color of G must be a P2 or a P3.
(Note that P1 is impossible, since G is 2-connected.) If some side were a P2, say of
color F , then F would be a pendant vertex in G#. So we conclude that all sides in
G induce a P3.

Take a vertex z of maximum degree k in G. Take any edge zu incident with
z. If zu is on a 4-cycle with zw, then the colors Fzu and Fzw cross. On the other
hand, color Fzu crosses with exactly two other colors. Moreover, Fzu crosses with
each of these colors on a 4-cycle through z. Hence every edge incident with z is on a
4-cycle with exactly two other edges incident with z. This implies that the colors at
z form a 2-regular subgraph of G#, so that these are all the colors of G. Moreover,
the colors cross cycle-wise; that is, we may number the edges incident with z by
0, 1, . . . , n− 1, so that i is exactly on a 4-cycle with edges i− 1 and i + 1 modulo k.
In the subgraph consisting of all these 4-cycles, all sides already induce a P3. So this
subgraph comprises all of G, and G is the cogwheel Mn.

A C4-tree G is recursively defined as follows: G is a 4-cycle, or G is obtained from
a C4-tree G′ by gluing a 4-cycle along an edge to an edge of G′. It is straightforward
to prove that G is a C4-tree if and only if G can be obtained from two smaller C4-trees
by gluing them together along an edge (unless G = C4). In [16] it was shown that the
central vertices in a C4-tree are contained in some 4-cycle or induce a P4 such that
the middle edge of the path is a common edge of two 4-cycles, whereas the first edge
is on the one 4-cycle and the last edge is on the other 4-cycle.

Let G be a median graph. Let F be a color of G with split G1, G2. Then we
call the color, or the split, peripheral if G1 = G01 or G2 = G02. We call the side
Gi with Gi = G0i a peripheral side. In [26] peripheral colors and sides were called
extremal. There it was proved that, for any split G1, G2 of a median graph, there
exists a peripheral split H1, H2 such that H1 ⊆ G1 (and G2 ⊆ H2).

Theorem 5.4. Let G be a graph. Then the following statements are equivalent:

(i) G is a partial cube with G# a tree.
(ii) G is obtained from K2 by successive expansions, where the intersection of the

cover is always an edge.
(iii) G is K2 or a 2-connected cube-free median graph without induced cogwheels.
(iv) G is K2 or a C4-tree.

Proof. (i)⇒ (ii) We prove the implication by induction on the number of vertices
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in G#. If G# = K1, then G = K2, and we are done. So let G# be a nontrivial tree
T , and let the color F of G be a vertex of degree 1 in T . By Theorems 3.4 and 5.1,
G is a 2-connected cube-free median graph. This implies that the sides of F cannot
consist of a single vertex. If the sides contain more than one edge, then F crosses
more than one other color of G. So the sides of F consist of a single edge. Let H be
the contraction of G with respect to color F . Then H# = T −F , which is a tree with
one vertex less than T . So, by induction, H is obtained by successive expansions,
where the intersection of the cover is always a single edge. Hence this also holds for
G.

(ii)⇒ (iii) If G is not K2, then G is a 2-connected median graph. Cubes can arise
only in an expansion when the intersection of the cover contains a 4-cycle. Cogwheels
can arise only in an expansion when the intersection of the cover contains a P3. So
G does not contain Q3 or any cogwheel.

(iii) ⇒ (iv) We use induction on the number of colors in G. If G = K2, then we
are done. So let G contain at least two colors. Take a peripheral color F of G, and let
G1 = G01 be a peripheral side of F . Since G is a cube-free median graph, we know
that G1 is a tree. Let u be a vertex of degree 1 in G1 adjacent to w in G1. Let v be
the neighbor of u in G02 and x that of w in G02, so that C = u → v → x → w → u
is a 4-cycle in G. Note that u is a vertex of degree 2 in G.

If G1 consists of a single edge, then C is a “pendant” 4-cycle in G (or G = C), and
we are done by induction. So we may assume that G1 is a tree with more than two
vertices; that is, w has other neighbors in G1 besides u. Let z be any other neighbor
of w in G1, and let y be the neighbor of z in G02.

Consider the color Fuw. If the sides of Fuw consist of a single edge, then the edges
uw and vx are on C but not on any other 4-cycle. By deleting the edges uw and vx
from G, we obtain two components. Let H1 be the component containing wx, and
let H2 be the graph obtained from the other component by gluing the 4-cycle C to it
along the edge uv. Now G can be obtained from H1 and H2 by gluing them together
along the edge wx. By induction, H1 and H2 are two C4-trees. Hence G is one too.

Now consider the case where the sides of Fuw consist of more than an edge. Since
u is of degree 2, it follows that u is a pendant vertex in the tree S that constitutes
the side of Fuw in Guw. Let p be any other neighbor of v in the tree S, and let q be
its neighbor in Gvu. If there is a path between q and y not going through x or u,
then let R be a path of minimal length between q and y not going through x or u
such that the sum of the distances from x to the vertices on R is as small as possible.
Note that R does not use edges of the colors Fuv and Fuw. We claim that the vertices
on R are alternately at distance 2 and 1 from x. If not, then there exists a subpath
r1 → r2 → r3 of R with d(x, r1) = d(x, r2)− 1 = d(x, r3) = k > 1. The median of x,
r1, and r3 is a common neighbor s of r1 and r3 at distance k− 1 from x. Thus we get
another minimal path R′ between q and y closer to x, which contradicts the choice of
R. Now the vertices x, z, w, v, u, p together with the path R induce a cogwheel in G,
which is impossible. Thus we have shown that {u, x} is a cutset in G. Let Q1 and Q2

be the components of G−{u, x}, where Q1 contains p, q, v, and Q2 contains w, y, z.
Let H1 be the subgraph of G induced by Q1 and x, and let H2 be the subgraph of G
induced by Q2 and the vertices x, v, and u. By induction, H1 and H2 are C4-trees.
We can obtain G from H1 and H2 by gluing them together along the edge vx; so G
is a C4-tree as well.

(iv) ⇒ (i) We use induction on the number of 4-cycles that are used to construct
G. If G is K2 or a 4-cycle, then we are done. So assume that more than one 4-cycle
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is used to construct G, and let C = u → v → x → w → u be the last cycle used
in the construction, where the gluing was along the edge uv. Let G′ be the graph
obtained from G by deleting the vertices x and w together with their incident edges.
By induction, G′ is a partial cube with a tree T ′ as its crossing graph. Then G is a
partial cube as well, with one extra color. The crossing graph of G is obtained from
T ′ by adding the vertex Fuw adjacent to vertex Fuv. This completes the proof.

Recall that a block in a connected graph is a maximal 2-connected subgraph. A
C4-cactoid is a connected graph, each block of which is a K2 or a C4-tree. Loosely
speaking, a C4-cactoid can be obtained from K2’s and 4-cycles by gluing them together
along vertices or edges.
Theorem 5.5. Let G be a graph. Then the following statements are equivalent:
(i) G is a partial cube with G# a forest.
(ii) G is obtained from K2 by successive expansions, where the intersection of the

cover is always a vertex or an edge.
(iii) G is a cube-free median graph without induced cogwheels.
(iv) G is a C4-cactoid.
Proof. For each block of G we may apply Theorem 5.4. Just observe that for

statement (ii) we can always add an edge pending at a vertex u to G by an expansion
with respect to the cover G1 = G, G2 = 〈u〉. Then we can use this edge to construct
a new block.

6. Crossing graphs and Cartesian products. In this section we consider the
relation between crossing graphs and Cartesian products of graphs. As it will turn
out, there are several connections involving Cartesian products and joins of graphs.
Recall that the join G ⊕ H of the graphs G and H is the graph obtained from the
disjoint union of G ∪H by joining every vertex of G with every vertex of H.

In the previous section we have observed that, if G# and H# are complete, then
so is (G✷H)#. This fact is a special case of our next result.
Proposition 6.1. Let G and H be partial cubes. Then (G✷H)# = G# ⊕H#.
Proof. It is easy to see that the Θ-classes of G✷H are in one-to-one correspondence

with the union of the Θ-classes of G and the Θ-classes of H. (Instead of proving
this fact directly, we refer to Lemma 4.3 of [19].) This means that V ((G✷H)#) =
V (G#)∪V (H#). In addition, the Θ-classes of G✷H corresponding to the Θ-classes of
G induce G#, and, analogously, the Θ-classes of G✷H corresponding to the Θ-classes
of H induce H#. Finally, any Θ-class from the induced G# crosses with any Θ-class
from the induced H#; in fact, by the definition of the Cartesian product, they cross
on a 4-cycle.

For instance, Proposition 6.1 implies that the crossing graph of the Cartesian
product of n copies of P3 is the n-octahedron: (Pn

3 )# = K2,2,...,2.
Recall from section 3 that S(G) is the simplex graph of a graph G.
Proposition 6.2. Let G and H be two disjoint graphs. Then S(G ⊕ H) =

S(G)✷S(H).
Proof. First note that S(G) and S(H) are subgraphs of S(G ⊕ H) having only

the vertex ∅ in common. For any complete subgraph K in G ⊕H, let KG = K ∩ G
and KH = K ∩H. Note that V (K) is the disjoint union of V (KG) and V (KH). Then
the mapping φ defined by φ(K) = (KG,KH) is a bijection between the vertex set of
S(G ⊕ H) and the vertex set of S(G)✷S(H). Let K,L be two complete subgraphs
in G ⊕ H. Then K and L are adjacent in S(G ⊕ H) if and only if |K � L| = 1
if and only if either |KH � LH | = 0 and |KH � LH | = 1 or |KG � LG| = 1 and
|KH � LH | = 0 if and only if (KG,KH) and (LG, LH) are adjacent in S(G)✷S(H).
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So φ is an isomorphism.
Lemma 6.3. Let G be a median graph, and let Fuv and Fuw be crossing colors.

Then v → u→ w is in a 4-cycle.
Proof. Since Fuv and Fuw are crossing, there is a vertex y in Gvu ∩ Gwu. Then

we have

d(y, v) = d(y, u)− 1 and d(y, w) = d(y, u)− 1 .

Let x be the median of y, v, w; that is, x is on a geodesic between v and w, on a
geodesic between y and v, and on a geodesic between y and w. Then x is a common
neighbor of v and w distinct from u, so that v → u→ w → x→ v is a 4-cycle.

Let H be a subgraph of a connected graph G, and let z be a vertex of G outside
H. A vertex x in H is a gate for z in H if, for any vertex w in H, there is a geodesic
between z and w passing through x. For the proof of our next theorem we state the
following well-known fact.
Lemma 6.4. Let H be a subgraph of a connected graph G, and let z be a vertex

of V (G) \ V (H). Then z has at most one gate in H, which must then be the unique
vertex in H closest to z.

We also recall that it is easy to check that, in a median graph G, every vertex
outside a convex subgraph H has a gate in H.
Theorem 6.5. Let G be a partial cube. Then G# is a complete bipartite graph

if and only if G is the Cartesian product of two trees.
Proof. First let G = T1✷T2 be the Cartesian product of two trees T1 and T2.

Then the colors of Ti form an independent set in G#, for i = 1, 2, so G# is a complete
bipartite graph by Proposition 6.1.

Conversely, let G# be a complete bipartite graph with bipartition X,Y . Then,
by Theorem 5.1, G is a cube-free median graph, so that all sides in G are convex
subtrees. In particular, G does not have three mutually crossing colors, and any color
occurring in some side occurs only once in that side. Take any color F in G, say
between G1 and G2, with sides G01 and G02, respectively. Without loss of generality,
F is in X. Since each color in Y crosses with F on some 4-cycle, each color in Y
occurs in G01 as well as G02. Since F does not cross with any other color in X, no
color from X occurs in G01 of G02.

Similarly, if Φ is any color in Y , then the sides of Φ are convex subtrees of G, in
which each color from X occurs exactly once and no color from Y occurs.

Let z be any vertex of G. Note that the existence of three different neighbors of
z in I(u, z) would force three mutually crossing colors in G. (Just take the medians
of u and any two of these neighbors of z in I(u, z); these produce distinct 4-cycles
through z and its three neighbors.) Hence we conclude that there are at most two
neighbors of z that are closer to u for any z in G.

Now we are ready to find the appropriate subgraphs in G that will form the
factors in the Cartesian product. Let F be a peripheral color with split G1, G2 and
peripheral side G1 = G01. Without loss of generality, we may assume that F is in X.
Let u be a vertex of degree 1 in subtree G1 with neighbor w in G1, and let v be the
neighbor of u in G02, so that F = Fuv and G1 = Guv. Note that u has degree 2 in G.

First we will show that Fuw is a peripheral color with Guw as its peripheral side.
Let G′uw be the side of Fuw in Guw. Since uv is in Guw and the color F of uv is in
X, it follows that G′uw is a tree, in which all colors of X occur exactly once but no
color of Y occurs. Assume that some vertex p in G′uw has a neighbor q in Guw−G′uw.
Then Fpq is a color in Y ; so it crosses with all colors in G′uw. By repeatedly applying
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Lemma 6.3, we proceed along a path from p to u in G′uw finding an adjacent path in
Guw − G′uw. Thus we find a neighbor s of u in Guw − G′uw, which must be distinct
from v and w. This contradicts the fact that u has degree 2. So Guw = G′uw, and
Guw is a subtree containing all colors of X but no color of Y .

Let H = Guv✷Guw. We endow the copies of Guv and Guw in H with the same
coloring as Guv and Guw in G, respectively. We will prove that G is isomorphic to
H, where the isomorphism preserves the coloring.

Set |X| = m and |Y | = n. Then Guw is a tree of size m and order m+1, and Guv

is a tree of size n and order n + 1. If G# = K2, then G is a 4-cycle, and we are done.
So we may assume that G# = Kn,m with m ≥ 2. First we show that G has the right
number of vertices by induction on n + m. Then we construct a coordinatization for
the product and check adjacencies.

If we delete Guv from G, then we get a partial cube with one less color and with
Kn,m−1 as its crossing graph. So, by induction, we may assume that G−Guv is the
Cartesian product of two trees of sizes n and m − 1, respectively, so that G − Guv

is of order (n + 1)m. Since Guv is a tree of size n, it follows that G is of order
(n + 1)m + (n + 1) = (n + 1)(m + 1). So G is of the right order.

Let G≤k be the subgraph of G induced by the vertices of distance at most k to
u, and let H≤k be the subgraph of H induced by the vertices of distance at most k
to (u, u). By induction on k, we will prove the following claim.

Claim. G≤k ∼= H≤k for k ≥ 0.

Let z be any vertex of G, let zw be its gate in Guv, and let zv be its gate in Guw.
Note that d(z, u) = d(z, zw) + d(zw, u) = d(z, zv) + d(zv, u). We set z = (zw, zv).
Then u = (u, u); so G≤0

∼= H≤0.

Let z be any vertex of Guv. Then we have z = (z, u). Since Guv is a convex
subtree of G, there is a unique neighbor y of z closer to u, and y is the neighbor of z
on the path from z to u in the tree Guv. Then we have y = (y, u). This implies that
the subgraph Guv of G is isomorphic to the subgraph Guv✷{u} of H. Similarly, the
subgraph Guw of G is isomorphic to the subgraph {u}✷Guw of H. In particular, we
have shown that the claim is true for k ≤ 1.

Now let z be a vertex of G outside Guv ∪ Guw with d(u, z) = k. Then we have
d(z, zw), d(zw, u), d(z, zv), d(zv, u) ≥ 1, so that k ≥ 2. Let p be a neighbor of z on a
geodesic from z to zw. Then we have pw = zw, so that p = (zw, pv). Moreover, we have
d(p, u) = d(p, zw)+d(zw, u) = d(z, u)−1 = k−1. By induction, we know the following
facts. There is a unique geodesic P between p and zw of length d(p, zw) = d(pv, u),
of which all the colors are in X. There is a unique geodesic Q between p and pv of
length d(p, pv) = d(zw, u), of which all the colors are in Y .

Since z → P is a geodesic between z and its gate zw in Guv and all colors of Y
occur in Guv, color Fzp must be in X. Hence Fzp crosses with every color on Q. So,
by repeatedly applying Lemma 6.3, we can construct a path Q′ along Q from z to a
neighbor r of pv of the same length and coloring as Q. Since the last color on Q is
Fuv, the last color on Q′ is also Fuv, so that r is in Guv. By the unicity of gates, we
have zv = r. Hence pv is the unique neighbor of zv in subtree Guw closer to u. Let q
be the neighbor of z on Q′. By a similar argument, we deduce that qw is the unique
neighbor of zw in subtree Guv closer to u.

Now p = (zw, pv) and q = (qw, zv) are two distinct neighbors of z closer to u.
Hence these are all neighbors of z closer to u in G. This settles the induction step in
the proof of the claim.
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Table 7.1
Summary of the results of the paper.

G# G
connected 2-connected
edgeless tree
complete obtained by

all-color expansion
triangle-free cube-free median

K3 Q3, M3, or C6

Cn, n ≥ 4 Mn

tree K2 or C4-tree
forest C4-cactoid

complete bipartite Cartesian product
of two trees

Fig. 7.1. A partial cube and its crossing graph.

Since G and H have the same number of vertices, we infer that

G = Gk
∼= Hk = H ,

for k = diameter(G), by which the proof is complete.

7. Concluding remarks. Most of the results of this paper can be summarized
in Table 7.1.

The last entry in the table, that is, Theorem 6.5, raises the following question.
Problem 7.1. What can be said about the partial cube G if its crossing graph

G# is the join of two other graphs that are not edgeless?
This seems to be a tough problem as the examples in Figures 7.1 and 7.2 show.

The graph in Figure 7.1 is a partial cube but not a median graph, whereas its crossing
graph is still the join of two smaller graphs. The graph in Figure 7.2 is a median graph
but not the Cartesian product of two smaller graphs, whereas its crossing graph is
still the join of two smaller graphs.

One may define an equivalence relation κ# on the family of all partial cubes as
follows: two partial cubes are in relation κ# to each other if they have isomorphic
crossing graphs. Theorem 6.5 and Proposition 4.4 may be considered as instances
of the characterization of two of the equivalence classes of this relation. A related
problem is the following.
Problem 7.2. Determine all C4-trees having the same tree as crossing graph.
Finally, Theorem 5.3 suggests the following question for a median graph G.
Problem 7.3. Does an induced cycle Cn in G# necessarily force an induced

cogwheel Mn in G?
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Fig. 7.2. A median graph and its crossing graph.

REFERENCES

[1] F. Aurenhammer, M. Formann, R. Idury, A. Schäffer and F. Wagner, Faster isometric
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[5] H.-J. Bandelt and J.-P. Bartélemy, Medians in median graphs, Discrete Appl. Math., 8

(1984), pp. 131–142.
[6] H.-J. Bandelt, H. M. Mulder, and E. Wilkeit, Quasi-median graphs and algebras, J. Graph

Theory, 18 (1994), pp. 681–703.
[7] H.-J. Bandelt and M. van de Vel, Superextensions and the depth of median graphs, J.

Combin. Theory Ser. A, 57 (1991), pp. 187–202.
[8] V. D. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics, 1 (1988),

pp. 6–9.
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[21] S. Klavžar and I. Gutman, Wiener number of vertex-weighted graphs and a chemical appli-



PARTIAL CUBES AND CROSSING GRAPHS 251

cation, Discrete Appl. Math., 80 (1997), pp. 73–81.
[22] S. Klavžar and H. M. Mulder,Median graphs: Characterizations, location theory and related

structures, J. Combin. Math. Combin. Comput., 30 (1999), pp. 103–127.
[23] F. R. McMorris, H. M. Mulder, and F. R. Roberts, The median procedure on median

graphs, Discrete Math., 84 (1998), pp. 165–181.
[24] H. M. Mulder, The structure of median graphs, Discrete Math., 24 (1978), pp. 197–204.
[25] H. M. Mulder, The Interval Function of a Graph, Math. Centre Tracts 132, Mathematisch

Centrum, Amsterdam, 1980.
[26] H. M. Mulder, The expansion procedure for graphs, in Contemporary Methods in Graph

Theory, R. Bodendiek, ed., B.I.-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1990, pp.
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Abstract. We prove the following upper and lower bounds on the exact size of binary space
partition (BSP) trees for a set of n isothetic rectangles in the plane:

• An upper bound of 3n− 1 in general, and an upper bound of 2n− 1 if the rectangles tile
the underlying space. This improves the upper bounds of 4n in [V. Hai Nguyen and P.
Widmayer, Binary Space Partitions for Sets of Hyperrectangles, Lecture Notes in Comput.
Sci. 1023, Springer-Verlag, Berlin, 1995; F. d’Amore and P. G. Franciosa, Inform. Process.
Lett., 44 (1992), pp. 255–259]. A BSP satisfying the upper bounds can be constructed in
O(n logn) time.

• A worst-case lower bound of 2n − o(n) in general, and 3n
2

− o(n) if the rectangles form a
tiling.

The BSP tree is one of the most popular data structures in computational geometry, and hence
even “small” factor improvements of 4

3
or 2 on the previously known upper bounds that we show

improve the performances of applications relying on the BSP tree. As an illustration, we present
improved approximation algorithms for certain dual rectangle tiling problems using our upper bounds
on the size of the BSP trees.

Key words. binary space partitions, exact bounds, tiling, approximation algorithms

AMS subject classifications. 68Q01, 68W25, 68W40

PII. S0895480101384347

1. Introduction. Binary space partitioning (BSP) for a collection of geometric
objects in the two-dimensional plane1 is defined as follows. The plane is divided into
two parts by cutting objects with a line if necessary. Each fragment of the object
belongs solely to one of the parts it falls in. The two resulting parts of the plane
are divided recursively in a similar manner; the process continues until at most one
two-dimensional fragment of the original objects remains in any part of the plane.2

This division process can be naturally represented as a binary tree (BSP tree) where
a node represents a part of the plane and stores the cut that splits the plane into
two parts that its two children represent; each leaf of the BSP tree represents the
final partitioning of the plane and stores at most one fragment of an input object.
Since a cut at some node may split an object into two, the number of regions in the
final configuration, equivalently the number of leaves in the BSP tree, may exceed the
number of input objects. Note that quadtrees, octtrees, and grid files are all related
to BSPs. Figure 1.1 shows a binary space partition for a set of four rectangles and
the corresponding tree.
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Fig. 1.1. A binary space partition for four isothetic rectangles and the corresponding BSP tree.
a, b, c, and d denote the four cuts in the partition, whereas A, B, C, D, and E denote the partitions
of the bounding box of these rectangles generated by these cuts such that at most one fragment of
each given rectangle is in each such partition.

Since the introduction of BSP trees in [FKN80], they have become one of the
most popular data structures. They present a way to implement a geometric divide-
and-conquer strategy. They have found numerous applications in graphics (hidden
surface removal [D94], shadow generation [CF89]), computational geometry (ray-
tracing [NT86], visibility problems [T92], solid geometry [TN87]), robotics (motion
planning [B93]), spatial databases [S90, van90] and approximation algorithms [KMP98,
M90]. They are used in computer games such as DOOM and Quake, and there is a
lot of publicly available code for different kinds of BSPs.

The fundamental parameter of interest about BSPs in all their applications is the
size, that is, the number of leaves of a BSP tree. In two seminal papers, Paterson and
Yao [PY90, PY92] established the first and essentially optimal bounds on the size of
some BSPs. In two dimensions, which is of interest to us, they proved that any set
of n line segments has a BSP of size O(n log n); for axis-parallel line segments, they
proved that BSPs of O(n) size exist. Very recently, Tóth [T01] showed that there
exists n disjoint line segments in the plane such that any BSP of these segments must
have a size of at least Ω( n logn

log log n ). Some results are in [deGO] for some more general
class of objects on the plane. The problem of bounding the size of BSPs remains an
active research area, e.g., in higher dimensions, for objects with bounded aspect ratio,
etc. [NW95, AG+96].

In this paper, we focus on axis-parallel (isothetic) rectangles as do Paterson and
Yao in [PY92]. Such rectangles form a very important class of objects in applica-
tion domains because complex objects are often replaced by their bounding rect-
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angles. They also arise naturally in planar tiling problems such as constructing two-
dimensional histograms and as subproblems when higher-dimensional hyperrectangles
are projected on two dimensions. Our focus is on proving bounds on the exact size
of BSP trees in the worst case, that is, not just asymptotic size but also the exact
constants involved. In this paper, we prove the following results:

1. There exists a BSP tree of size at most 3n − 1 for collection of n isothetic
rectangles. If the rectangles form a tiling (that is, the given set of rectangles
partition a rectangular region), then we prove an improved upper bound of
2n− 1. A BSP satisfying the upper bounds can be constructed in O(n log n)
time in either case.
Paterson and Yao proved an upper bound of 12n in [PY92]; subsequent im-
provements have led to the current best upper bound of 4n [NW95, dAF92].

2. We also present lower bounds on the size of a BSP tree for n isothetic rectan-
gles in the worst case: we prove a lower bound of 2n− o(n). If the rectangles
must form a tiling of the space, we show a lower bound of 3n

2 − o(n).
Size of the BSP trees determines the time and space of all applications reliant

on them; improvements even by “small” factors ( 4
3 or 2) are highly desirable. Even

construction time in securing these improvements is not a bottleneck because our
upper bounds can be achieved by efficient algorithms taking O(n log n) time. Our
constructions are modifications of the original algorithm in [PY92], matching it in
their running times. The bulk of our technical achievement is our detailed amortized
analyses of the algorithm.

Concurrent as well as subsequent to our work, there has been considerable in-
terest in proving tight lower and upper bounds on the exact size of the BSP tree for
various objects. In particular, subsequent to our initial submission of this manuscript,
Dumitrescu, Mitchell, and Sharir [DMM01] have proved an asymptotic lower bound
of 2n − o(n) for BSPs for n orthogonal line segments and an improved lower bound
of 9n

4 − o(n) for sizes of BSPs for n isothetic rectangles.3 However, this last lower
bound of [DMM01] does not seem to apply to the case when the rectangles must form
a tiling of the underlying space.

We show an application of our results for the BSP tree. The dual tiling problem is
to cover a two-dimensional array with nonoverlapping rectangles so that the total (or
maximum) “weight” of the tiling is bounded by a specified threshold. (The weight of
a tiling is determined by different applications in spatial data structures, databases,
parallel load balancing, video compression, etc.) The goal is to minimize the number
of rectangles used in the tiling. Using our upper bounds on the BSP trees for isothetic
rectangles, we present approximations for the dual tiling problem which significantly
improves known results in approximation factor and/or running time. This technique
is general and applies to different “weight” functions and optimization criteria.

Map. In the rest of the paper, we first present the upper bounds (section 2)
followed by the lower bounds (section 3). We then present applications of our results
to the dual rectangle tiling problems in section 4.

2. Upper bounds. Given a rectangular region R containing a set of n disjoint
isothetic rectangles, a BSP of R consists of recursively partitioning R by a horizontal
or vertical line into two subregions and continuing in this manner for each of the two
subregions until each obtained region intersects at most one rectangle. If a rectangle

3They also announced in the same conference that the lower bound of 9n
4

− o(n) can be further

improved to 7n
3

− o(n).
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D E

Fig. 2.1. A cut of C.

is intersected by a cutting line, it is then split into disjoint rectangles whose union
is the intersected rectangle. The size of a BSP is the number of regions produced.
Equivalently, a BSP of a set of rectangles contained in a rectangular region R is a
binary tree, where each node is a rectangular subregion of R, each internal node is
the union of its two children, the intersection of each leaf with the rectangles in our
collection has at most one rectangle, and the root is the rectangular region R. The
partition of R that corresponds to a BSP is the collection of the leaves of this tree,
and the size of the BSP is the number of leaves in the tree. A set of rectangles form
a tiling if they partition some rectangular region R. It is shown in [KMP98, MPS99]
that a BSP of R with the minimum number of leaves can be computed using dynamic
programming technique in O(n5) time.

Theorem 2.1. We can compute a BSP of R of size at most 3n− 1 in O(n log n)
time.

Restricting the set of rectangles in our collection to be a tiling of R yields even
better bounds on the size of the BSP.

Theorem 2.2. Assume that the rectangles in our collection form a tiling of R.
Then, we can compute a BSP of R of size at most 2n− 1 in O(n log n) time.

In the rest of this section, we will prove both theorems.

2.1. General schema for the proofs of Theorems 2.1 and 2.2. Both The-
orems 2.1 and 2.2 use the accounting method of amortized analysis for tighter bounds
on the size of their respective BSPs. First, we describe the general schema and then
later provide details of how this schema can be applied to each case.

Suppose that a node (region) C in a BSP has two children, say D and E. Then
the boundary between D and E is a line segment, horizontal or vertical, that extends
between two points on the boundary of C. This segment is called a cut of C (see
Figure 2.1).

Our proof is by induction. We use N to denote the given collection of the disjoint
rectangles. For a subrectangle of R, say C, we define induced collection NC, which
consists of nonempty intersections of rectangles from N with C.

We start by declaring one of the sides of R to be unbroken and the others to be
broken. Then we initially give money to the elements of N = NR according to the
following formula (for some x and y, with x ≥ y ≥ 1): a rectangle not adjacent to a
broken side gets x dollars, a rectangle adjacent to only one broken side gets y dollars,
and any other rectangle (adjacent to two or more broken sides) gets one dollar. We
will say that NR is properly endowed if the associated distribution of dollars satisfies
this formula. The choice of x and y will vary for the two problems.

Our inductive step is the following. If a rectangle C has three broken sides and
NC is properly endowed, then

• either |NC| = 1;
• or we can cut C into two rectangles D and E, declare three broken sides
for these rectangles, and provide proper endowment for ND and NE by re-
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D

E

F

Fig. 2.2. Cutting C twice into D, E, and F.

distributing enough of the money from the proper endowment of NC (see
Figure 2.1);
• or we can cut C twice, into three rectangles D, E, and F (see Figure 2.2),
and make the declarations of broken sides and redistribution of dollars for all
three new rectangles (one child and two grandchildren of C).

This inductive argument is sufficient (with x = 3 and y = 3
2 for Theorem 2.1

and with x = 2 and y = 1 for Theorem 2.2), because every leaf in the resulting BSP
gets at least one dollar, and initially there are at most xn − 1 dollars; thus we have
less than xn − 1 leaves in our BSP since we can obviously assume that the root R
is the smallest bounding rectangle of the given set of rectangles.4 Finally, it is easy
to eliminate empty regions in the resulting BSP, if so desired, by ensuring that each
region intersects at least one rectangle of our collection: if the region for a nonroot
node does not intersect any rectangle, then simply cover it by extending its sibling in
the BSP and, if necessary, the descendants of this sibling.

The inductive step is easy if we can cut C without splitting any of the rectangles
in NC, i.e. , we have NC = ND ∪ NE, NC �= ND, and NC �= NE. A side of the child
rectangle that is a (part of a) broken side of C is declared broken. If a child has two
undeclared sides, we arbitrarily declare one of them to be broken. Since x ≥ y ≥ 1, it
is easy to see that no rectangle from NC needs more money after this partition. We
refer to this case as the easy case of the inductive step.

For ease of discussion, we assume that the unbroken side of C is the right side of
C (by rotating the coordinate axes, if necessary).

2.2. Application of the general schema. Now, we give details of the appli-
cation of the general schema for each of the theorems.

2.2.1. Proof of Theorem 2.1. Set x = 3 and y = 3/2. Our algorithm is a
modification of the algorithm discussed in [PY92]. Refer to Figure 2.3. Let X be the
longest rectangle which is adjacent to the broken left side of C, or, in the absence of
any such rectangle, the rectangle in C whose left side is closest to the left side of C
(break ties arbitrarily). Slide the right vertical side (segment) a, b of X until it either
hits a rectangle in C or hits the unbroken side of C.5 If a, b hits the unbroken side of
C, then this is the easy case of the inductive step. Otherwise, let c, d be the position
of a, b when it hits a rectangle Y of C. Notice that if Y is adjacent to two broken
(horizontal) sides of C, then we have the easy case of the inductive step; hence we
assume that this is not the case.

Our first cut is vertical through point d. If this cut does not split any rectangles
of NC, we have the easy case. Otherwise, we will assume that this cut splits a
rectangle above line b, d. The sides of D, E, and F contributed by the first cut are

4It is easy to see that in the beginning at least one rectangle will be adjacent to at least one
broken side.

5The notation a, b denote the segment joining points a and b.
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Fig. 2.3. The placement c, d of slided a, b.

declared broken. (RectanglesD, E, and F were defined in the discussion of the general
schema.) Our second cut will be the horizontal line b, d extended to the left side of C.
The sides of children rectangles that are adjacent to that line are declared unbroken.
The second cut is the easy case of the inductive step in the sense that it does not need
to be analyzed in terms of its effects on the endowment but was essential because it
provided the left products of the cuts with unbroken sides. While checking if we have
enough money for the endowments, we analyze the first cut only. It splits a number
of rectangles in C, among which at most two are adjacent to one broken side of C
(one adjacent to the top side and the other to the bottom side of C). Every other
rectangle that is cut had three dollars before the cut, and after the cut each of the
two pieces needs 3

2 dollars, which can be obtained by distributing the three dollars
evenly between them. Hence, there are two cases to consider:

• Only one rectangle adjacent to a broken side of C is cut. Before the cut, the
rectangle had 3

2 dollars. After the cut, each of the two pieces need one dollar;
hence it needs an extra 1

2 dollar for proper endowment. However, because the
status of rectangle Y is changed (that is, because Y becomes adjacent to at
least one more broken side), it has a surplus of at least min{x− y, y− 1} ≥ 1

2
dollars, which can be used for this purpose.
• Two rectangles adjacent to a broken side of C are cut. Then, each of these
rectangles needs an additional 1

2 dollar. However, in this case, Y could not
have been adjacent to any broken side of C before the cut but becomes
adjacent to one broken side after the cut; hence it has a surplus of at least
x− y = 3

2 dollars, which can be used to provide the additional one dollar.

We now turn to the implementation of our algorithm. All the steps of our algorithm
can be implemented in a manner similar to those in [dAF92], except the step that re-
quires finding the placement c, d of the slided vertical side a, b ofX if it was stopped by
the left vertical side of some rectangle Y . We describe the implementation, assuming
that the side a, b is vertical and the unbroken side of C is the right side of C; the other
cases are similar. The x and y coordinates of the corners of the given rectangles can
be preprocessed in O(n log n) time by sorting them and then replacing them by their
rank in the respective sorted lists to ensure that each coordinate of any corner point
of any rectangle is an integer from the set {1, 2, . . . , 2n}. Whenever we generate a
new rectangular partition, we also maintain the coordinates of its top left and bottom
right corners. We now need to maintain a data structure on the left vertical sides of
all rectangles in our collection R such that, given a query vertical segment (which is
a part of the right vertical segment of some rectangle in our collection R) connecting
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two points with coordinates (x, y0) and (x, y1), the query returns the left vertical side
of a rectangle connecting points with coordinates (x′, y′0) and (x

′, y′1) such that the
interval [y0, y1] overlaps the interval [y

′
0, y
′
1], x

′ ≥ x and x′ is the minimum possible;
then we need to check if the segment connecting the points (x′, y0) and (x′, y1) is
inside our current bounding rectangular region C using the coordinates of its top left
and bottom right corners of C. (Otherwise, the segment a, b, when slid to the right,
would hit the right unbroken side of C.)

Therefore, it suffices for our purpose to build a data structure D on a set of
n two-dimensional points {(x, y) | x, y ∈ {1, 2, . . . , 2n} in O(n log n) time and using
O(n log n) space such that a query range (a, b, c) must return a point in D (if any)
in O(log n) time with y ≤ b ≤ c, a ≥ x and a is the minimum possible.6 We modify
the priority search tree (PST) data structure (e.g., see [M85]) for this purpose. A
PST is a data structure on n two-dimensional points such that given a query range
(a, b, c) it is possible to find in O(log n) time a point (x, y) in the PST with x ≥ a
(or, x ≤ a) and b ≤ y ≤ c; the first dimension is called the priority dimension and the
remaining two dimensions are called the search dimensions. Moreover, it is possible
to build a PST in O(n log n) time using O(n) space. To design D, we first build a
binary search tree T on the y-coordinates of the given points. At each node v we store
a horizontal line Hv which represents a value in between the maximum y-coordinate
value in the left subtree and the minimum y-coordinate value in the right subtree.
At the left (respectively, right) child of v we store an appropriate PST whose search
dimension is based on the x-coordinate values and whose priority dimension is based
on the y-coordinate values of the given points. Given a query range (x, y0, y1) with
the first dimension being the priority dimension, we search in T and find the highest
node v such that Hv is contained in [y0, y1]. Hv splits the range into two subranges
that are both unbounded with respect to the priority dimension. (For example, the
part of the range below Hv is unbounded in the negative y-dimension and similarly
for the other range.) So, we simply use the PSTs to find the point in each subrange
which has the minimum value in the search dimension (i.e., the x-dimension). From
these two queries we can infer our desired point. We do this query twice at a single
node v, after searching down T . So the query time is O(logn). The storage per level
of T is O(n), so it is O(nlogn) overall. If we are given the points in sorted order
along the search dimension, then a PST on those points can be built in linear time.
Thus, we can presort all the points once and then build the entire structure bottom-up
(merging the sorted lists at the left and right child of v to get the sorted list at v).
So the total preprocessing time is also O(n log n).

2.2.2. Proof of Theorem 2.2. Set x = 2 and y = 1. For a subrectangle U of
C let BU to be the union of the boundary segments (sides) of the rectangles of NU

that are not contained in the boundary of U. We pick a horizontal line segment a, b
with the following properties (see Figure 2.4):

• a belongs to the left side of C (remember that the left vertical side of C is
broken);
• a, b is a horizontal line segment;
• a, b is a subset of BC (that is, a, b consists of line segments each of which is
an element of BC);

• no point on a, b, except possibly the points a and b, lie on a side of C;
• a, b is a longest segment with the above properties.

6We would like to thank Prof. Ravi Janardan for helping us with this part of the implementation.
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Fig. 2.4. Picking the horizontal line segment a, b.
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Fig. 2.5. Extending b, c upwards towards the boundary of C.

Assume that b is not on a side of C; otherwise we would have the easy case as
described before. Also, if there is no such segment a, b of length greater than zero,
then again we would have the easy case, so we may assume that such a segment a, b
of length greater than zero exists. Our first cut is vertical through point b. The sides
of D, E, and F contributed by this cut are declared broken. The second cut is (a, b)
itself, and the sides of D and E contributed by this cut are declared unbroken. As
before, any side of D, E, and F that is part of a broken side of C is also declared
broken. It remains to show that the endowment of NC is sufficient to provide the
endowments of ND, NE, and NF.

Since the given collection of rectangles form a tiling, point bmust lie in the interior
of a vertical segment from BC that is perpendicular to a, b. We extend this segment
maximally vertically in both directions, so it is a union of segments c, b and b, d (see
Figure 2.5). If both c and d are on the boundary of C, then the cut c, d makes it
an easy case. Thus we can assume that at least one of them, say c, is located in
the interior of C and thus in the interior of some maximal horizontal segment (i.e.,
a horizontal segment that cannot be extended in either direction) from BC, say e, f .
Assume that e is to the left of f .

Observe that e must be located in the interior of C, since otherwise the segment
e, f would be chosen, rather than a, b. Thus, since the given collection of rectangles
form a tiling, the rectangle of NC that is adjacent to segments e, c and b, c is not
adjacent to the boundary of C, and therefore it was endowed with two dollars. During
our cuts this rectangle is not subdivided, and it is adjacent to our new broken side;
thus we can take one dollar from its endowment to be used elsewhere. To perform the
first cut, we extend b, c upwards toward the boundary of C. We may cut a number
of rectangles from NC. The last one is adjacent to a broken boundary segment of
C, so it has only one dollar, and after the cut we need one dollar for each of its two
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Fig. 2.6. Extending b, d downwards towards the boundary of C.

parts. This is where we used a dollar that we have extracted a moment ago. Other
rectangles which are cut cannot be adjacent to a broken boundary, since the only
possibility is if the rectangle is adjacent to the boundary segment where a is located,
but then such a rectangle would provide a better (longer) choice for a, b. Thus each
of these rectangles has two dollars, but after the cut their parts are adjacent to the
new broken boundary segment, so they need one dollar each.

Now we extend b, d downwards toward the boundary of C (see Figure 2.6). If
d is on the boundary of C, then this extension does not cut any rectangles of NC.
Otherwise, we cut some rectangles. By the same reasoning as before, we need money
(one dollar) only for the last rectangle that is cut. It is easy to see that in this case
point d is in the interior of a maximal segment from BC, say g, h. By the same
reasoning as applied before to points c, e, and f , we can conclude that the rectangle
adjacent to segments b, d and g, d is not adjacent to a broken side of C, so it had two
dollars, and becomes adjacent to a broken side after the partition, so it provides us
with that additional one dollar.

We now turn to the implementation of our algorithm. All the steps of our algo-
rithm can be implemented in a manner similar to those in [dAF92], except the step
that requires finding the segment a, b. We describe the implementation assuming that
the side a, b is horizontal and the unbroken side of C is the right side of C; the other
cases are similar. Note that we do not need to know or enumerate the rectangles
whose sides contributed to the segment a, b. Consider the set of horizontal boundary
segments of all rectangles in our collection R and join two segments if they share an
endpoint. This will give us a set of segments in which each segment is a result of the
joining of horizontal boundary segments of one or more rectangles. This can be easily
obtained in O(n log n) time by sorting all the horizontal boundary segments of all
rectangles in our collection R by their distance from the y-axis. Finding the longest
segment a, b and maintaining them for each partition that we generate can now be
done by the same implementation as in [dAF92].

3. Lower bounds. In this section, we prove the following lower bounds.
Theorem 3.1. The following lower bounds hold:
(a) There exists a configuration of n isothetic rectangles that form a tiling of the

space such that any BSP tree for them is of size at least 3n
2 − o(n).

(b) If the rectangles are not required to form a tiling, there exists a configuration
of n rectangles such that any BSP tree for them is of size at least 2n− o(n).

Proof. We first focus on part (a) when the rectangles form a tiling.
We will construct the configuration in stages. See Figure 3.1. Stage 1 is the five

rectangle configuration shown in the bottom left part of Figure 3.1. We construct
stage 1 from stage 2 as follows. We reflect a stage 1 configuration along each axis as
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Fig. 3.1. Lower-bound construction for a set of isothetic rectangles that form a tiling. Con-
struction of stages 1, 2, and 3.

well as across the lower right corner to get a configuration of four copies of stage 1.
We merge any two mirror reflections abutting the borders of the four copies into one
rectangle, whenever possible. The resulting configuration is shown in the bottom
right part of Figure 3.1 with 13 rectangles. That is stage 2. Stage 3 consists of four
copies of the configuration from stage 2 reflected and merged along the borders just
as before, and so on.

Define Bi to be the number of rectangles on the boundary of any one side of
a stage i configuration (from inside) and Ri to be total number of rectangles. For
example, for Stage 1 B1 = 2 and R1 = 5 and for stage 2 B2 = 3 and R2 = 13.
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Fig. 3.2. Modifying stage 2.

Furthermore, we have Bi = 2Bi−1 − 1; this is because any boundary of Stage i
consists of two copies of stage i − 1, but a single rectangle that abuts their joint is
collapsed in the construction. By symmetry, all sides of stage i have Bi rectangles on
the boundary. Also, note that

Ri = 4Ri−1 − (4Bi−1 − 1),
because in stage i we have the rectangles from four copies of stage i−1, but on each of
the four joints of the copies we lose one copy of the rectangles on the boundary and gain
the one rectangle at the center. Solving the recurrences, we have Bi = 2i − 2i−1 + 1,
and Ri = 2(4i−1) + 2i + 1. The total number of rectangles in the final stage is n.

We will now modify the stages slightly, but it is critical.
Any BSP for stage 1 needs to cut one of the rectangles and therefore generates

at least one additional rectangle. Our goal is to claim that any BSP for stage 2 needs
at least four additional rectangles (for reasons that will be clear soon). The intuition
is that each of the four copies of stage 1 that was used to generate stage 2 needs a
separate BSP cut and therefore will generate a separate additional rectangle in the
BSP. This is not true as such for the 13 rectangle configuration shown in Figure 3.1
and reproduced as the bottom-right configuration in Figure 3.2. As the two parallel
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Fig. 3.3. Modifying stage 3. Solid arrows indicate in what direction the side of a rectangle has
to be moved slightly.

sets of dotted lines show, a single cut can serve as the BSP cut of two copies juxtaposed
horizontally or vertically. This is because of the symmetry of our construction. In
order to break this symmetry, we need to make sure that the vertical line of one of the
top two copies of stage 1 does not align with the vertical line in the copy of stage 1
directly underneath it. This is accomplished by moving the vertical lines marked in
the figure a little along the direction of the arrow. The process is similar for the
horizontal lines of the right two copies of stage 1. This results in the modified stage 2
shown in Figure 3.2. Now we need at least four additional rectangles in any BSP tree
of Stage 2.

Modifying stage 3 is similar. Refer to Figure 3.3. We start with the modified
stage 2 and repeat the construction of stage 3 as before. Again, we need to make sure
that the horizontal lines in the top (bottom) left copy do not line up with those in
the top (bottom) right copy and the vertical lines in the top left (right) copy do not
line up with the bottom left (right) copy. This is accomplished by moving various line
segments a little further along the direction shown in the figure. In this manner, we
can ensure that the individual BSP cuts of each of the four copies of stage 2 are all
needed in the BSP of stage 3. As a result, we have 4 ∗ 4 = 16 additional rectangles
for the BSP of modified stage 3. It is easy to see that we can repeat this procedure to
construct modified stage i such that any BSP of it will need 4i additional rectangles.

That completes the description of the configuration. Clearly, Bi’s and Ri’s remain
unchanged during the modification of stages.
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Fig. 3.4. Lower bound construction for a set of isothetic rectangles, not necessarily forming a
tiling. The black region is a hole.

We will now complete the lower bound calculation. Define Ci to be the number
of additional rectangles (in excess of Ri) needed in any binary space partition for
modified stage i. From our construction, Ci = 4Ci−1; solving the recurrence, we get
Ci = 4i−1. Define the lower bound factor on the BSP tree size for a given set of
rectangles to be the ratio of the size of a minimum-size BSP tree to the given number
of rectangles. Clearly, for our construction, the lower bound factor on the BSP tree
size is Ci+Ri

Ri
= 1 + Ci

Ri
. From the formulas for Ci and Ri, we have that the lower

bound factor on the size of the BSP tree is at least

1 +
4i−1

2(4i−1) + 2i + 1
=
3

2
− 2i + 1

2(4i−1) + 2i + 1
≥ 3

2
−
√
2n+ 1

n
=
3

2
− o(1).

For the case when the rectangles are not required to be a tiling, we repeat the
same construction as above, except that we leave the central square as a hole. The
first two stages are shown in Figure 3.4, where the shaded region is a hole. Repeating
the argument above (with n = 4i−1 +2i +1), we obtain the lower bound factor to be
at least

1 +
4i−1

4i−1 + 2i + 1
= 2− 2i + 1

4i−1 + 2i + 1
≥ 2− 2

√
n+ 1

n
= 2− o(1).

4. Improved rectangle tiling algorithms. We present improved approxima-
tion algorithms for several dual rectangle tiling problems. These rectangular tiling
problems and our improved approximation algorithms for them are of interest in many
areas: databases, parallel load balancing, spatial data structures, video compression,
etc. As an example, consider the following problem [MPS99].

Dual rectangle tiling (DRTILE) problem. Given an n×n array A of positive
integers and a parameter δ > 0, the problem is to tile (partition) A with the minimum
number of axis-parallel rectangular tiles such that the maximum weight of any tile is
at most δ. The weight of a tile is the sum squared error of each entry from the average
of the entries in that tile.
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The DRTILE problem is known to be NP-hard [MPS99]. Our new results are
as follows. The previously best known algorithm for (a) in the following theorem
also used no more than twice as many tiles as needed, but its running time was
O(n≥10) [KMP98]! The previously best known algorithm for (b) in the following
theorem with the same running time used 4p∗O(1/ε2) tiles7 and hence was worse by
a factor of 2 in approximation ratio [MPS99].

Theorem 4.1. The following results hold for the above DRTILE problem:

(a) There is an O(n5) time algorithm to find a tiling with maximum weight of a
tile being at most δ using no more than twice as many tiles as needed.

(b) There is an O(n2+ε) time algorithm that uses at most 2p∗O(1/ε2) tiles, where
p∗ is the minimum number of tiles needed and ε > 0 is arbitrarily small.

Proof. Proofs of both (a) and (b) depend on the following argument. Assume that
the optimum tiling has p∗ tiles. Theorem 2.2 implies that there is a BSP tree for those
tiles of size at most 2p∗. Since the weight of a subtile of a tile is no more than that of
the tile itself,8 this means that there exists a BSP of the tiling with at most 2p∗ tiles
in which the weight of each tile at most δ. We can find a BSP of minimum size among
BSPs of all possible tiling of the array A in which the weight of each tile at most
δ in O(n5) time by dynamic programming [KMP98, MPS99]. This approximates
p∗ by a factor of 2 and proves (a). For part (b), we use the same reasoning as
before but apply the sparse and rounded dynamic programming techniques in [MPS99]
to reduce the running time at the expense of increasing the size of the computed
BSP.

Remark 1. Our lower bound result in Theorem 3.1(a) show that alternate ap-
proach is needed in order to get significantly better approximations for this problem.

Remark 2. The improvements described in Theorem 4.1 also hold for other tiling
problems such as with either the maximum or the sum of weights of tiles, different
weight functions, etc. The claims of Theorem 4.1 also apply to the special case (the
DRTILE problem considered in [BDMR01, KMP98] and elsewhere) when the weight
of a tile is the sum of all array elements in it. Many results exist for the DRTILE
problem which use the special properties of the weight function and obtain better
bounds than the ones we have quoted above. However, the strength of our results
here is that they apply to many more complex weight functions, sum-squared-error
being one example. The technical condition for the results in Theorem 4.1 to hold
is that the weight functions have to be superadditive. Informally, this means that
splitting the tiles in any optimum solution does not make it worse in the criteria. (A
formal definition can be found in [MPS99].)

5. Concluding remarks. We have shown upper and lower bounds on the size
of a BSP tree for a set of n isothetic rectangles. In addition, our results give improved
approximation algorithms for rectangular tiling problems that arise in many applica-
tion areas [BDMR01, MPS99]. We leave open the problem of closing the gap between
the upper and lower bounds and of developing such detailed analyses for BSP trees
for other objects.

7For specific values of ε, e.g., ε = 3
4
, one can calculate the approximation ratio as well as the

running time from [MPS99], and it is quite reasonable. However, for arbitrarily small but fixed ε,
the bound appears to be substantially large. Hence, we retain just the expression O(1/ε2) in the
description.

8This is because the weight function is superadditive; see also the end of Remark 2.
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Abstract. The median set of a graph G with weighted vertices comprises the vertices minimiz-
ing the average weighted distance to the vertices of G. We characterize the graphs in which, with
respect to any nonnegative vertex weights, median sets always induce connected subgraphs. The
characteristic conditions can be tested in polynomial time (by employing linear programming) and
are immediately verified for a number of specific graph classes.
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1. Introduction. Given a (finite, connected) graph G one is sometimes inter-
ested in finding the vertices minimizing the total distance

F (x) =
∑
u

d(u, x)

to the vertices u of G, where the distance d(u, x) between u and x is the length
of a shortest path connecting u and x. The subgraph induced by all minima of F
need not be connected: actually every (possibly disconnected) graph can be realized
as such a “median” subgraph of another graph (Slater [26]); see Hendry [20] for
further information and pertinent references. The median subgraph of an unweighted
graph is also known as the “distance center” [25]. It is also used to derive fixed
subgraph theorems [9] and other results [19]. Here we will focus on the weighted
version of the median problem, which arises with one of the basic models in discrete
facility location [28, 29] and with majority consensus in classification and data analysis
[3, 10, 11, 12, 24]. A weight function is any mapping π from the vertex set to the
nonnegative real numbers, which is not the zero function (in order to avoid trivialities).
The total weighted distance of a vertex x in G is given by

Fπ(x) =
∑
u

π(u)d(u, x).

A vertex x minimizing this expression is a median (vertex) of G with respect to π,
and the set of all medians is the median set Med(π). By a local median one means a
vertex x such that Fπ(x) does not exceed Fπ(y) for any neighbor y of x. Denote by
Medloc(π) the set of all local medians. We will consider the following questions:

• When are all median sets Med(π) of a graph connected?
• When does Med(π) = Medloc(π) hold for all weight functions π?
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If we allow only 0-1 weight functions π, then recognition of graphs with Med(π) =
Medloc(π) is an NP -complete problem [2]. We will show that connectivity of median
sets with respect to arbitrary weight functions turns out to be equivalent to the
condition that for each function Fπ all local minima are global. This property can
also be formulated as a certain convexity condition.

In the next section we investigate weakly convex functions on graphs, and in
section 3 we then obtain the basic characterizations of graphs with connected medians.
One of those equivalent conditions, weak convexity of Fπ for each weight function π,
can be formulated as a linear programming problem, thus allowing us to recognize
graphs with connected medians in polynomial time. This LP condition, however,
entails a lot of redundancy and cannot be read off from other graph properties, which
are known to imply median connectedness. To establish the main result of section 4,
we split the LP condition into a rather trivial part (requiring that metric triangles be
equilateral) and a local condition (involving the intervals between vertices at distance
2) to which LP duality is applied. This theorem can conveniently be used to derive
median properties in several specific classes of graphs, as is demonstrated in the final
section.

2. Weakly convex functions. In what follows all graphs are assumed to be
finite and connected. A real-valued function f defined on the vertex set V of a graph
G is said to be weakly convex if for any two vertices u, v, and a real number λ between
0 and 1 such that λd(u, v) and (1− λ)d(u, v) are integers there exists a vertex x such
that

d(u, x) = λd(u, v), d(v, x) = (1− λ)d(u, v),

f(x) ≤ (1− λ)f(u) + λf(v).

Weakly convex functions were introduced by Arkhipova and Sergienko [1] under the
name “r-convex functions”; see also Lebedeva, Sergienko, and Soltan [21].

The interval I(u, v) between two vertices u and v consists of all vertices on shortest
u, v-paths; that is,

I(u, v) = {x : d(u, x) + d(x, v) = d(u, v)}.

For convenience we will use the shorthand

I◦(u, v) = I(u, v)− {u, v}

to denote the “interior” of the interval between u and v.
Lemma 2.1. For a real-valued function f defined on the vertex set of a graph G

the following conditions are equivalent:
(i) f is weakly convex;
(ii) for any two nonadjacent vertices u and v there exists w ∈ I◦(u, v) such that

d(u, v) · f(w) ≤ d(v, w) · f(u) + d(u,w) · f(v);

(iii) any two vertices u and v at distance 2 have a common neighbor w with

2f(w) ≤ f(u) + f(v).
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Proof. (i) ⇒ (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i): Consider two vertices u and v at distance d(u, v) = n. Among all

shortest paths connecting u and v select a path P = (u = w0, w1, . . . , wn−1, wn = v)
such that

∑n
i=0 f(wi) is as small as possible. Condition (iii) implies that 2f(wi) ≤

f(wi−1) + f(wi+1) for each 1 < i < n. Regard

(0, f(w0)), (1, f(w1)), . . . , (n− 1, f(wn−1)), (n, f(wn))

as points in the plane R
2. Connecting the consecutive points by segments, we will

get a graph of a piecewise-linear function. This function is necessarily convex (in the
usual sense), because it coincides on P with the function f. From this we conclude
that

f(wi) ≤ λf(u) + (1− λ)f(v),

where λ = (n− i)/n and 1− λ = i/n.
Recall that a real-valued function f defined on a path P = (w0, w1, . . . , wp) is

peakless [14, p. 109] if 0 ≤ i < j < k ≤ p implies f(wj) ≤ max{f(wi), f(wk)} and
equality holds only if f(wi) = f(wk). Now, we will say that a function f defined on
the vertex set of a graph G is pseudopeakless if any two vertices of G can be joined
by a shortest path along which f is peakless [16]. The function f is called unimodal
if every local minimum of f is global; that is, if the inequality f(v) ≤ f(y) holds for
all neighbors y of a vertex v of G, then it holds for all vertices y of G. The next result
shows that weakly convex functions are pseudopeakless and pseudopeakless functions
are unimodal.

Remark 1. The following conditions are equivalent for every real-valued function
f defined on the vertex set of a graph G:

(i) f is pseudopeakless;
(ii) for any two nonadjacent vertices u, v there is a vertex w ∈ I◦(u, v) such that

f(w) ≤ max{f(u), f(v)} and equality holds only if f(u) = f(v);
(iii) the composition α◦f is weakly convex for some strictly isotone transformation

α of the reals (i.e., α(r) < α(s) for any two reals r < s).
If one of the conditions (i)–(iii) is satisfied, then the function f is unimodal.

Proof. (i) ⇔ (ii) is trivial. The property of being pseudopeakless is invariant
under strictly isotone transformations of the range, whence (iii) ⇒ (i).

(i)⇒ (iii): Let f be a pseudopeakless function taking n distinct values a1 < a2 <
· · · < an. Let α be a strictly isotone map which assigns to each ai the integer 2i.
We assert that the composition α◦f is weakly convex. For given vertices u and v at
distance 2, let w be their common neighbor such that f is peakless along the path
(u,w, v). Say ai = f(u) ≤ f(v) = ak and aj = f(w) ≤ ak. If i = k, then i = j = k,
and hence α◦f(w) = α◦f(u) = α◦f(v). Else we have i < k and thus j < k, and
consequently

2α◦f(w) = 2j+1 ≤ 2k < 2i + 2k = α◦f(u) + α◦f(v),
as required.

To establish unimodality of a pseudopeakless function f, let u be a global mini-
mum and v a local minimum of f. Consider a shortest path P between u and v along
which f is peakless. Then for any neighbor w of v we have f(w) ≥ max{f(u), f(v)},
whence f(u) = f(v) = f(w), as required.

In what follows we will apply Lemma 2.1 to the functions Fπ of G. The simplest
instance is given by the weight function π assigning 1 to a distinguished vertex w and
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0 otherwise: then Fπ = d(·, w) just measures the distance in G to that vertex. We
say that G is meshed [6] if the function d(·, w) is weakly convex for every choice of w.
A somewhat weaker property is used in subsequent results. Three vertices u, v, w of a
G are said to form a metric triangle uvw if the intervals I(u, v), I(v, w), and I(w, u)
pairwise intersect only in the common end vertices. If d(u, v) = d(v, w) = d(w, u) = k,
then this metric triangle is called equilateral of size k.

Remark 2. Every metric triangle in a meshed graph G is equilateral.
Proof. To see this, suppose the contrary: let uvw be a metric triangle in G with

d(u,w) < d(v, w). For λ = 1 − 1/d(v, w), weak convexity of f = d(·, w) provides us
with a vertex x such that

d(u, x) = d(u, v)− 1, d(v, x) = 1,

d(w, x) ≤ d(u,w)/d(u, v) + d(v, w)(1− 1/d(u, v))

< d(v, w)/d(u, v) + d(v, w)(1− 1/d(u, v)) = d(v, w).

This implies x ∈ I(u, v) ∩ I(v, w), a contradiction.

3. Basic characterizations. We commence by giving first answers to the ques-
tions raised in the introduction. A connected subgraph H of a graph G is isometric
if the distance function d of G restricts to the distance function of H.

Proposition 3.1. For a graph G the following conditions are equivalent:
(i) Medloc(π) = Med(π) for all weight functions π;
(ii) Fπ is weakly convex for all π;
(iii) Fπ is pseudopeakless for all π;
(iv) all level sets {x : Fπ(x) ≤ λ} induce isometric subgraphs;
(v) all median sets Med(π) induce isometric subgraphs;
(vi) all median sets Med(π) are connected.

Any of the conditions (i)–(vi) is equivalent to the analogous condition with the addi-
tional requirement that π be positive.

The following observation is basic for the proof of Proposition 3.1.
Lemma 3.2. If the function Fπ is not weakly convex on the vertex set V of a

graph G for some weight function π, then there exist a positive weight function π+

and vertices u, v at distance 2 such that Med(π+) = {u, v}.
Proof. If Fπ is not weakly convex, then by Lemma 2.1 there exist two vertices u

and v at distance 2 such that 2Fπ(w) > Fπ(u) + Fπ(v) for all (common neighbors)
w ∈ I◦(u, v). This inequality can be maintained under sufficiently small positive
perturbations of π : viz., add any δ satisfying

0 < δ · 2 ·#V < min
w∈I◦(u,v)

(2Fπ(w)− Fπ(u)− Fπ(v))

to all weights, yielding the new weights π′(x) = π(x) + δ. Then

2Fπ′(w)− Fπ′(u)− Fπ′(v)

= 2Fπ(w)− Fπ(u)− Fπ(v)− δ ·
∑
x∈V

(d(u, x) + d(v, x)− 2d(w, x))

≥ 2Fπ(w)− Fπ(u)− Fπ(v)− δ · 2 ·#V > 0
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for all w ∈ I◦(u, v); that is, the initial inequality remains valid with respect to the
thus perturbed weight function. We may therefore assume that π is actually positive.

We stipulate that ε = 1
2 (Fπ(v)−Fπ(u)) ≥ 0. Let µ denote the maximum value of

Fπ. Define a new positive weight function π+ by

π+(u) = π(u) + 2µ, π+(v) = π(v) + 2µ+ ε,

and π+(x) = π(x) otherwise. Then

Fπ+(u) = Fπ(u) + 2(2µ+ ε) = Fπ(v) + 4µ = Fπ+(v)

and Med(π+) ⊆ I(u, v) because

Fπ+(x) ≥ Fπ(x) + 2µ(d(u, x) + d(v, x)) ≥ Fπ(x) + 6µ > Fπ+(u)

for every vertex x outside I(u, v). For w ∈ I◦(u, v) one obtains

Fπ+(w) = Fπ(w) + 4µ+ ε >
1

2
(Fπ(u) + Fπ(v)) + 4µ+ ε = Fπ+(u).

Therefore Med(π+) consists only of u and v. This concludes the proof.
Proof of Proposition 3.1. The implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) and

(ii) ⇒ (i) are trivial, while (vi) ⇒ (ii) is covered by Lemma 3.2. It remains to verify
that (i) implies (ii). Suppose by way of contradiction that some function Fπ is not
weakly convex. By Lemma 3.2 there exist a positive weight function π+ and vertices
u, v at distance 2 such that Med(π+) = {u, v}. Pick any ε satisfying

0 < ε < min
x∈V−{u,v}

Fπ+(x)− Fπ+(v)

and define a new weight function π′ by

π′(u) = π+(u) + ε

and π′(x) = π+(x) otherwise. Then

Fπ′(u) = Fπ+(u) = Fπ+(v),

Fπ′(x) = Fπ+(x) + d(x, u)ε ≥ Fπ+(x) + ε > Fπ+(v) + 2ε = Fπ′(v)

for all x ∈ V −{u, v}. Therefore both u and v are local minima of Fπ′ , but v /∈ Med(π′).
This establishes the implication (i) ⇒ (ii).

The same arguments can be applied to prove that the analogous conditions (i+)–
(vi+) additionally requiring the weight functions to be positive are all equivalent.
Since (i) ⇒ (i+) is trivial and (vi+) ⇒ (i) is covered by Lemma 3.2, the proof is
complete.

In view of Lemma 2.1(iii) and Proposition 3.1, all median sets are connected if
and only if for each pair u, v of vertices at distance 2 the following system of linear
inequalities is unsolvable in π:

Duvπ < 0 and π ≥ 0 with matrix

Duv = (d(u, x) + d(v, x)− 2d(w, x))w∈I◦(u,v),x∈V .

Since LP problems can be solved in polynomial time, we thus obtain the following
result.

Corollary 3.3. The problem to decide whether all median sets Med(π) of a
graph G are connected is solvable in polynomial time.
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4. The main result. In order to obtain a convenient characterization of median
connectedness, we will restrict the supports of the weight functions π to be tested and
then take advantage of LP duality in the following form.

Remark 3. Let u, v be any vertices of a graph G with d(u, v) = 2, and let W be a
nonempty subset of I◦(u, v) and X be a nonempty subset of the vertex set of G. Then
for every weight function π with support included in X there exists some w ∈W such
that

Fπ(u) + Fπ(v)− 2Fπ(w) ≥ 0

if and only if there exists a weight function η with support included in W such that
for every x ∈ X ∑

w∈W
(d(u, x) + d(v, x)− 2d(w, x))η(w) ≥ 0.

Proof. Let D denote the submatrix of Duv (as just defined) with rows and columns
corresponding to W and X, respectively. The asserted equivalence is then a particular
instance of LP duality, as formulated by J.A.Ville (cf. [17, p. 248]) in terms of systems
of linear inequalities:

Dπ < 0, π ≥ 0 is unsolvable ⇐⇒ ηD ≥ 0, η ≥ 0, η �= 0 is solvable.

For vertices x and y define the following superset of I(x, y):

J(x, y) = {z ∈ V : I(z, x) ∩ I(z, y) = {z}}.

Proposition 4.1. The median sets Med(π) in a graph G are connected for
all weight functions π if and only if (1) all metric triangles are equilateral and (2)
for any vertices u, v with d(u, v) = 2 and every weight function π whose support
{x ∈ V : π(x) > 0} is included in the set J(u, v) there exists a vertex w ∈ I◦(u, v)
such that 2Fπ(w) ≤ Fπ(u) + Fπ(v).

Proof. Necessity immediately follows from Remark 2 and Proposition 3.1. To
prove sufficiency assume that (1) and (2) hold, but there exists a weight function π
for which Fπ is not weakly convex. Then by Lemma 2.1 there are vertices u and v at
distance 2 such that

2Fπ(w) > Fπ(u) + Fπ(v) for all w ∈ I◦(u, v).

Now, fixing u and v, we may assume that π was chosen so that this inequality still
holds and the number of vertices from the support of π outside J(u, v) is as small
as possible. By (2) we can find a vertex x with π(x) > 0 and x /∈ J(u, v). To arrive
at a contradiction, we will slightly modify π by setting the weight of x to zero (and
possibly transferring its old weight to some vertex in J(u, v)). We distinguish three
cases.

Case 1. |d(u, x)− d(v, x)| = 2.
Then 2d(w, x) = d(u, x)+d(v, x) for every w ∈ I◦(u, v). Hence the weight function

π′ defined by

π′(y) =
{

π(y) if y �= x,
0 if y = x
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satisfies 2Fπ′(w) > Fπ′(u) + Fπ′(v), contrary to the minimality assumption on π.
Case 2. |d(u, x)− d(v, x)| = 1.
Without loss of generality assume that d(v, x) = d(u, x)+1. Let x′ be a vertex in

I(u, x)∩I(v, x) at maximal distance to x. Then x′ ∈ J(u, v) and d(v, x′) = d(u, x′)+1.
From the latter equality and d(u, v) = 2 we infer that I(u, v)∩I(u, x′) = {u}. Let t be
a vertex in I(u, v) ∩ I(v, x′) at maximal distance to v. Since u /∈ I(v, x), the vertices
u, t, x′ must constitute an equilateral metric triangle. Therefore d(u, x′) = d(t, u) = 1
and d(v, x′) = 2. Define a new weight function π′, where

π′(y) =




π(y) if y �= x, x′,
0 if y = x,
π(x) + π(x′) if y = x′.

Let k = d(u, x) = d(v, x)− 1. Then

Fπ′(u) + Fπ′(v) = Fπ(u) + Fπ(v)− (2k − 2)π(x).

For every w ∈ I◦(u, v) we have either

d(w, x) = k and 1 ≤ d(w, x′) ≤ 2

or

d(w, x) = k + 1 and d(w, x′) = 2.

Hence

Fπ′(w) = Fπ(w)− (d(w, x)− d(w, x′))π(x) ≥ Fπ(w)− (k − 1)π(x),

and further

2Fπ′(w)− Fπ′(u)− Fπ′(v)

≥ 2Fπ(w)− 2(k − 1)π(x)− Fπ(u)− Fπ(v) + 2(k − 1)π(x)

= 2Fπ(w)− Fπ(u)− Fπ(v) > 0,

again a contradiction to the choice of π.
Case 3. d(u, x) = d(v, x).
Let x′ be a vertex in I(u, x) ∩ I(v, x) at maximal distance to x. Since all metric

triangles of G are equilateral and d(u, v) = 2, we obtain that

1 ≤ d(x′, u) = d(x′, v) ≤ 2.

Define the new weight function π′ as in Case 2. Then

Fπ′(u) = Fπ(u)− d(x, x′)π(x),

Fπ′(v) = Fπ(v)− d(x, x′)π(x),
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and for every w ∈ I◦(u, v)

Fπ′(w) = Fπ(w)− (d(x,w)− d(w, x′))π(x)

≥ Fπ(w)− d(x, x′)π(x),

a final contradiction.
In view of Remark 2 we may require in Proposition 4.1 (as well as Theorem 4.4

below) that G be meshed instead and that all metric triangles in G be equilateral.
Let M(u, v) denote the set of those vertices of J(u, v) which are equidistant to u

and v:

M(u, v) = {x ∈ V : I(x, u) ∩ I(x, v) = {x} and d(u, x) = d(v, x)}.

The neighborhood N(x) of a vertex x consists of all vertices adjacent to x. Note that
if d(u, v) = 2, then N(u) ∩N(v) = I◦(u, v) ⊆M(u, v).

Lemma 4.2. If all median sets of a graph G are connected, then for any vertices
u and v at distance 2 there exist (not necessarily distinct) vertices s, t ∈ I◦(u, v) such
that

d(s, y) + d(t, y) ≤ d(u, y) + d(v, y)

for all vertices y ∈M(u, v).
Proof. We define a weight function π for which the hypothesis that Fπ be

pseudopeakless implies the asserted inequality: let

π(x) =




0 if x /∈M(u, v),
4 if x ∈M(u, v)− I◦(u, v),
2 if x ∈ I◦(u, v) with #(I◦(u, v) ∩N(x)) ≥ #I◦(u, v)− 2

and d(x, y) = 2 for all y ∈M(u, v)− I◦(u, v),
3 otherwise.

Since weights are zero outside M(u, v), we have Fπ(u) = Fπ(v). Select s ∈ I◦(u, v)
such that Fπ is peakless along the (shortest) path (u, s, v), that is, Fπ(s) ≤ Fπ(u) =
Fπ(v). Note that

d(u, x) + 1 ≥ d(s, x) ≥ d(u, x) = d(v, x) for all x ∈M(u, v)− {s}.

We claim that π(s) = 2. Indeed, otherwise π(s) = 3 holds and either there are two
distinct vertices x, y ∈ I◦(u, v) with d(s, x) = d(s, y) = 2 or there exists some vertex
z ∈M(u, v)− I◦(u, v) with d(s, z) = 3. In the first case we would get

Fπ(s)− Fπ(u) ≥ π(x) + π(y)− π(s) ≥ 2 + 2− 3 > 0,

and in the second case

Fπ(s)− Fπ(u) ≥ π(z)− π(s) = 4− 3 > 0,

both giving a contradiction. Now, if all vertices in M(u, v)− {s} are equidistant to s
and u (as well as v), then

2d(s, y) ≤ d(u, y) + d(v, y) for all y ∈M(u, v),



276 HANS-JÜRGEN BANDELT AND VICTOR CHEPOI

and thus t = s is the required solution to the asserted inequality. Else there exists
some t ∈M(u, v) with d(s, t) = d(u, t) + 1, yielding

0 ≤ Fπ(u)− Fπ(s) ≤ π(s)− π(t),

whence π(t) = 2 and d(s, t) = 2. Consequently,

d(s, y) + d(t, y) = d(u, y) + d(v, y) for all y ∈M(u, v),

and therefore s, t constitutes the required vertex pair in this case.
Lemma 4.3. Let u and v be vertices at distance 2 in a graph G for which all

median sets are connected. Select a maximal subset S of I◦(u, v) with the property
that for each vertex s ∈ S there exists a vertex t ∈ S (not necessarily distinct from s)
such that d(s, y) + d(t, y) ≤ d(u, y) + d(v, y) for all y ∈M(u, v). Then for any weight
function π with support included in J(u, v) there exists some vertex w ∈ S satisfying
2Fπ(w) ≤ Fπ(u) + Fπ(v).

Proof. By Lemma 4.2, the set S is nonempty. Now, assume the contrary and
among all weight functions violating our assertion choose a function π for which the
set

{x ∈ I◦(u, v)− S : 2Fπ(x)− Fπ(u)− Fπ(v) ≤ 0}

is as small as possible. This set contains some vertex x because Fπ is weakly convex.
Pick any δ > 1

2 (Fπ(u) + Fπ(v)− 2Fπ(x)) ≥ 0.
First suppose that d(x, y) = d(x, z) = 2 for some distinct vertices y, z ∈ I◦(u, v).

Define a new weight function π′ by

π′(w) =

{
π(w) + δ if w ∈ {x, y, z},
π(w) otherwise.

Then

Fπ′(u) = Fπ(u) + 3δ, Fπ′(v) = Fπ(v) + 3δ, Fπ′(x) = Fπ(x) + 4δ,

Fπ′(w) ≥ Fπ(w) + 3δ for all w ∈ I◦(u, v), w �= x.

Hence

2Fπ′(x)− Fπ′(u)− Fπ′(v) = 2Fπ(x)− Fπ(u)− Fπ(v) + 2δ > 0

and

2Fπ′(w)− Fπ′(u)− Fπ′(v) ≥ 2Fπ(w)− Fπ(u)− Fπ(v)

for all w ∈ I◦(u, v) distinct from x, contrary to the choice of π. Therefore, x is adjacent
to all vertices w ∈ I◦(u, v), w �= x, except possibly one vertex.

Now, suppose that d(x, z) = 3 for some vertex z ∈M(u, v). Then for the modified
weight function π′ defined by

π′(w) =

{
π(z) + δ if w = z,
π(w) otherwise
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we have

Fπ′(u) = Fπ(u) + 2δ, Fπ′(v) = Fπ(v) + 2δ, Fπ′(x) = Fπ(x) + 3δ,

Fπ′(w) ≥ Fπ(w) + 2δ for all w ∈ I◦(u, v), w �= x.

Then we obtain the same inequalities as in the preceding case and thus again arrive
at a contradiction. We conclude that d(x, z) = d(x, u) = d(x, v) = 2 for all z ∈
M(u, v)− I◦(u, v).

If x is adjacent to all other vertices of I◦(u, v), then 2d(x, z) = d(x, u)+d(x, v) for
all z ∈M(u, v), z �= x, and hence we could adjoin x to S, contrary to the maximality of
S. Therefore, by what has been shown, I◦(u, v) contains exactly one vertex y distinct
from x which is not adjacent to x. Since x /∈ S, there exists a vertex z ∈ M(u, v)
such that d(x, z) + d(y, z) > d(u, z) + d(v, z). Then necessarily d(x, z) = d(u, z) =
d(y, z)− 1 = k for k ∈ {1, 2}. Define a new weight function π′ by

π′(w) =

{
π(w) + δ if w ∈ {y, z},
π(w) otherwise.

Then

Fπ′(u) = Fπ(u) + (k + 1)δ, Fπ′(v) = Fπ(v) + (k + 1)δ,

Fπ′(x) = Fπ(x) + (k + 2)δ, Fπ′(y) = Fπ(y) + (k + 1)δ,

Fπ′(w) ≥ Fπ(w) + (k + 1)δ for all w ∈ I◦(u, v), w �= x, y,

giving the same contradiction as before. This concludes the proof.
Now we are in a position to formulate the principal result.
Theorem 4.4. For a graph G all median sets are connected if and only if the

following conditions are satisfied:
(i) all metric triangles of G are equilateral;
(ii) for any vertices u and v at distance 2 there exist a nonempty subset S of

I◦(u, v) and a weight function η with support included in S having the follow-
ing two properties:

(α) every vertex s ∈ S has a companion t ∈ S (not necessarily distinct
from s) such that

d(s, x) + d(t, x) ≤ d(u, x) + d(v, x) for all x ∈M(u, v),

and η(s) = η(t) whenever d(s, t) = 2;
(β) the joint weight of the neighbors of any x ∈ J(u, v) −M(u, v) from S

is always at least half the total weight of S:

∑
s∈S∩N(x)

η(s) ≥ 1

2

∑
s∈S

η(s) for all x ∈ J(u, v)−M(u, v).

Proof. First assume that G is a graph with connected medians. By Proposition
4.1 all metric triangles of G are equilateral. Let u, v be a pair of vertices at distance
2. The nonempty subset S of I◦(u, v) provided by Lemma 4.3 satisfies the inequality
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in (α) for each s ∈ S and companion t. Moreover, Lemma 4.3 guarantees that for
every weight function π with support included in J(u, v) there exists a vertex w ∈ S
with Fπ(u) + Fπ(v) − 2Fπ(w) ≥ 0. Now, LP duality as formulated in Remark 3 for
W = S and X = J(u, v) yields a weight function η with support included in S such
that for every x ∈ J(u, v) the weighted sum of all d(u, x) + d(v, x)− 2d(w, x) (w ∈ S)
is nonnegative. If x ∈ J(u, v)−M(u, v), then

d(u, x) + d(v, x)− 2d(w, x) =

{
1 if w ∈ S ∩N(x),
−1 if w ∈ S −N(x),

and therefore (β) holds. If x ∈M(u, v), then d(s, x) ≤ 2 for all s ∈ S and

d(u, x)+d(v, x)−2d(w, x) =




2 if w = x ∈ S,
0 if w ∈ S with d(w, x) = d(u, x),
−2 if w ∈ S with d(w, x) = 2 and d(u, x) = 1.

In the latter case t = x ∈ S is the companion of s = w. This yields the inequality
η(t) − η(s) ≥ 0, and by interchanging the role of s and t we infer that η(s) = η(t)
whenever d(s, t) = 2.

Conversely, if conditions (i) and (ii) are satisfied, then by virtue of LP duality
(Remark 3) conditions (1) and (2) of Proposition 4.1 are fulfilled, whence G has
connected medians.

Corollary 4.5. All median sets in a meshed graph G are connected whenever
the following condition is satisfied:

(∗) for any two vertices u and v with #I◦(u, v) ≥ 2 = d(u, v) there exist (not
necessarily distinct) vertices s, t ∈ I◦(u, v) such that

d(s, x) + d(t, x) ≤ d(u, x) + d(v, x) for all x ∈ J(u, v).

If, moreover, G satisfies the stronger condition requiring in addition that d(s, t) ≤ 1,
then Med(π) induces a complete subgraph for every positive weight function π.

Proof. First observe that the inequality of (∗) also holds in the case that u and
v are at distance 2 with a unique common neighbor s. Indeed, if x ∈ J(u, v), then
necessarily 2d(s, x) ≤ d(u, x) + d(v, x) since G is meshed. To see that (∗) implies
condition (ii) of Theorem 4.4, put S = {s, t} and η ≡ 1. Then (α) is trivially satisfied.
For x ∈ J(u, v) −M(u, v) we have d(u, x) + d(v, x) = 3 because G is meshed, and
therefore x is adjacent to at least one of s, t, thus establishing (β).

To prove the second statement, observe that the inequality in (∗) actually holds
for all vertices x of G. Indeed, for each vertex x select a vertex x′ from I(u, x)∩I(v, x)
at maximal distance to x. Then x′ belongs to J(u, v) and

d(s, x) + d(t, x) ≤ d(s, x′) + d(t, x′) + 2d(x, x′)

≤ d(u, x′) + d(v, x′) + 2d(x, x′)

= d(u, x) + d(v, x).

Adding up all these inequalities each multiplied by the corresponding weight π(x)
then yields

Fπ(s) + Fπ(t) ≤ Fπ(u) + Fπ(v),
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where strict inequality holds exactly when one of the former inequalities is strict for
x with π(x) > 0, for instance, when π(s) > 0. Hence, if π is positive, u and v cannot
both belong to Med(π) under these circumstances.

In general, we can neither dispense with weight functions nor impose any fixed
upper bound on the cardinalities of the sets S occurring in Theorem 4.4, as the
following example shows.

Example 1. Let G be the chordal graph with 2
(
2k
2

)
+ 2k + 6 (k ≥ 2) vertices

comprising a set S = {x1, x2, y1, . . . , y2k} of mutually adjacent vertices, two vertices
u and v adjacent to all of S, and vertices wZ associated with certain subsets Z of S,
namely the sets {x1, x2}, {y1, . . . , y2k}, and {xi} ∪ Y for all i = 1, 2 and k-subsets Y
of {y1, . . . , y2k}, such that each vertex wZ is adjacent to u and all vertices from Z.
Then a weight function η with support included in I◦(u, v) = S satisfies (β) for the
pair u, v if and only if for each of the above sets Z (which come in complementary
pairs) one has ∑

z∈Z
η(z) =

∑
y∈S−Z

η(y),

which is equivalent to

η(xi) = k · η(yj) for all i = 1, 2 and j = 1, . . . , 2k.

Thus, in order to satisfy (β), we are forced to take a weight function η having a large
support on which it is not constant. Note that (α) for u, v is trivially fulfilled with
any choice of s = t from S. Finally, every other pair of vertices at distance 2 meets
condition (∗) of Corollary 4.5 when either replacing u by wZ and selecting s = t from
Z or replacing u, v by wZ , wZ′ (Z �= Z ′) and setting s = t = u. This shows that G
has connected medians.

5. Particular cases. A number of graph classes [13] consist of particular meshed
graphs, for instance, the classes of chordal graphs (and, more generally, bridged
graphs), Helly graphs, and weakly median graphs (see below), respectively. In the
case of chordal graphs the first statement of Corollary 4.5 is due to Wittenberg [30,
Theorem 1.1]. Whenever a chordal graph satisfies condition (∗), then any pair s, t
selected in (∗) necessarily satisfies d(s, t) ≤ 1. Corollary 4.5 comes into full action for
the class of Helly graphs. A Helly graph G (alias “absolute retract of reflexive graphs”)
has the characteristic “Helly property” that for any vertices v1, . . . , vn and nonnega-
tive integers r1, . . . , rn the system of inequalities d(vi, x) ≤ ri (i = 1, . . . , n) admits
a solution x whenever d(vi, vj) ≤ ri + rj (i, j = 1, . . . , n) holds [8]. Since this Helly
property for n = 3 implies weak convexity (as formulated in Lemma 2.1(iii)) of the
function d(·, z), all Helly graphs are meshed. To verify condition (∗) (with d(s, t) ≤ 1),
first observe that the Helly property for n = 3 entails J(u, v) ⊆ N(u) ∪ N(v) and
thus M(u, v) = I◦(u, v) for every pair u, v with d(u, v) = 2. Now, all vertices in
(N(u) ∩ J(u, v)) ∪ {v} are pairwise at distance ≤ 2, whence the Helly property guar-
antees a common neighbor s. Similarly, the vertices from (N(v)∩ J(u, v))∪ {u} have
a common neighbor t. Necessarily s, t ∈ I◦(u, v) and d(s, t) ≤ 1 hold, and we have
therefore established the following observation, which implies the result of Lee and
Chang [22] on strongly chordal graphs (being special Helly graphs).

Corollary 5.1. All median sets Med(π) of a Helly graph G are connected, and,
moreover, if π is positive, then Med(π) induces a complete graph in G.

In some particular classes of meshed graphs the pair s, t meeting (∗) can always
be selected by the following trivial rule: given vertices u, v at distance 2, choose any
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Fig. 5.1.

pair s, t from I◦(u, v) for which d(s, t) is as large as possible. Evidently, a meshed
graph G satisfies condition (∗) with this selection rule provided that the following two
requirements are met:

(§) if I◦(u, v) is a complete subgraph for vertices u and v at distance 2, then
d(s, x) + d(t, x) ≤ d(u, x) + d(v, x) for all s, t ∈ I◦(u, v) with s �= t and all
x ∈ J(u, v);

(§§) if s, t, u, v induce a 4-cycle where d(s, t) = d(u, v) = 2, then d(s, x)+d(t, x) =
d(u, x) + d(v, x) for all x ∈ J(u, v).

Notice that in (§§) we could replace the last equality by an inequality because the in-
equality would imply J(s, t) = J(u, v) in a meshed graph and thus the reverse inequal-
ity would follow by symmetry. We will now show that the so-called weakly median
graphs satisfy (§) and (§§). A graph is weakly median [15] if (i) any three distinct com-
mon neighbors of any two distinct vertices u and v always induce a connected subgraph
and (ii) all functions d(·, z) satisfy the following condition, stronger than weak convex-
ity: if u, v are at distance 2 and |d(u, z)−d(v, z)| ≤ 1, then 2d(w, z) < d(u, z)+d(v, z)
for some w ∈ I◦(u, v). Condition (ii) is also referred to as weak modularity; see [4].
Trivially, weakly modular graphs are meshed.

Remark 4. A weakly modular graph G satisfies conditions (§) and (§§) if and
only if G does not contain any of the graphs of Figure 5.1 as an induced subgraph.
In particular, weakly median graphs have connected medians.

Proof. If G includes an induced subgraph from Figure 5.1, then s, t, u, v, x violate
either (§§) or (§). Conversely, assume that G is weakly modular but violates (§) or
(§§) for some vertices s, t, u, v, x. Then, as x ∈ J(u, v), we have d(u, x) + d(v, x) ≤ 3
by weak modularity. If x ∈ I◦(u, v), then necessarily s, t, u, v, x induce one of the first
two graphs in Figure 5.1. Otherwise, say, d(u, x)+1 = 2 = d(v, x) = d(s, x) = d(t, x).
As G is meshed, u, v, x have some common neighbor w. If w is not adjacent to both s
and t, then we are back in the preceding case with w playing the role of x. Therefore
we may assume that w is a common neighbor of s and t. If s and t are not adjacent,
then s, t, u, v, w induce a subgraph isomorphic to Figure 5.1(b). Otherwise, s and t are
adjacent, and we obtain the graph of Figure 5.1(c) as an induced subgraph. Finally,
note that the latter graph minus v as well as Figures 5.1(a)–(b) are all forbidden in a
weakly median graph.

Inasmuch as pseudomedian graphs and quasi-median graphs are weakly median,
Remark 4 (in conjunction with Proposition 3.1) generalizes some results from [3, 5,
7, 18, 27]. Another class of meshed graphs fulfilling (§) and (§§) is associated with
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matroids. A matroid M can be defined as a finite set E together with a collection B
of subsets (referred to as the bases of M) such that for B,B′ ∈ B and e ∈ B − B′

there exists some e′ ∈ B′−B with (B′−{e′})∪{e} ∈ B. The basis graph ofM is the
(necessarily connected) graph whose vertices are the bases of M and edges are the
pairs B,B′ of bases differing by a single exchange. We immediately infer from the
characterization established by Maurer [23] that the basis graph of every matroid is
meshed (but not weakly modular in general) and satisfies (§) and (§§).

Corollary 5.2. The basis graph of every matroid has connected medians.
In view of Corollary 5.2 and Proposition 3.1 one can solve the median problem in

the basis graph of a matroidM = (E,B) with the greedy algorithm. Given a weight
function π on B assign a weight to each element e ∈ E by w(e) =

∑{π(B) : e ∈ B}.
Applying the greedy algorithm one finds a base B∗ maximizing the function B �→
w(B) =

∑{w(e) : e ∈ B}. We assert that B∗ is a minimum for the function Fπ in the
basis graph. Indeed, if B′ = (B∗ − {e}) ∪ {e′} is any neighbor of B∗, then

Fπ(B
∗)− Fπ(B

′) =
∑
{π(B) : e /∈ B, e′ ∈ B} −

∑
{π(B) : e ∈ B, e′ /∈ B}

= w(e′)− w(e)

= w(B′)− w(B) ≤ 0.

Hence B∗ ∈ Medloc(π) =Med(π), as required.
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[10] J.P. Barthélemy and M.F. Janowitz, A formal theory of consensus, SIAM J. Discrete Math.,
4 (1991), pp. 305–322.
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Abstract. This paper gives a new and faster algorithm to find a 1-factor in a bipartite ∆-regular
graph. The time complexity of this algorithm is O(n∆ + n logn log ∆), where n is the number of
nodes. This implies an O(n logn log ∆ + m log ∆) algorithm to edge-color a bipartite graph with n
nodes, m edges, and maximum degree ∆.
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1. Introduction. Let G be a bipartite regular graph. A celebrated result of
Kőnig [5] (see [6] for a compact proof) states that G can be factorized; that is, E(G)
can be decomposed as the union of edge-disjoint 1-factors. (A 1-factor is simply
another way to say perfect matching.) Any bipartite matching algorithm can thus
be employed to find a 1-factor in G and hence to factorize G. However, there exist
faster methods exploiting the regularity of G. Cole and Hopcroft [1] gave an O(n∆+
n log n log2 ∆) algorithm to find a 1-factor in a ∆-regular bipartite graph with n
nodes. Schrijver [7] gave an O(n∆2) algorithm for the same problem. Depending on
the relative values of ∆ and n, either algorithm gives the best-so-far proven worst-case
asymptotic bound. We do not know of any randomized algorithm with better bounds.

In section 2, we give an O(n∆ + n log n log ∆) deterministic algorithm, thus im-
proving the bound on the side of Cole and Hopcroft’s.

Let G be a bipartite graph (possibly not regular) with n nodes, m edges, and
maximum degree ∆. An edge-coloring of G assigns to each edge of G one of ∆
possible colors so that no two adjacent edges receive the same color. By a simple
reduction, the above cited result of Kőnig [5] implies that every bipartite graph admits
an edge-coloring. Kapoor and Rizzi [4] gave an algorithm to edge-color G in Tn,m,∆ +
O(m log ∆) time, where Tn,m,∆ is the time needed to find a 1-factor in a d-regular
bipartite graph with O(m) edges, O(n) nodes, and d ≤ ∆. Motivated by this result,
we investigated Cole and Hopcroft’s 1-factor algorithm for possible improvements.
This effort culminated in the new and faster 1-factor procedure given in this paper.
Combining this 1-factor procedure with the edge-coloring algorithm given in [4] we
can edge-color G in O(n log n log ∆ + m log ∆) time.

2. The algorithm. Our graphs have no loops but possibly have parallel edges.
A graph without parallel edges is said to be simple. The support of a graph G is a
simple graph G with V (G) = V (G) and such that two nodes are adjacent in G if and
only if they are adjacent in G. The input of our algorithm is a bipartite ∆-regular
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graph G0 with n nodes and m = n
2 ∆ edges. We encode a graph G by giving its support

G and by specifying for every edge uv of G the number g[uv] of edges in G having u
and v as endnodes. The number g[uv] is a positive integer, called the multiplicity of
edge uv in G. Throughout the following, we should keep in mind that the proposed
algorithms deal with graphs by actually manipulating supports and multiplicities.

In general, whenever X denotes a graph, then X stands for the support of X and
x for the multiplicities’ vector of X . Even if no value x[uv] = 0 is stored explicitly
by the algorithm, we will consider x[uv] to be 0 when u and v are not adjacent in X .
All graphs considered are restricted to have the same node set V , namely V = V (G0).
The sum G+H of two graphs G and H is the graph S with s = g+h (componentwise).
The maximum degree of a node in a graph H is denoted by ∆(H). Throughout the
whole algorithm the value ∆ will also be a constant and stands for ∆(G0).

We say that graph G contains graph H when E(H) ⊆ E(G). When G contains
H (in short, H ⊆ G) and H contains a 1-factor, then G also contains a 1-factor. Our
algorithm will modify the input graph G0, thus determining a sequence G0,G1, . . . of
graphs. Each graph in the sequence will be contained in the previous one, and all
graphs will be regular. The support of the last graph in the sequence will be a 1-factor.

A graph G is said to be sparse if |E(G)| ≤ 2n log ∆. For our manipulations to
be performed efficiently it will be crucial to assume we are working on sparse graphs.
Thus a first phase of our algorithm will have to make G0 sparse. Subsection 2.1
describes a preprocessing algorithm to sparsify G0. This preprocessing algorithm was
first proposed by Cole and Hopcroft in [1]. Here we prefer to describe it in some more
detail.

2.1. Why we assume G0 to be sparse: The preprocessing phase. Cole
and Hopcroft [1] proposed the following method to obtain a sparse ∆-regular graph
H contained in a ∆-regular graph G. The method takes O(m) time.

Obviously, g[e] ≤ ∆ for every e ∈ E(G). Let k = 
log ∆� + 1 and let g[e][k], . . . ,

g[e][1], g[e][0] be the binary encoding of g[e]. This means that g[e] =
∑k
i=0 g[e][i] · 2i.

For i = 0, 1, . . . , k define the edge-set

Ei(G) = {e ∈ E(G) : g[e][i] = 1}.

For example, E0(G) is the set of edges having odd multiplicity in G.
Start with H = G. When each Ei(H) is acyclic, then |Ei(H)| < n for i = 1, . . . , k;

hence H is sparse. The idea is to first make E0(H) acyclic, then E1(H), and so on,
until Ek(H). Let C be a cycle contained in Eı̄(H) with ı̄ as small as possible. Let
M1,M2 be two matchings such that C = M1 ∪M2. Then, by setting h[e]← h[e]− 2ı̄

for every edge e in M1 and h[e]← h[e]+2ı̄ for every edge e in M2, we do not affect any
of E0(H), E1(H), . . . , Eı̄−1(H) but reduce |Eı̄(H)| by |C|. Note that this manipulation
preserves the ∆-regularity of H. Moreover, the graph produced by the manipulation
will be contained in the one it has been obtained from. This preprocessing algorithm
can be implemented to run in time O (m + m

2 + m
4 + · · ·) = O(m). We close this

subsection with two more implementational subtleties.
1. After setting h[e] ← h[e] − 2ı̄ we check if h[e] < 2ı̄. If this is the case, then

e �∈ Ej for any j > ı̄ and edge e is removed from the “working input graph” and is
placed in the “definitive graph.” The “definitive graph” is output when the procedure
terminates.

2. The search for circuit C is done as follows. Starting from a node vo construct
a depth-first search tree T , and, when a circuit C is detected, then all nodes of the
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tree but not in C which have a node of C as ancestor are guaranteed not to belong to
any circuit in Eı̄(H), so we discard them and free the nodes in V (C) after performing
the above described manipulation. All the other nodes remain in the tree. When T
is completed, then we can discard all nodes in V (T ) and construct a new depth-first
search tree starting from any (not-yet-discarded) node. When no node is left, then
Eı̄ is acyclic.

2.2. Why we assume ∆ to be odd: Procedure EulerSplit. The reduction
given in this subsection dates back to Gabow [2].

A graph G is called Eulerian when every node has even degree in G. We first
describe a basic procedure, called EulerSplit, which takes as input an Eulerian graph
G and returns as output a graph H with h ≤ g (componentwise) such that for every
node v ∈ V the degree of v in G is twice the degree of v in H. From the following
description, Procedure EulerSplit can be implemented as to take O(n log ∆) time,
when G is sparse.

Decompose G as Ge+Go, where Go contains precisely those edges of G which have
odd multiplicity in G. Since G is Eulerian, then Go is Eulerian. By orienting the edges
of Go in the direction they are traversed by an Euler tour we find an orientation of Go
such that the in-degree equals the out-degree for every node. Now we decompose Go

as
←
Go +

→
Go, where

→
Go contains precisely those edges of Go which have been oriented

as to go from, say, the “left” side of the bipartition to the “right” side. Consider the
graph H contained in G and such that

h[e] = g[e]
2 if e is an edge of Ge,




h[e] =
⌊
g[e]
2

⌋
if e is an edge of

←
Go,

h[e] =
⌈
g[e]
2

⌉
if e is an edge of

→
Go .

Note that h ≤ g and for every node v ∈ V the degree of v in G is twice the degree of
v in H.

The reason why we can always assume ∆ to be odd is the following procedure.

Procedure 1 MakeOdd (G) (precondition: G is regular)

1. if ∆(G) is odd, then return G;
2. else return MakeOdd(EulerSplit(G)).

2.3. Procedure Split and taking complements. Our algorithm calls Proce-
dure Split, an important operation due to Cole and Hopcroft [1].

A graph S is a slice of a graph G when s ≤ g. Slice S is big when |E(G)| ≤ 2|E(S)|.
For k ≥ 1, slice S is a (k, k+1)-slice if each node v ∈ V has degree either k or k+1 in S.
We denote by odd(S) the set of those nodes having odd degree in S. The complement
of a (k, k + 1)-slice S in G is the unique graph T such that S + T = G. Note that T
is a (∆ − k − 1,∆ − k)-slice. Moreover, when ∆ is odd, then odd(T ) = V \ odd(S).
When G is sparse, the complement can be computed in O(n log ∆) time.

Procedure Split takes as input a (k, k+1)-slice S of G and returns an (h, h+1)-slice

S ′ of G with |odd(S ′)| ≤ |odd(S)|
2 . The computation of S ′ = Split(S;G) is accomplished

as follows. Decompose S as Se + So, where So contains precisely those edges of S
which have odd multiplicity in S. Orient the edges of So so that for every node the
in-degree differs from the out-degree by at most 1. When G is sparse, this can be done
in O(n log ∆) time by, for example, adding some artificial edges to So as to make it
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Eulerian and then proceeding as in subsection 2.2. Decompose So as
←
S o +

→
S o as

explained in subsection 2.2. Let w be the odd value in {k, k + 1}. If w = k, then let

So
up be a big slice of So in {←S o,

→
S o} and let So

down be the other slice. Otherwise let

So
down be a big slice of So in {←S o,

→
S o} and let So

up be the other slice. Consider the
graph P contained in S and such that

p[e] = s[e]
2 if e is an edge of Se,




p[e] =
⌈
s[e]
2

⌉
if e is an edge of So

up,

p[e] =
⌊
s[e]
2

⌋
if e is an edge of So

down.

If w = k + 1, then P is a (k2 ,
k
2 + 1)-slice where at most |odd(S)|

2 nodes have degree
k
2 + 1. Therefore, if k

2 + 1 is odd, then S ′ = P will work, and otherwise we will take

as S ′ the complement of P. If w = k, then P is a (k+1
2 − 1, k+1

2 )-slice where at most
|odd(S)|

2 nodes have degree k+1
2 . Therefore, if k+1

2 is odd, then S ′ = P will work, and
otherwise we will take as S ′ the complement of P. Note that when G is sparse, then
Split requires O(n log ∆) time.

2.4. The algorithm of Cole and Hopcroft. The following pseudocode de-
scribes a simplified version1 of Cole and Hopcroft’s algorithm [1].

Algorithm 2 Cole Hopcroft (G0) (precondition: G0 is ∆-regular)

1. G ←MakeOdd(G0);
2. while G is not a 1-factor invariant: G ⊆ G0 is regular with ∆(G) odd
3. S ← G;
4. do S ← Split(S;G);
5. while odd(S) is not empty; invariant2: S is a (k, k + 1)-slice of G
6. G ←MakeOdd(S);
7. return G.

Loop 4–5, when entered, cycles O(log n) times, since odd(S) is at least halved each
time. Loop 2–6, when entered, cycles O(log ∆) times, since ∆(G) is at least halved
each time. All operations involved in loop 2–6, except MakeOdd, costO(n log ∆), since
by section 2.1 we can assume that G0 is sparse. Since EulerSplit is executed O(log ∆)
times, the total time spent in MakeOdd over the whole execution of the algorithm is
O(n log2 ∆). Hence Cole and Hopcroft’s algorithm is O(n∆ + n log n log2 ∆).

2.5. Our starting point: Procedure Starter. Our starting point is essen-
tially the inner loop in Cole and Hopcroft’s algorithm. We have just shown its cost
to be O(n log n log ∆) for sparse input graphs. Here we assume ∆ to be odd.

Procedure 3 Starter (G) (precondition: G is ∆-regular and ∆ is odd)

1. S ← G;
2. do S ← Split(S;G);
3. while odd(S) is not empty; invariant2: S is a (k, k + 1)-slice of G
4. return S.

The output S of Procedure Starter is a δ-regular graph contained in G. A crucial
property about S and G is that δ and ∆ are coprime; that is, the only integer which

1In the original version step 6 assigns to G the complement of S in G, in case S is a big slice of
G.
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divides both is 1. Indeed, regarding G as a (∆− 1,∆)-slice of G, then S = Split(G;G)
is a (∆−1

2 , ∆+1
2 )-slice of G, that is, a (k, k+1)-slice where both k and k+1 are coprime

with ∆. A second invariant2 of loop 2–3 in Procedure Starter is that the even value
among k and k + 1 is coprime with ∆. In fact, g.c.d.(a, b) = g.c.d.(a, a − b) (taking
complement) and g.c.d.(a, 2b) = g.c.d.(a, b), assuming that a is odd.

The next subsection describes an algorithm, which, given as input a ∆-regular
graph G and a δ-regular graph S, returns a regular graph F with f ≤ g + s and
∆(F) = g.c.d.(∆; δ) in O((|E(G)| + |E(S)|) log2 ∆) time. In our case s ≤ g and
g.c.d.(∆, δ) = 1; hence a 1-factor of G is returned. Moreover, |E(S)| < |E(G)| =
O(n log ∆), and the time bound is O(n log3 ∆). This term is dominated by the O(m)
cost of the preprocessing phase.

2.6. Computing the g.c.d. by sums and shiftings. When a and b are two
positive integers we denote by g.c.d.(a, b) the greatest common divisor of a and b.
When both a and b are even, then g.c.d.(a, b) = 2 g.c.d.

(
a
2 ,

b
2

)
. This section considers

an algorithm to compute g.c.d.(a, b) when at least one of a and b is odd. The procedure
is allowed to use the following operations: dividing an even by 2 (this corresponds
to EulerSplit and costs O(n log ∆)), testing evenness, summing two integers (the sum
of two graphs also costs O(n log ∆)), and comparing two integers (greater, less, or
equal?). The procedure goes as follows: When one of the two numbers is even, then
we divide it by 2, and the g.c.d. does not change since the other number is odd. So
both numbers are odd. Therefore their sum σ is even, and, if we substitute the biggest
of the two numbers by σ

2 , the g.c.d. does not change. Eventually the two numbers
will be equal. However, now g.c.d.(a, a) = a.

We now show that the above procedure3 uses O(log2(a + b)) operations. This
is because each time σ

2 is even, then σ actually decreases at least by a factor of 3
4 ,

and, when σ
2 is odd, then |b − a| decreases at least by a factor of 2, while σ is never

increased.
Here is the algorithm promised in the end of the previous subsection:

Algorithm 4 G.C.D. (G, S) (precondition: G and S are regular)

1. G ←MakeOdd(G); S ←MakeOdd(S);
2. while ∆(G) �= ∆(S)
3. by eventually exchanging G and S, assume ∆(G) ≥ ∆(S);
4. G ←MakeOdd(G + S).
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és Természettudományi Értesito, 34 (1916), pp. 104–119 (in Hungarian).
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Abstract. We construct several new families of simple 3-designs from codewords of the Z4-
Goethals codes. These designs have parameters 3-(2m, 8, λ) with odd m ≥ 5. The smallest design
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certain systems of equations over finite fields.
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1. Introduction. A t-(v, k, λ) design is a pair (X,B), where X is a v-element
set of points and B is a collection of k-element subsets of X (called blocks) with the
property that every t-element subset of X is contained in exactly λ blocks. A design
is simple if all the blocks are distinct; otherwise, the design is said to have repeated
blocks. In this paper all designs considered are simple unless otherwise stated.

Let Z4 denote the ring of integers modulo 4. Research on constructing t-designs
from error-correcting codes over Z4 started with articles [6, 8] where it was shown by
computer searches that in the Z4-Golay code the supports of codewords of Hamming
weight 10 and 12 yield 5-(24, 10, 36) and 5-(24, 12, 1584) designs, respectively. These
results were later proved analytically in three different ways [4, 20, 21].

In addition to the above interesting but restricted designs, the codewords of Ham-
ming weight 5 and 6 in the Z4-Preparata codes have been used to construct infinite
families of 3-designs [10, 11]. Also, the supports of the Z4-Kerdock codes contain
infinite families of 3-designs [22]. For a survey on t-designs and Z4-codes, see [12].

From the Z4-Goethals code Shin, Kumar, and Helleseth [18] constructed a 3-
(2m, 7, 14(2m − 8)/3) design for odd m ≥ 5 by taking the supports of codewords of
Hamming weight 7. In this paper we introduce the notion of a lifting rank and classify
the supports of codewords of Hamming weight 8 by their lifting rank and symmetrized
weight. The supports in one class define a 3-(2m, 8, 14(2m − 8)/3) design. It is
interesting that this design has exactly the same parameters as the design mentioned
above except the block size which is equal to 8. This special feature is explained in
section 8 with affine geometry.

There have also been attempts to give some general theorems to decide whether
the supports of some codewords over Z4 would form a t-design. The results are usually
more complicated than the celebrated Assmus–Mattson theorem [1] in the case of
linear codes over finite fields. An Assmus–Mattson-type theorem by Shin, Kumar,
and Helleseth [19] does not imply our main theorem, but it is used to derive Corollary
5.4. We also claim that the theorem by Tanabe [21] does not give any designs from
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the Z4-Goethals code. The required calculations are messy and not included here; see
also comments in [12].

We start by recalling some preliminary results, and in section 3 we define the
Z4-Goethals codes and analyze the low-weight codewords. In section 4 we list some
relevant known designs and then in section 5 the new designs. The proofs are post-
poned to sections 6 and 7. In section 8 we describe the connection mentioned above,
and in section 9 we come finally to conclusions.

2. Preliminaries. Let F be the finite field with n = 2m elements and Tr(x) the
trace function from F to the binary field F2. The following lemma is well known.

Lemma 2.1. The quadratic equation x2 + x = a with a ∈ F has two roots in F,
if Tr(a) = 0, and no roots in F if Tr(a) = 1.

Equation x2 + bx = a, where b �= 0, can be transformed to (x/b)2 + x/b = a/b2,
and the condition in the previous lemma changes to Tr

(
a/b2

)
= 0.

With [3, Theorem 2] it is simple to count the following result.
Lemma 2.2. Let m be odd. The cubic equation x3 + x = a has three roots in F

for (n− 2)/6 values of a ∈ F∗.
The Kloosterman sums are closely related to the Z4-Goethals codes (see [13, 14]),

but we need them only in the form of the next theorem. We denote the sets F \ {0}
and F \ {0, 1} by F∗ and F∗∗, respectively.

Definition 2.3. The Kloosterman sum K(a) for a ∈ F∗ is defined as

K(a) =
∑
η∈F∗

(−1)Tr(η)+Tr( a
η ).

Theorem 2.4. Let m be odd. For every a ∈ F∗∗

K
(
a3(a+ 1)

)
= K

(
a(a+ 1)3

)
.

Proof. Shin, Kumar, and Helleseth [18] have proved the identity

K

(
a

1 + a4

)
= K

(
a3

1 + a4

)

for every a ∈ F∗∗ and odd m. By substituting a �→ a/(1 + a) in this identity we get
the claim. The substitution is clearly a permutation F∗∗ → F∗∗.

We consider linear Z4-codes of length n which are subgroups of Zn4 with compo-
nentwise addition. Let c = (c1, . . . , cn) be a codeword.

Definition 2.5. The support of c is χ(c) = {k | ck �= 0} and the multiplicity of
i ∈ Z4 in c is ni(c) = |{k | ck = i}|. We define complete, symmetrized, Lee weight,
and Hamming weight enumerators of c as

cwe(c) =Wn0(c)Xn1(c)Y n2(c)Zn3(c), swe(c) =Wn0(c)Xn1(c)+n3(c)Y n2(c),

lwe(c) =Wn0(c)Xn1(c)+2n2(c)+n3(c), hwe(c) =Wn0(c)Xn1(c)+n2(c)+n3(c),

and of a code C, for example, as cwe(C) =
∑

c∈C cwe(c).
The variable W is usually unnecessary except with the zero word Wn.
Definition 2.6. A Gray map φ : Zn4 → F2n

2 is defined for one coordinate as

φ(0) = 00, φ(1) = 10, φ(2) = 11, φ(3) = 01

with labels φ(ci) = (ciL, ciR) and for the whole codeword as

φ(c) = (c1L, c2L, . . . , cnL | c1R, c2R, . . . , cnR) = (cL | cR).
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3. Z4-Goethals codes. Let R = GR(4,m) be a Galois ring of characteristic 4
with n2 = 4m elements. The multiplicative group of units R∗ contains a unique cyclic
subgroup 〈β〉 of order n−1. Every element of R can be expressed uniquely as A+2B,
where A,B ∈ T and

T = {0, 1, β, . . . , βn−2}.
Let µ : Z4 → F2 denote the modulo 2 reduction map. We extend µ to R and Zn4 in a
natural way, and then µ(T ) = F and µ(Zn4 ) = Fn2 .

Definition 3.1. Let m ≥ 3 be odd. The Z4-Goethals code G of length n is defined
by a parity-check matrix

HG =


1 1 1 1 . . . 1
0 1 β β2 . . . βn−2

0 2 2β3 2β6 . . . 2β3(n−2)




and the Z4-Preparata code P by a parity-check matrix HP which consists of the first
two rows of HG.

The codes P and G were introduced in the seminal paper [7] by Hammons et
al. This paper started the study of Z4-codes by establishing, e.g., that the classical
binary nonlinear Preparata and Goethals codes are essentially φ(P) and φ(G).

By [9, Lemma 2] a word (cX)X∈T , with Cj = {µ(X) | cX = j} for j ∈ Z4, is a
codeword of G if and only if it satisfies the following equations over F:∑

x∈F
cx = 0 (in Z4),

∑
x∈C1∪C3

x = 0,

∑
x,y∈C1∪C3,

x<y

xy =
∑

x∈C2∪C3

x2,
∑

x∈C1∪C3

x3 = 0,
(3.1)

where ≤ is some total order on F.
As we have equations over F we think from now on that the codewords are indexed

with the elements of F. With the next theorem [7, Theorem 20] we can decrease the
needed case-by-case analysis in the proof of the main theorem.

Theorem 3.2. The automorphism group of G contains the doubly transitive group
of affine permutations

x �→ ax+ b, a ∈ F∗, b ∈ F.

3.1. Low-weight codewords and supports. Some of the following facts are
well known [7], and the others can be easily deduced from (3.1).

Lemma 3.3.
(i) The minimum Lee distance of G is 8.
(ii) µ(G) = B, the extended double-error-correcting BCH code.
(iii) G ∩ 2Zn4 = 2H, the binary extended Hamming code (viewed in Zn4 ).
(iv) If c ∈ G and hwe(c) = Xi with 1 ≤ i ≤ 6, then cwe(c) ∈ {Y 4, Y 6}.
(v) If c ∈ G and hwe(c) = X7, then cwe(c) ∈ {X6Y,X4Y Z2, X2Y Z4, Y Z6}.
(vi) If c,d ∈ G, hwe(c) = hwe(d) = X7, and χ(c) = χ(d), then c = ±d.
(vii) If c ∈ G and hwe(c) = X8, then cwe(c) ∈

{X8, X6Z2, X4Z4, X2Z6, Z8, X5Y 2Z,X3Y 2Z3, XY 2Z5, Y 8}.
(viii) If c,d ∈ G, swe(c) = swe(d) = X6Y 2, and χ(c) = χ(d), then c = ±d.
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(ix) If c,d ∈ G, swe(c) ∈ {X8, Y 8}, and swe(d) = X6Y 2, then χ(c) �= χ(d).
The supports of codewords of swe-type X8 are distributed in a more complicated

manner. For example, there are codewords like 11111111 and 11113333 which have the
same support. Below we shorten sentences by using the phrase “support of swe-type
X8” instead of “support of codeword of swe-type X8.”

Definition 3.4. Let S be a subset of the index set F. The lifting rank of S is
4k12k2 if a generator matrix of a subcode G|S = {c ∈ G | χ(c) ⊆ S} is permutation-
equivalent to a matrix of the form

GS =

(
Ik1 A B
0 2Ik2 2C

)
.

In this paper we consider only the lifting ranks of supports of swe-type X8, and
hence we always have k1 = 1. We abbreviate by saying that such a support has
(lifting) rank k2.

The rank counts linearly independent codewords of cwe-type Y 4 within the sup-
port. It is easy to see that the rank k satisfies 0 ≤ k ≤ 3. The supports of rank
3 are special: they are 3-flats in affine geometry, or, equivalently, minimum weight
codewords in the Reed–Muller code RM(m,m−3); see, for example, [16, Chapter 13].
In the next lemma we analyze the possible ranks and the corresponding subcodes.

Lemma 3.5. Supports of swe-type X8 divide into the following distinct classes:
(i) S has rank 3 and cwe(G|S) = X8 + 14X4Z4 + Z8 +

(
W 8 + 14Y 4 + Y 8

)
.

(ii) S has rank 1 and cwe(G|S) = X6Z2 +2X4Z4 +X2Z6 +
(
W 8 + 2Y 4 + Y 8

)
.

(iii) S has rank 0 and cwe(G|S) = X6Z2 +X2Z6 +
(
W 8 + Y 8

)
.

(iv) S has rank 0 and cwe(G|S) = X8 + Z8 +
(
W 8 + Y 8

)
.

(v) S has rank 0 and cwe(G|S) = 2X4Z4 +
(
W 8 + Y 8

)
.

Proof. If S has rank 3, the cwe of the subcode follows directly.
If S = {x1, x2, . . . , x8} has rank ≥ 1 but is not a 3-flat, there is a 2-flat, say,

{x1, x2, x3, x4} in S and we can extend it to a 3-flat {x1, x2, x3, x4, x5, y1, y2, y3},
yi �∈ S. This support is in the class (i) and considering case-by-case we see that only
the combination (ii) can exist. In this case codewords 11131113 and 11133331 have
the same support; that is, in a codeword of cwe-type X6Z2 both 2-flats include one
3-position. All other possibilities contradict the Lee minimum distance of G.

The classes (iii)–(v) clearly list all types of supports of rank 0.
When m = 3 the only support S of size 8 is in the class (i), and G = G|S has 32

codewords. In section 5 we will see that when m = 5 only the classes (i) and (ii) are
nonempty. By computer we have checked that when m ∈ {7, 9} all the classes are
nonempty, and it is reasonable to expect that this is true also when m ≥ 11.

Another way to classify the supports is to think of the relations between the
binary codes H and B and the Z4-code G. Let c ∈ H be a codeword (or support)
of hwe-type X8. There are two possibilities: c belongs to the subcode B, or not. If
c ∈ B there are again two possibilities: c can be lifted to G such that changing 1’s in
some positions to 3’s gives a codeword from G, or not. With a little abuse of notation
we can state that these supports divide into the following three distinct classes:

(A) c ∈ H \ B, (B) c ∈ B \ G, (C) c ∈ G.
The classes (i)–(v) together form the class (C), and the classes (A)–(B) contain

all supports of cwe-type Y 8 in G which are not in (C). We denote the supports of
swe-type X6Y 2 as class (D), and by (ix) in Lemma 3.3 it is distinct from (A)–(C).
Therefore all supports of size 8 in G divide into four distinct classes (A)–(D).
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4. Known 3-designs. In this section we describe some known 3-designs which
are connected to our new results. For simplicity we assumem to be odd (v = n = 2m).

The Assmus–Mattson theorem [1] gives a sufficient condition for the codewords
of a fixed Hamming weight in a linear code over a finite field to form a t-design. This
theorem is applicable to the codes H and B, i.e., G ∩ 2Zn4 and µ(G), with well-known
weight distributions. The parameter λ and the number of blocks, say b, are linked
with the identity

(
n
t

)
λ =

(
k
t

)
b, and we can calculate the following λ’s.

Theorem 4.1.
(i) The supports of size 4 in H form a 3-(n, 4, 1) design.

(ii) The supports of size 6 in H form a 3-(n, 6, (n−4)(n−8)
6 ) design.

(iii) The classes (A)–(C) form a 3-(n, 8, (n−4)(n−6)(n2−15n+71)
120 ) design.

(iv) The supports of size 6 in B form a 3-(n, 6, n−8
6 ) design.

(v) The classes (B)–(C) form a 3-(n, 8, n
3−25n2+246n−760

120 ) design.
The following theorem can be proved simply by counting the 3-flats which contain

some fixed three points.
Theorem 4.2. The class (i) defines a 3-

(
n, 8, n−4

4

)
design.

Next we recall two classical related results [17, 2] in the form of one theorem. A
binary distance invariant (for the definition, see [16, page 40]) code is called Preparata-
like or Goethals-like if it has the same weight distribution as φ(P) or φ(G), respectively.

Theorem 4.3. The supports of fixed size in any Preparata-like code form a
3-design. The supports of fixed size in any Goethals-like code form a 3-design.

From this theorem we derive one 3-design needed in section 7. By [7] we can count
the number of codewords of Hamming weight 8 in φ(G) and hence the corresponding
λ. This parameter can be derived also from [2, Theorem 3] or more directly from [14,
Proposition 1]: the expression for µ3,5 is equal to λ.

Corollary 4.4. The supports of size 8 in the Goethals-like code φ(G) form a

3-(2n, 8, (2n−4)(4n−17)
60 ) design.

The next result by Shin, Kumar, and Helleseth [18] is the starting point for this
paper. It gives the first “nonbinary” family of 3-designs from the Z4-Goethals codes.

Theorem 4.5. The supports of size 7 in G form a 3-
(
n, 7, 14

3 (n− 8)
)
design.

In [19] the Assmus–Mattson type theorem is introduced and used together with
the previous theorem to derive the following.

Theorem 4.6. The codewords of any fixed hwe-type in G form a 3-design possibly
with repeated blocks.

5. New 3-designs. We now state our main theorem and deduce some corollar-
ies. All the design families in this section are new in the sense that they are not listed
in [15, Table 3.31]: the known infinite families of simple t-designs with t ≥ 3.

Theorem 5.1. The class (ii) defines a 3-
(
n, 8, 14

3 (n− 8)
)
design.

The proofs of Theorem 5.1 and Corollary 5.2 are postponed to sections 6 and 7.

Corollary 5.2. The class (C) forms a 3-(n, 8, 32n2−985n+5892
60 ) design.

Corollary 5.3. The class (B) defines a 3-(n, 8, (n−8)(n−32)(n−49)
120 ) design.

Proof. Subtract λ in Corollary 5.2 from λ in (v) in Theorem 4.1.
Corollary 5.4. The class (D) forms a 3-

(
n, 8, 56

15 (n− 8)(n− 12)
)
design.

Proof. By Theorem 4.6 the codewords of hwe-type X8 define a 3-design with
repeated blocks. We can count its parameter λ∗ = (n4 − 25n3 + 1269n2 − 21390n +
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100648)/120 from cwe(G⊥) [19]. This design contains codewords of swe-types Y 8, X8,
and X6Y 2 by Lemma 3.3. We drop out all codewords of swe-types Y 8 and X8, and
by (iii) in Theorem 4.1 and λ′ in (7.1) we get a 3-design with λ equal to

λ∗ − λ4.1(iii) − λ′ = 112

15
(n− 8)(n− 12).

We take the supports of the remaining codewords, and by item (viii) in Lemma 3.3
we get a simple 3-design with a parameter λ/2.

Corollary 5.5. The supports of size 8 in G form a 3-(n, 8, λ) design with

λ =
n4 − 25n3 + 693n2 − 10030n+ 44712

120
.

Proof. Add λ in (iii) in Theorem 4.1 to λ in Corollary 5.4.
Example 5.6 (3-designs with n = 32). The designs of length 32 are quite different

from the longer ones. By counting the parameters of all designs above we see that
the classes (iii)–(v) and (B) are empty. All in all we get only three new designs:

• 3-(32, 8, 112) design (class (ii)),
• 3-(32, 8, 1792) design (class (D)),
• 3-(32, 8, 5523) design (all supports of size 8).

Duursma et al. [5] noticed that for the length 32 the automorphism group of G
is 3-homogeneous (any 3-subset can be mapped to an arbitrary 3-subset), and hence
codewords of any fixed cwe-type form a 3-design possibly with repeated blocks. Apply-
ing this result to the second design we can split it in 3-(32, 8, 672) and 3-(32, 8, 1120)
designs corresponding to the cwe-types X5Y 2Z and X3Y 2Z3, respectively.

Interestingly, for length 32 we have 3-(32, 6, 112), 3-(32, 7, 112), and 3-(32, 8, 112)
designs by (ii) in Theorem 4.1, Theorem 4.5, and Theorem 5.1, respectively.

Example 5.7 (3-designs with n = 128). Now all classes (i)–(v) and (A)–(D) are
nonempty and we get all five new designs:

• 3-(128, 8, 560) design (class (ii)),
• 3-(128, 8, 6735) design (class (C)),
• 3-(128, 8, 7584) design (class (B)),
• 3-(128, 8, 51968) design (class (D)),
• 3-(128, 8, 1884347) design (all supports of size 8).

By computer we can verify also the existence of the following designs:
• 3-(128, 8, 2688) design (class (iii)),
• 3-(128, 8, 3456) design (classes (iv) and (v)).

By computer we also claim that the class (iv) alone does not define a 3-design.
Example 5.8 (3-designs with n = 512). We do not list the parameters of the five

new designs anymore but remark that, again, by computer we get
• 3-(512, 8, 56448) design (class (iii)),
• 3-(512, 8, 72576) design (classes (iv) and (v)).

Conjecture 5.9. The class (iii) forms a 3-design.

6. Proof of Theorem 5.1. To prove the main theorem we have to show that
any three distinct coordinate positions are included in equally many supports of cwe-
type X6Z2 and rank 1. By Theorem 3.2 we can assume that these positions are 0,
1, and an arbitrary element a ∈ F∗∗. In this section all supports and codewords are
assumed to be of cwe-type X6Z2 and rank 1 unless otherwise stated.

Lemma 3.5 shows that codewords (of this considered type) can be identified with
their supports, and we know that the support is a union of two 2-flats and both of
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Table 1
All combinations of three coordinates.

Case
1 1 1 3 1 1 1 3

Frequency
x1 x2 x3 x4 y1 y2 y3 y4

(0a) 0 1 a (n−8)/6

(0b) 0 1 a (n−8)/6

(0b′) 0 a 1 (n−8)/6

(0b′′) 1 a 0 (n−8)/6

(1a) 0 1 a 2(n−8)
3(1b) 0 1 a

(2a) 0 1 a n−8
2(2b) 1 0 a

(3a) 0 1 a n−8
6(3b) 1 0 a

(1′) 0 a 1 2(n−8)
30 a 1

(2′) 0 a 1 n−8
2a 0 1

(3′) 0 a 1 n−8
6a 0 1

(1′′) 1 a 0 2(n−8)
31 a 0

(2′′) 1 a 0 n−8
2a 1 0

(3′′) 1 a 0 n−8
6a 1 0

them contain one 3-position. In other words, codeword is split in the two 2-flats as
1113 and 1113. This leads to a total of 22 combinations of positions 0, 1, and a
among the two 2-flats and 1’s and 3’s as shown in Table 1. The number of codewords
belonging to each combination with a fixed a is also shown.

Next we verify the different frequencies and by summing them up we see that λ
is equal to 14(n− 8)/3 and the supports, indeed, form a 3-design.

Assume that we have a codeword which is counted in case (0b); that is, the
corresponding support includes the positions 0, 1, and a. Using permutation x �→ x/a
and Theorem 3.2 we get a codeword which includes the positions 0, 1/a, and 1. This
permuted codeword is counted in case (0b′) with a parameter 1/a ∈ F∗∗. Conversely,
the codewords counted in case (0b) are permuted versions of codewords in case (0b′),
and therefore we need to prove the frequency only for one of them.

With the same permutation we can link cases (1a)–(3b) with (1′)–(3′). Another
permutation x �→ x+1 links case (0b′) with (0b′′) and cases (1′)–(3′) with (1′′)–(3′′).
We conclude that it suffices to prove only cases (0a), (0b), and (1a)–(3b).

6.1. Syndrome equations. Next we consider the equations which the support
{x1, x2, x3, x4, y1, y2, y3, y4} from Table 1 should satisfy. The sets {x1, x2, x3, x4} and
{y1, y2, y3, y4} form the two 2-flats and 3’s are thought to be in the positions x4 and
y4. By (3.1) and the 2-flat structure the following equations should hold:

σ1(x1, x2, x3, x4) = 0,

σ1(y1, y2, y3, y4) = 0,

σ2(x1, x2, x3, x4, y1, y2, y3, y4) = x
2
4 + y

2
4 ,

S3(x1, x2, x3, x4, y1, y2, y3, y4) = 0,
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where σk(a1, . . . , an) =
∑

1≤i1<···<ik≤n ai1 . . . aik is the kth elementary symmetric

polynomial and Sk(a1, . . . , an) =
∑n
i=1 a

k
i is the sum of kth powers.

We abbreviate the regularly used terms σ(x1, x2, x3, x4) and σ(x1, x2, x3) to σ(xi)
and σ′(xi), respectively. Similar notations hold for S3’s and yi’s.

We simplify the third equation with the first two equations:

σ′2(xi) + σ
′
2(yi) = σ1(xi)σ1(yi) + σ

′
1(xi)x4 + x

2
4 + σ

′
1(yi)y4 + y

2
4 = 0.

With Newton’s identity S3 = σ
3
1 + σ1σ2 + σ3 the fourth equation becomes

S3(xi) + S3(yi) = σ1(xi)
3 + σ1(xi)σ2(xi) + σ3(xi)

+ σ1(yi)
3 + σ1(yi)σ2(yi) + σ3(yi) = σ3(xi) + σ3(yi) = 0.

All in all the considered support should satisfy

σ1(xi) = σ1(yi) = 0,

σ′2(xi) = σ
′
2(yi),(6.1)

σ3(xi) = σ3(yi).

If the variables xi and yi are distinct, the corresponding codeword is of the desired
type and rank. The items (iv)–(vi) from Lemma 3.3 imply easily that the only possible
overlapping of the variables xi and yi satisfying (6.1) is the case where the 2-flats are
equal and x4 = y4; that is, they form the support {0, 1, a, a+ 1} of cwe-type Y 4. So
the solutions of (6.1) have one extra codeword which must be excluded.

6.2. Cases (0a) and (0b). In case (0a) we set x1 = 0, x2 = 1, and x3 = a. By
(6.1) we have x4 = a+1, and therefore σ

′
2(xi) = a and σ3(xi) = a

2+a. We have four
unknown variables yi which satisfy by (6.1)

σ′1(yi) = y4,
σ′2(yi) = a,

σ3(yi) = σ
′
2(yi)y4 + σ

′
3(yi) = aσ

′
1(yi) + σ

′
3(yi) = a

2 + a.

We think of σ′1(yi) = σ as a free variable, and the above equations show that y1,
y2, and y3 are zeros of the polynomial

p(T ) = T 3 + σ′1(yi)T
2 + σ′2(yi)T + σ

′
3(yi) = T

3 + σT 2 + aT + aσ + a2 + a.

Clearly, interchanging the roles of the variables y1, y2, and y3 affects neither the
above polynomial nor the corresponding codeword. Therefore the polynomials p(T )
that have three distinct zeros in F correspond to the codewords in case (0a) or possibly
to the extra codeword.

The polynomial p(T ) always has three distinct zeros in its splitting field as p(T )
and its derivative p′(T ) = T 2 + a have no common zeros. The question is, For how
many values of σ all zeros of p(T ) are in F?

We substitute T = U + σ and p(T ) transforms to U3 + (σ2 + a)U + a2 + a. For
σ =

√
a this polynomial has only one zero in F, and we can ignore that case. We

substitute again with U = (σ +
√
a)V and divide by (σ +

√
a)3 and get

V 3 + V +
a2 + a

(σ +
√
a)3
.
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By Lemma 2.2 this polynomial has three zeros in F for (n − 2)/6 values of σ since
a2+a �= 0 and x �→ x3 is a bijection F∗ → F∗. Our substitutions preserve the number
of zeros, and hence p(T ) has three zeros in F for (n− 2)/6 values of σ.

The codeword of cwe-type Y 4 would have {y1, y2, y3} = {0, 1, a}, σ = a+ 1, and
p(T ) = T 3+(a+1)T 2+aT . Excluding this extra codeword we have all in all (n−8)/6
codewords in case (0a) as claimed in Table 1.

In case (0b) we have x1 = 0, x2 = 1, x4 = a, and x3 = a+ 1. The automorphism
x �→ x+ 1 links case (0b) with (0a), and the frequencies are the same.

6.3. Cases (1a) and (1b). We have x1 = 0, x2 = 1, and y1 = a in case
(1a). Now there are unknown variables in both 2-flats, and the calculations are
more complicated. We denote the variable x3 by x and the elementary symmetric
polynomials of y2 and y3 by σ1 = y2 + y3 and σ2 = y2y3. The variables y2 and y3 are
zeros of the polynomial T 2+σ1T+σ2, and by Lemma 2.1 the condition Tr

(
σ2/σ

2
1

)
= 0

must hold.
The extra codeword of cwe-type Y 4 has the support {0, 1, a, a + 1}, and then

σ1 ∈ {1, a, a + 1}. On the other hand, if σ1 ∈ {0, 1, a, a + 1}, then the 2-flats would
overlap or the support would have rank 3. As rank 3 contradicts (6.1), the only
possible codeword is of cwe-type Y 4. To exclude this extra word we can restrict
ourselves to the cases σ1 ∈ Fa = F \ {0, 1, a, a + 1}. We make this same restriction
also in the forthcoming subsections.

By (6.1) we know that x4 = x+ 1, y4 = a+ σ1, x = aσ1 + σ2, and

x2 + x = aσ2 + aσ1(a+ σ1) + σ2(a+ σ1) = σ1σ2 + a
2σ1 + aσ

2
1 .(6.2)

We substitute the value of x from the third equation to (6.2) and get a quadratic
equation in the unknown σ2:

σ2
2 + (σ1 + 1)σ2 =

(
a2 + a

)
σ1(σ1 + 1).(6.3)

As σ2 is an element of F, again by Lemma 2.1, the condition

Tr

((
a2 + a

)
σ1

σ1 + 1

)
= Tr

((
a2 + a

)
σ1

σ1 + 1
+ a2 + a

)
= Tr

(
a2 + a

σ1 + 1

)
= 0(6.4)

must hold. We simplified the condition using the identity Tr(a2) = Tr(a).
By dividing (6.3) by σ2

1 from both sides, the other trace condition takes the form

Tr

(
σ2

σ2
1

)
= Tr

(
σ2

2

σ2
1

+
σ2

σ1

)
+Tr

(
a2 + a

)
+Tr

(
a2 + a

σ1

)
= Tr

(
a2 + a

σ1

)
= 0.

Therefore we should count the number

Na =
∣∣∣{σ1 ∈ Fa

∣∣∣ Tr(a2+a
σ1

)
= 0 and Tr

(
a2+a
σ1+1

)
= 0

}∣∣∣
=
1

4

1∑
i,j=0

∑
σ1∈Fa

(−1)i·Tr
(

a2+a
σ1

)
+j·Tr

(
a2+a
σ1+1

)

=
1

4
(N0,0 +N0,1 +N1,0 +N1,1),

where Ni,j is the inner sum in the second line.
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The number of codewords in case (1a) is twice the number Na. This can be seen
as follows: for every σ1 which satisfies the trace conditions we have two solutions, σ2

and σ2 + σ1 + 1, for (6.3). The roles of y2 and y3 can be changed without affecting
the codeword, and hence σ2 corresponds to one codeword. The other solution σ2 +
σ1 + 1 gives a different codeword since σ1 �= 1. It also satisfies the trace condition
Tr
(
(σ2 + σ1 + 1)/σ2

1

)
= Tr

(
σ2/σ

2
1

)
= 0 by the identity Tr

(
(a+ 1)/a2

)
= 0.

Clearly, N0,0 = n − 4. In the calculation of N0,1 we use the substitution z =
(a2 + a)/(σ1 + 1):

N0,1 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1+1

)
=

∑
z∈F\{a2+a,0,a,a+1}

(−1)Tr(z)

= −(−1)Tr(a2+a) − (−1)Tr(0) − (−1)Tr(a) − (−1)Tr(a+1) = −2.
By using the substitution z = (a2 + a)/σ1

N1,0 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1

)
=

∑
z∈F\{0,a2+a,a+1,a}

(−1)Tr(z) = −2.

By the substitution z = 1/σ1 we get

N1,1 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1

+ a2+a
σ1+1

)
=

∑
z∈F\{0,1, 1a , 1

a+1}
(−1)

Tr

(
(a2+a)z+

(a2+a)z
z+1

)
.

As in (6.4) we drop z from the last numerator and substitute u = z + 1 and w =
(a2 + a)u:

N1,1 =
∑

u∈F\{1,0, a+1
a , a

a+1}
(−1)Tr

(
(a2+a)u+a2+a+ a2+a

u

)

=
∑

w∈F\{a2+a,0,a2+1,a2}
(−1)

Tr

(
w+

(a2+a)
2

w

)
= K

(
a2 + a

)
+ 1

since clearly K((a2 + a)2) = K(a2 + a). By combining the above results we have

Na =
1

4

(
n− 7 +K(a2 + a)).

Case (1b) goes almost as above. Now y4 = a, y1 = a + σ1, x = σ
2
1 + aσ1 + σ2,

(6.2) still holds, but instead of (6.3) we get

σ2
2 + (σ1 + 1)σ2 =

(
a2 + a

)
σ1(σ1 + 1) + σ2

1(σ1 + 1)2.

Therefore the task is to calculate the number

N ′a =
∣∣∣{σ1 ∈ Fa

∣∣∣ Tr(a2+a
σ1

+ σ1 + 1
)
= 0 and Tr

(
a2+a
σ1+1 + σ1

)
= 0

}∣∣∣ .
For every σ1 counted in N

′
a we get two codewords as in case (1a), but this time every

codeword is counted three times in the number 2N ′a. This follows from the observation
that among the three coordinates y1, y2, and y3 we can choose two coordinates with



3-DESIGNS FROM Z4-GOETHALS CODES WITH BLOCK SIZE 8 299

three ways. The two chosen are identified with σ1 and σ2, and the third one is equal
to σ1 + a. Therefore the number of codewords in case (1b) is equal to 2N

′
a/3.

As above we know that N ′0,0 = n− 4. With the substitution z = σ1 + 1 we have

N ′0,1 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1+1 +σ1

)
=
∑
z∈Fa

(−1)Tr
(

a2+a
z +z+1

)
= −K (a2 + a)− 3,

N ′1,0 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1

+σ1+1
)
= −K (a2 + a)− 3,

N ′1,1 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1

+ a2+a
σ1+1 +1

)
= −N1,1 = −K

(
a2 + a

)− 1.
Then N ′a =

(
n− 11− 3K (a2 + a)) /4, and the total number of codewords in cases

(1a) and (1b) together is equal to the number in Table 1:

2Na +
2

3
N ′a =

n− 7 +K (a2 + a)
2

+
n− 11− 3K (a2 + a)

6
=
2(n− 8)

3
.

6.4. Cases (2a) and (2b). The situation in case (2a) is as follows: x1 = 0,
x4 = 1, and y1 = a. As above we denote x = x3, σ1 = y2 + y3, and σ2 = y2y3. We
have by (6.1) that x2 = x+1, y4 = a+σ1, and (6.2) holds, but this time the equation
for σ′2 gives

x2 + x = aσ1 + σ2.

By combining this with (6.2) we get σ2 = σ1

(
aσ1 + a

2 + a
)
/(σ1 + 1). As we are

interested in roots x which are in F the variable σ1 should satisfy

Tr

(
aσ1 +

σ1

(
aσ1 + a

2 + a
)

σ1 + 1

)
= Tr

(
a2σ1

σ1 + 1

)
= Tr

(
a2

σ1 + 1
+ a2

)
= 0(6.5)

by Lemma 2.1. On the other hand, σ1 should also satisfy

Tr

(
σ2

σ2
1

)
= Tr

(
aσ1 + a

2 + a

σ1(σ1 + 1)

)
+Tr

(
a2σ1

σ1 + 1

)
(6.6)

= Tr

((
a2 + a

)
(σ1 + 1)

σ1(σ1 + 1)
+
a2σ1(σ1 + 1)

σ1(σ1 + 1)

)

= Tr

(
a2 + a

σ1
+ a2

)
= 0.

In the first line we added a term which is equal to zero by (6.5).

This time we are interested in the number

Ma =
∣∣∣{σ1 ∈ Fa

∣∣∣ Tr(a2+a
σ1

+ a
)
= 0 and Tr

(
a2

σ1+1 + a
)
= 0

}∣∣∣
which is the number of codewords in case (2a): for every σ1 satisfying the trace
conditions there is one σ2, and with them we get solutions x and x+1 for the equation
(6.2), but they correspond to the same codeword.
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We count the number Ma as above. Clearly, M0,0 = n− 4 and

M0,1 =
∑
σ1∈Fa

(−1)Tr
(

a2

σ1+1+a
)
=

∑
z∈F\{a2+a,a, a

a+1 ,0}
(−1)Tr(z)

= −2− (−1)Tr(a) − (−1)Tr( a
a+1 ),

M1,0 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1

+a
)
= (−1)Tr(a)N1,0 = −2(−1)Tr(a).

We use the substitutions z = 1/σ1, u = z + 1, and w =
(
a2 + a

)
u, and then

M1,1 =
∑
σ1∈Fa

(−1)Tr
(

a2+a
σ1

+ a2

σ1+1

)
=

∑
z∈F\{0,1, 1a , 1

a+1}
(−1)Tr

(
(a2+a)z+ a2

z+1+a2
)

=
∑

u∈F\{0,1, a+1
a , a

a+1}
(−1)Tr

(
(a2+a)u+ a2

u +a
)

=
∑

w∈F\{0,a2+a,a2+1,a2}
(−1)Tr

(
w+ a3(a+1)

w +a
)

= (−1)Tr(a)K
(
a3(a+ 1)

)− 2− (−1)Tr( 1
a+1 ).

We conclude that

Ma =
1

4

(
n− 8− 3(−1)Tr(a) + (−1)Tr(a)K

(
a3(a+ 1)

))
.

Case (2b) is linked with case (2a) by the automorphism x �→ x+1. Therefore the
total number of codewords in cases (2a) and (2b) is equal to

Ma +Ma+1 =
2n− 16 + (−1)Tr(a)

(
K
(
a3(a+ 1)

)−K((a+ 1)3a
))

4
=
n− 8
2

by Theorem 2.4. This is exactly the frequency given in Table 1.

6.5. Cases (3a) and (3b). We have the following dependencies in case (3a):
x1 = 0, x4 = 1, and y4 = a. As before we denote x = x3, σ1 = y2+y3, and σ2 = y2y3.
By (6.1) we know that x2 = x+1, y1 = a+σ1, (6.2) holds, and x

2+x = σ2
1+aσ1+σ2.

As in the previous cases we can solve σ2 = (a+ 1)σ1(σ1 + a)/(σ1 + 1), and the trace
conditions get forms

Tr

(
σ2

σ2
1

)
= Tr

(
(a+ 1)(σ1 + a)

σ1(σ1 + 1)

)
= 0

and

Tr
(
σ2

1 + aσ1 + σ2

)
= Tr

(
σ2

1 + aσ1 +
(a+ 1)σ1(σ1 + a)

σ1 + 1

)
= Tr

(
σ3

1 + a
2σ1

σ1 + 1

)

= Tr

(
σ3

1 + a
2σ1

σ1 + 1
+ σ2

1 + σ1

)
= Tr

(
(a+ 1)2σ1

σ1 + 1

)
= 0.

We claim that the number of solutions to these two mutual trace equations is
equal to Ma+1: the substitution a �→ a+1 transforms the middle term in (6.6) to the
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Table 2
Half of the eight left/right combinations.

Case LLL LLR LRL RLL Frequency

(a) 222 2 222 2 222 2 222 2 1

(b)
111 1112 113 1132 131 1132 311 1132 2(n−8)

3111 1332 113 3332 131 3332 311 3332

(c)
211 1111

213
213

1113
1333

231
231

1113
1333

211 1111
n−8
3

211 1133 211 1133
211 3333 211 3333

(c)
121 1111

123
123

1113
1333

121 1111
321
321

1113
1333

n−8
3

121 1133 121 1133
121 3333 121 3333

(c)
112 1111 112 1111

132
132

1113
1333

312
312

1113
1333

n−8
3

112 1133 112 1133
112 3333 112 3333

(d)
111 11111 113 11113 131 11113 311 11113

?111 11133 113 11333 131 11333 311 11333
111 13333 113 33333 131 33333 311 33333

Total λb λb λb λb λb

former equation and the middle expression in (6.5) to the latter equation. Like in case
(1b) every codeword is calculated three times, and hence the number of codewords in
case (3a) is equal to Ma+1/3.

Cases (3a) and (3b) are connected via the automorphism x �→ x+1, and thus the
number of codewords in case (3b) is equal to Ma/3. The total number of codewords
in cases (3a) and (3b) is then

Ma+1 +Ma

3
=
n− 8
6

as claimed in Table 1. This concludes our proof for the main theorem.

7. Proof of Corollary 5.2. We prove that the number of supports of swe-type
X8 that include three fixed coordinates does not depend on the coordinates.

Let us consider some consequences of Definition 2.6 and Corollary 4.4. If c ∈
G is some codeword with three fixed coordinates, we can choose the corresponding
positions of φ(c) from either cL or cR. These eight left/right combinations of “binary”
positions give us sets of codewords which we can count.

Take, for example, all three positions from the left side. The codewords of φ(G)
that include these “binary” positions are images of Z4-codewords that have either 1
or 2 in the three coordinates. If some position is chosen from the right side, then the
corresponding Z4-codeword should have either 2 or 3 in this coordinate. We illustrate
half of the combinations in Table 2. The remaining four combinations are obtained
by multiplying the whole table by −1.

By Corollary 4.4 there are λb = (2n − 4)(4n − 17)/60 supports φ(c) of size 8 in
φ(G) containing three “binary” positions. In Table 2 we list all possible cwe-types of
the corresponding Z4-codewords c of Lee weight 8. The frequency column gives the
number of codewords in one column.

In case (a) the frequencies come from (i) in Theorem 4.1 and in cases (b) and
(c) from Table 3 or [18]. We conclude that the codewords in case (d) in all left/right
combinations, that is, the codewords of swe-type X8, form a 3-design with repeated
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blocks and

λ′ = 8? = 8

(
(2n− 4)(4n− 17)

60
− 5(n− 8)

3
− 1
)
=
4(4n2 − 75n+ 404)

15
.(7.1)

We make this design simple using Lemma 3.5 and Theorems 4.2 and 5.1. For
every codeword c of swe-type X8 there is a codeword −c with the same support, and
it can be excluded. This settles the supports of rank 0. For the supports of rank 3
and 1 there are still 7 and 1 extra codewords, respectively, and therefore the simple
design has

λ =
λ′

2
− 7λ4.2 − λ5.1 =

32n2 − 985n+ 5892

60
.

8. Equivalence of Theorems 4.5 and 5.1. There is a considerable similarity
between the proofs of Theorems 4.5 and 5.1: the calculations involve similar expo-
nential sums and Kloosterman sum identities, and also λ’s are equal. This suggests
that there might be a relation between the blocks of these designs. Indeed, a strong
structural connection is illustrated in Table 3 and explained below. This link makes
Theorems 4.5 and 5.1 equivalent, and section 6 gives us a simpler and more uniform
proof for Theorem 4.5 than the original one [18].

We assume that we have three fixed coordinates and consider blocks containing
them. The corresponding Z4-symbols in these positions are shown in the Fix column.
Every block of size 8 is viewed as a codeword of cwe-type X6Z2 and rank 1, but the
blocks of size 7 are viewed as codewords of cwe-types X6Y , X4Y Z2, and X2Y Z4,
depending on the situation. The case notations refer to Table 1.

The correspondence between the two designs associates a block of size 7 with a
block of size 8 if and only if the difference of the corresponding codewords is in the
class (i); i.e., the support of the difference is a 3-flat.

We recall a few facts from the affine geometry: every set of three points defines
a unique 2-flat. Furthermore, any 2-flat and a fifth point determine a unique 3-flat.
By (vi) in Lemma 3.3 a support of size 7 does not contain a 2-flat, and thus any four
points within a block of size 7 can be uniquely completed to a 3-flat. The intersection
of two 3-flats can have only 0, 1, 2, 4, or 8 points.

In Table 3 we describe all combinations that need to be considered. Everything
else comes with the automorphisms as in section 6. Every combination has three
rows: original codeword in the first row, the linking codeword with a 3-flat support
in the second row, and their sum in the third row. By suitable positioning of 1’s
and 3’s within a 3-flat we get the required connections. However, this is not a 1-1
correspondence, as we can sometimes associate a block of one design with several
blocks of the other design. This number is indicated in the Comb column.

For example, in the first case in (1a) we can choose the position with 1 in the
3-flat from the two positions with 3’s in the original codeword. One 2-flat within the
3-flat is indicated by underlining its coordinates. As the 3-flat and the sum intersect
in 5 points the result has rank 1, and one of the 2-flats is underlined.

The frequencies in the right side can be taken from Table 1, and then the fre-
quencies in the left side can be counted from the relations in the table. For example,
in case (0a) we can construct one block of size 8 from one block of size 7. On the
other hand, from one block of size 8 we can construct four blocks of size 7. Hence in
this case there must be four times as many blocks in Theorem 4.5 as in Theorem 5.1.
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Table 3
Structural dependence of blocks in Theorems 4.5 and 5.1

.

Case
Theorem 4.5 → Theorem 5.1 Theorem 5.1 → Theorem 4.5

Fix Comb Freq Fix Comb Freq

(0a)

111 1112

2(n−8)
3

1
¯
1
¯
1
¯

3
¯
1113

n−8
6

3
¯
3
¯
3
¯
13
¯
111 13

¯
3
¯
3
¯
3
¯
111

1
¯
1
¯
1
¯

33
¯
111 111 2111

111 1332 1
¯
1
¯
1
¯

3
¯
1113

3
¯
1
¯
1
¯
33
¯
113 13

¯
3
¯
1
¯
1
¯
133 3

1
¯
1
¯
1
¯

13
¯
113 111 2 133

(1a)

112 1133

n−8
3

1
¯
1
¯
1 1

¯
3
¯
113

2(n−8)
3

3 3
¯
3
¯
1
¯

1
¯
311 2 1

¯
3 3

¯
3
¯
1
¯
311

1
¯
1
¯
1 3

¯
1
¯
311 112 3 311

112 1133 1
¯
1
¯
1 1

¯
3
¯
113

3 3
¯
1
¯
1
¯
3
¯
311 2 1

¯
13
¯
3
¯
1
¯
133

1
¯
1
¯
1 1

¯
3
¯
311 112 1 133

(1b)

112 1111 1
¯
1
¯
3 1

¯
3
¯
111

1 3
¯
3
¯
3
¯

3
¯
111 4 3

¯
13
¯
3
¯
3
¯
111

1
¯
1
¯
3 1

¯
3
¯
111 112 1 111

112 3333 1
¯
1
¯
3 1

¯
3
¯
111

1 1
¯
1
¯
1
¯

1
¯
111 4 3

¯
3 3

¯
3
¯
3
¯
333

1
¯
1
¯
3 3

¯
1
¯
111 112 3 333

132 1113

n−8
3

1
¯
3
¯
1 1

¯
1
¯
113

n−8
2

(2a) 3 3
¯
3
¯
1
¯
1
¯
311 3 1

¯
3 3

¯
3
¯
1
¯
311 2

1
¯
3
¯
1 1

¯
1
¯
311 132 1 311

312 1113 3
¯
1
¯
1 1

¯
1
¯
113

(2b) 3 3
¯
3
¯
1
¯
1
¯
311 3 1

¯
3 3

¯
3
¯
1
¯
311 2

3
¯
1
¯
1 1

¯
1
¯
311 312 1 311

132 3331 1
¯
3
¯
3 1

¯
1
¯
111

n−8
6

(3a) 1 1
¯
1
¯
1
¯

1
¯
111 3

¯
3 3

¯
3
¯
3
¯
333 2

1
¯
3
¯
3 1

¯
1
¯
111 132 1 333

312 3331 3
¯
1
¯
3 1

¯
1
¯
111

(3b) 1 1
¯
1
¯
1
¯

1
¯
111 3

¯
3 3

¯
3
¯
3
¯
333 2

3
¯
1
¯
3 1

¯
1
¯
111 312 1 333

9. Conclusions and further research. We have constructed several new in-
finite families of simple 3-designs from the codewords of Hamming weight 8 in the
Z4-Goethals codes. This was done by analyzing the low-weight codewords and count-
ing the number of solutions to certain systems of equations over finite fields. In
addition, we described a relation between the designs in Theorems 4.5 and 5.1.

This paper raises many questions and we state a few of them. Can one prove
Conjecture 5.9? Can one generalize the results in this paper to the Z4-Goethals-like
codes? Can one find simple designs from codewords of a larger Hamming weight? Last
but not least, What is the most general adaptation of the Assmus–Mattson theorem
in the Z4-domain? This work suggests that the lifting rank may play a key role.

Acknowledgments. This paper and the proof of the main theorem were in-
spired by the manuscript [18]. Thanks are also due to J. Lahtonen for several useful
discussions and to an anonymous referee for valuable comments.
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OPTIMAL CONSECUTIVE-k-OUT-OF-n: G CYCLE FOR n ≤ 2k + 1∗
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Abstract. A cyclic consecutive-k-out-of-n: G system consists of n components lying on a cycle.
Those components are exchangeable but may have different working probabilities. The system works
if and only if there are k consecutive components at work. What is the optimal assignment of
components for maximizing the reliability of the system? Does the optimal assignment depend on
the working probability values of components? For k ≤ n ≤ 2k+ 1, Zuo and Kuo in 1990 proposed a
solution independent from the working probability values of components, called the invariant optimal
assignment. However, their proof is incomplete, pointed out recently by Jalali et al. [The Optimal
Consecutive-k-out-of-n: G Line for n ≤ 2k, manuscript, 1999]. We present a complete proof in this
paper.

Key words. invariant optimal assignment, consecutive-k-out-of-n: G cycle

AMS subject classifications. 60K10, 90B25

PII. S0895480100375041

1. Introduction. A cyclic consecutive-k-out-of-n: G system conC(k, n : G) is
a cycle of n(≥ k) components such that the system works if and only if some k
consecutive components all work. Suppose n components with working probabilities
p[1] ≤ p[2] ≤ · · · ≤ p[n] are all exchangeable. How can they be assigned to the n
positions on the cycle to maximize the reliability of the system? Kuo, Zhang, and
Zuo [10] showed that if k = 2, then the optimal assignment is invariant; i.e., it depends
only on the ordering of working probabilities of the components but not their value.
They also claimed that for k ≥ 3 and n > 2k + 1, ConC(k, n : G) has no invariant
optimal assignment. For n ≤ 2k + 1, Zuo and Kuo [13] claimed that there exists an
invariant optimal assignment

(p[1], p[3], p[5], . . . , p[6], p[4], p[2]).

However, Jalali et al. [9] found that their proof is incomplete. A proof in case
n = 2k+1 was given in [6]. In this paper, we give a complete proof for this invariant
optimal assignment with n ≤ 2k + 1.

2. Main result. In this section, we show the following.
Theorem 2.1. For k ≤ n ≤ 2k+1, there exists an invariant optimal assignment

(p[1], p[3], p[5], . . . , p[6], p[4], p[2]).
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Let p1, p2, . . . , pn be reliabilities of the n components on the cycle in the counter-
clockwise direction. For simplicity of the proof, we first assume that

0 < p[1] < p[2] < · · · < p[n] < 1.

Our proof is based on the following representation of the reliability of consecutive-
k-out-of-n: G cycle for n ≤ 2k + 1.

Lemma 2.2. The reliability of consecutive-k-out-of-n: G cycle for n ≤ 2k + 1
under assignment C can be represented as

R(C) = p1 · · · pn +
n∑
i=1

qipi+1 · · · pi+k

= p1 · · · pn +
n∑
i=1

pi · · · pi+k−1 −
n∑
i=1

pi · · · pi+k,

where qi = 1− pi and pn+i = pi.
Proof. The system works if and only if all components work or for some i, the ith

component fails, and the (i+ 1)st component, . . . , the (i+ k)th component all work.
Since n ≤ 2k + 1, there exists at most one such i. Therefore,

R(C) = p1 · · · pn +
n∑
i=1

qipi+1 · · · pi+k.

Note that

qipi+1 · · · pi+k = pi+1 · · · pi+k − pi · · · pi+k.
This implies the second representation.

This representation is a key point to show the main theorem. It explains why
invariant optimal assignment exists for n ≤ 2k + 1 but does not exist for n > 2k + 1.

For n = k, k + 1, by Lemma 2.2, R(C) has the same value for all assignment C,
and hence Theorem 2.1 is trivially true. Next, we assume k + 2 ≤ n ≤ 2k + 1.

To prove Theorem 2.1, it suffices to show that in any optimal assignment,

(pi − pj)(pi−1 − pj+1) > 0 for 1 < i < j < n.(2.1)

In fact, the optimal assigment described in Theorem 2.1 can be determined uniquely
by condition (2.1) (see [9]). Selecting any component to be labeled p1, we always have
from condition (2.1) that

(pi − pn−i+1)(pi+1 − pn−i) > 0 for i = 1, . . . , h,(2.2)

where h = �n/2�. For simplicity of representation, we denote i′ = n − i + 1. When
n is odd, (n+1

2 )′ = n+1
2 . Furthermore, without loss of generality, we assume p1 > p1′

throughout this proof. Then the condition (2.2) can be rewritten as

pi > pi′ for i = 1, . . . , h.

Let I = {i | 1 < i ≤ h, pi < pi′}. Let CI be the assignment obtained from C by
exchanging components i and i′ for all i ∈ I. To prove (2.1), it suffices to show that
for any assignment C, if I �= ∅,

R(C) < R(CI).
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Denote I ′ = {i′ | i ∈ I} and
(yi1 · · · yid)I

=


 ∏

1≤j≤d,ij �∈I∪I′
yij −

∏
1≤j≤d,ij �∈I∪I′

yi′
j




 ∏

1≤j≤d,ij∈I∪I′
yi′

j
−

∏
1≤j≤d,ij∈I∪I′

yij


 ,

where yi = pi or qi. It is easy to verify that
yi1 · · · yid

∏
1≤j≤d,ij∈I∪I′

yi′
j

yij
+ yi′1 · · · yi′d

∏
1≤j≤d,ij∈I∪I′

yij
yi′

j




−(yi1 · · · yid + yi′1 · · · yi′d)
= (yi1 · · · yid)I .

Denote Qk(C) =
∑n
i=1 pi · · · pi+k−1. Then

R(C) = p1 · · · pn +Qk(C)−Qk+1(C).

Let a = �k/2� and

s =

{
h if n is even and k is odd,
h+ 1 otherwise.

Then we have the following.
Lemma 2.3. Qk(CI)−Qk(C) =

∑s
i=1(p−a+i · · · p−a+i+k−1)

I .
Proof. Consider four cases.
Case 1. n and k both are even. In this case, s = h + 1 = 1 + n/2 and a = k/2.

Note that
n∑

i=h+2

p−a+i · · · p−a+i+k−1

=

h∑
i=2

p−a+(2h+2−i) · · · p−a+(2h+2−i)+k−1

=

h∑
i=2

pn−(−a+i+k−1)+1 · · · pn−(−a+i)+1

=

h∑
i=2

p(−a+i+k−1)′ · · · p(−a+i)′ .

Thus,

Qk(C)

= p−a+1 · · · pa +
h∑
i=2

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′)

+ p−a+h+1 · · · p−a+h+k

=

a∏
j=1

(pjpj′) +

h∑
i=2

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′)

+

a∏
j=1

(ph−a+jp(h−a+j)′).
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So,

Qk(CI)−Qk(C) =

h∑
i=2

(p−a+i · · · p−a+i+k−1)
I .

However,

(p−a+1 · · · p−a+k)I = (p−a+h+1 · · · p−a+h+k)I = 0.

Therefore,

Qk(CI)−Qk(C) =

h+1∑
i=1

(p−a+i · · · p−a+i+k−1)
I .

Case 2. n is even and k is odd. In this case, s = h = n/2 and a = (k − 1)/2.
Note that

Qk(C) =

h∑
i=1

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′).

Therefore,

Qk(CI)−Qk(C) =

h∑
i=1

(p−a+i · · · p−a+i+k−1)
I .

Case 3. n and k both are odd. In this case, s = h+1 = (n+1)/2 and a = (k−1)/2.
Note that

Qk(C)

=

h∑
i=1

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′) + p−a+h+1 · · · p−a+h+k

=

h∑
i=1

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′)

+ p−a+h−1p(−a+h−1)′ · · · phph′ph+1.

Thus,

Qk(CI)−Qk(C) =

h∑
i=1

(p−a+i · · · p−a+i+k−1)
I .

However,

(p−a+h+1 · · · p−a+h+k)I = 0.

Therefore,

Qk(CI)−Qk(C) =

h+1∑
i=1

(p−a+i · · · p−a+i+k−1)
I .
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Case 4. n is odd and k is even. In this case, s = h+ 1 = (n+ 1)/2 and a = k/2.
Note that

Qk(C) = p−a+1 · · · p−a+k +
h+1∑
i=2

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′)

=

a∏
j=1

(pjpj′) +

h+1∑
i=2

(p−a+i · · · p−a+i+k−1 + p(−a+i)′ · · · p(−a+i+k−1)′).

Thus

Qk(CI)−Qk(C) =

h+1∑
i=2

(p−a+i · · · p−a+i+k−1)
I .

However,

(p−a+1 · · · p−a+k)I = 0.

Therefore,

Qk(CI)−Qk(C) =

h+1∑
i=1

(p−a+i · · · p−a+i+k−1)
I .

Define

t =

{
h if n is even and k + 1 is odd,
h+ 1 otherwise

and b = �(k + 1)/2�. We have a useful representation of R(CI)−R(C) as follows.
Lemma 2.4.

R(CI)−R(C) =

t∑
i=2

(p−b+i · · · p−b+i+k−1)
I −

t∑
i=1

(p−b+i · · · p−b+i+k)I .

Proof. By Lemma 2.3, we have

R(CI)−R(C) =

s∑
i=1

(p−a+i · · · p−a+i+k−1)
I −

t∑
i=1

(p−b+i · · · p−b+i+k)I .

Note that if k is even and n is odd, then a = b, s = t, and

(p−a+1 · · · p−a+k)I = (p−k/2+1 · · · pk/2)I = 0;

if k is odd and n is odd, then a = b− 1, s = t, and

(p−a+s · · · p−a+s+k−1)
I = (p−(n−k)/2 · · · p−(n+k)/2−1)

I = 0;

if k is even and n is even, then a = b, s = t+ 1, and

(p−a+1 · · · p−a+k)I = (p−a+s · · · p−a+s+k−1)
I = 0;
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if k is odd and n is even, then a = b− 1 and s = t− 1. Therefore, we always have
s∑
i=1

(p−a+i · · · p−a+i+k−1)
I =

t∑
i=2

(p−a+i · · · p−a+i+k−1)
I .

Note that (p−b+i · · · p−b+i+k−1)
I ≥ 0 for 2 ≤ i ≤ t and (p−b+i · · · p−b+i+k)I ≥ 0

for 1 ≤ i ≤ t. Therefore, to prove R(CI) < R(C), we need to compare (p−b+i · · ·
p−b+i+k−1)

I with (p−b+i · · · p−b+i+k)I .
Lemma 2.5. Suppose I = {i | 1 < i ≤ h, pi < pi′}. Then, for i = 1, . . . , b,

(q−b+ip−b+i+1 · · · p−b+i+k)I = (p−b+i+1 · · · p−b+i+k)I−(p−b+ip−b+i+1 · · · p−b+i+k)I ≥ 0,
and the strict inequality sign holds if and only if

{j | b− i+ 1 ≤ j ≤ min(−b+ i+ k, n+ b− i− k), j ∈ I} �= ∅,
{j | b− i+ 1 ≤ j ≤ min(−b+ i+ k, n+ b− i− k), j �∈ I} �= ∅.

Proof. First, assume −b+ i ∈ I ∪ I ′. Then we have

(q−b+ip−b+i+1 · · · p−b+i+k)I

=


q−b+i

∏
−b+i+1≤j≤−b+i+k,j �∈I∪I′

pj − q(−b+i)′
∏

−b+i+1≤j≤−b+i+k,j �∈I∪I′
pj′




·

 ∏
−b+i+1≤j≤−b+i+k,j∈I∪I′

pj′ −
∏

−b+i+1≤j≤−b+i+k,j∈I∪I′
pj




=


 ∏
−b+i+1≤j≤−b+i+k,j �∈I∪I′

pj −
∏

−b+i+1≤j≤−b+i+k,j �∈I∪I′
pj′




·

 ∏
−b+i+1≤j≤−b+i+k,j∈I∪I′

pj′ −
∏

−b+i+1≤j≤−b+i+k,j∈I∪I′
pj




−

 ∏
−b+i≤j≤−b+i+k,j �∈I∪I′

pj −
∏

−b+i≤j≤−b+i+k,j �∈I∪I′
pj′




·

 ∏
−b+i+1≤j≤−b+i+k,j∈I∪I′

pj′ −
∏

−b+i+1≤j≤−b+i+k,j∈I∪I′
pj




= (p−b+i+1 · · · p−b+i+k)I − (pi · · · pi+k)I .
If −b+ i+ k < n+ b− i− k + 1, then −b+ i+ k ≤ h, and hence we have

(q−b+ip−b+i+1 · · · p−b+i+k)I

=


b−i∏
j=1

pjpj′




 ∏
b−i+2≤j≤−b+i+k,j �∈I

pj −
∏

b−i+1≤j≤−b+i+k,j �∈I
pj′





pb−i+1q(b−i+1)′

∏
b−i+1≤j≤−b+i+k,j∈I

pj′ − p(b−i+1)′qb−i+1

∏
b−i+1≤j≤−b+i+k,j∈I

pj




≥ 0
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since −b+ i ∈ I ∪ I ′ implies that

pb−i+1q(b−i+1)′ − p(b−i+1)′qb−i+1 = pb−i+1 − p(b−i+1)′ > 0.

Moreover, it is easy to verify that

(q−b+ip−b+i+1 · · · p−b+i+k)I > 0

if and only if

{j | b− i ≤ j ≤ −b+ i+ k, j ∈ I} �= ∅,
{j | b− i ≤ j ≤ −b+ i+ k, j �∈ I} �= ∅.

If −b+ i+ k ≥ n+ b− i− k + 1, then n+ b− i− k ≤ h, and hence

(q−b+ip−b+i+1 · · · p−b+i+k)I

=


b−i∏
j=1

pjpj′




 ∏
b−i+2≤j≤n+b−i−k,j �∈I

pj −
∏

b−i+1≤j≤n+b−i−k,j �∈I
pj′





pb−i+1q(b−i+1)′

∏
b−i+1≤j≤n+b−i−k,j∈I

pj′ − p(b−i+1)′qb−i+1

∏
b−i+1≤j≤n+b−i−k,j∈I

pj




·

 ∏
n+b−i−k+1≤j≤h

pjpj′


 γ

≥ 0,

where

γ =

{
1 if n is even,
ph+1 if n is odd.

Moreover,

(q−b+ip−b+i+1 · · · p−b+i+k)I > 0

if and only if

{j | b− i+ 1 ≤ j ≤ n+ b− i− k, j ∈ I} �= ∅,
{j | b− i+ 1 ≤ j ≤ n+ b− i− k, j �∈ I} �= ∅.

Finally, we note that a similar argument works in the case that −b + i �∈
I ∪ I ′.

Similarly, we can show the following.
Lemma 2.6. Suppose I = {i | 1 ≤ i ≤ h, pi < pi′}. Then, for i = b, . . . , t,

(p−b+i · · · p−b+i+k−1q−b+i+k)I = (p−b+i · · · p−b+i+k−1)
I − (p−b+ip−b+i+1 · · · p−b+i+k)I

≥ 0.
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Lemma 2.7. Suppose I = {i | 1 ≤ i ≤ h, pi < pi′}. Then

(q0p1 · · · pkqk+1)
I

= (p1 · · · pk)I − (p0 · · · pk)I − (p1 · · · pk+1)
I + (p0 · · · pk+1)

I

≥ 0,
and the strict inequality sign holds if and only if

{j | 1 ≤ j ≤ n− k, j ∈ I} �= ∅,
{j | 1 ≤ j ≤ n− k, j �∈ I} �= ∅.

By Lemmas 2.4–2.7, we have

R(CI)−R(C)

=

b−1∑
i=1

(q−b+ip−b+i+1 · · · p−b+i+k)I +
t∑

i=b+2

(p−b+i · · · p−b+i+k−1q−b+i+k)I

+ (q0p1 · · · pkqk+1)
I −


k+1∏
j=0

pj



I

.

Let d = �(n− k)/2� − 1. Note that
k+1∏
j=0

pj



I

=


q−1

k+1∏
j=0

pj



I

+


 k+1∏
j=−1

pj



I

= · · ·

=
d∑
i=1


q−i

k+i∏
j=−i+1

pj



I

+

n−k−2−d∑
i=1


qi+k+1

i+k∏
j=−i

pj



I

+


n−d−1∏

j=−d
pj



I

and 
n−d−1∏

j=−d
pj



I

= 0.

Thus, we have

R(CI)−R(C)(2.3)

=
b−d−1∑
i=1


q−b+i

−b+i+k∏
j=−b+i+1

pj



I

+

d∑
i=1




q−i

−i+k∏
j=−i+1

pj



I

−

q−i

i+k∏
j=−i+1

pj



I
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+

t∑
i=b+n−k−d


q−b+i+k

−b+i+k−1∏
j=−b+i

pj



I

+

n−k−2−d∑
i=1




qi+k+1

i+k∏
j=i+1

pj



I

−

qi+k+1

i+k∏
j=−i

pj



I



+ (q0p1 · · · pkqk+1)
I .

This representation suggests that we show Lemmas 2.8 and 2.9.

Lemma 2.8. For i = 1, . . . , d,


q−i

−i+k∏
j=−i+1

pj



I

≥

q−i

i+k∏
j=−i+1

pj



I

,

and the inequality holds strictly if and only if


q−i

−i+k∏
j=−i+1

pj



I

> 0.

Proof. First, consider the case that −i ∈ I ′ and n is even. Denote

A =
∏

−i+1≤j≤−i+k,j �∈I∪I′
pj −

∏
−i+1≤j≤−i+k,j �∈I∪I′

pj′ ,

B =
∏

−i+1≤j≤i+k,j �∈I∪I′
pj −

∏
−i+1≤j≤i+k,j �∈I∪I′

pj′ ,

A′ = q(−i)′
∏

−i+1≤j≤−i+k,j∈I∪I′
pj′ − q−i

∏
−i+1≤j≤−i+k,j �∈I∪I′

pj ,

B′ = q(−i)′
∏

−i+1≤j≤i+k,j∈I∪I′
pj′ − q−i

∏
−i+1≤j≤−i+k,j �∈I∪I′

pj .

Then 
q−i

−i+k∏
j=−i+1

pj



I

−

q−i

i+k∏
j=−i+1

pj



I

= AA′ −BB′.

If −i+ k < n+ i− k + 1, then −i+ k ≤ h. Hence

A−B

=


 ∏

1≤j≤i,j �∈I
pjpj′






 ∏
i+1≤j≤n−i−k,j �∈I

pj


α(1− βδ)

−

 ∏
i+1≤j≤n−i−k,j �∈I

pj′


β(1− αδ)


 ,
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where

α =
∏

n−i−k+1≤j≤−i+k,j �∈I
pj ,

β =
∏

n−i−k+1≤j≤−i+k,j �∈I
pj′ ,

δ =
∏

−i+k+1≤j≤h,j �∈I
pjpj′ ,

and

α(1− βδ)− β(1− αδ) = α− β ≥ 0.

Thus, A ≥ B.
If −i+ k ≥ n+ i− k + 1, then n+ i− k ≤ h. Hence

A−B

=


 ∏

1≤j≤i,j �∈I
pjpj′




 ∏
n+i−k+1≤j≤h,j �∈I

pjpj′






 ∏
i+1≤j≤n−i−k,j �∈I

pj


α(1− β)

−

 ∏
i+1≤j≤n−i−k,j �∈I

pj′


β(1− α)


 ,

where

α =
∏

n−i−k+1≤j≤n+i−k,j �∈I
pj ,

β =
∏

n−i−k+1≤j≤n+i−k,j �∈I
pj′ ,

and

α(1− β)− β(1− α) = α− β ≥ 0.

Thus, A ≥ B.
Similarly, we have A′ ≥ B′. Therefore, AA′ ≥ BB′. By similar arguments, we

can prove the inequalities in other cases.
Now it is easy to verify that AA′ > BB′ if and only if

{j | i+ 1 ≤ j ≤ min(−i+ k, n+ i− k), h ∈ I} �= ∅,
{j | i+ 1 ≤ j ≤ min(−i+ k, n+ i− k), h �∈ I} �= ∅

if and only if, or, by Lemma 2.5,


q−i

−i+k∏
j=−i+1

pj



I

> 0.

Similarly, we can prove the following.
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Lemma 2.9. For i = 1, . . . , n− k − 2− d,


qi+k+1

i+k∏
j=i+1

pj



I

≥

qi+k+1

i+k∏
j=−i

pj



I

.

By Lemmas 2.5–2.9, all terms in the right-hand side of (2.3) are nonnegative.
Next, we show that if I �= ∅, then at least one term in (2.3) is positive.

Note that 1 �∈ I. Since I �= ∅, there exists a positive integer r such that 1 ≤ r < h,
r �∈ I, and r + 1 ∈ I. If r + 1 ≤ n− k, then

r ∈ {j | 1 ≤ j ≤ n− k, j �∈ I},
r + 1 ∈ {j | 1 ≤ j ≤ n− k, j ∈ I},

and hence

q0p1 · · · pkqk+1 > 0.

If r + 1 > n− k, then choose i = b+ n− k − (r + 1) < b, and we have

b− i+ 1 ≤ r, r + 1 ≤ min(−b+ i+ k, n+ b− i− k).

Hence, by Lemma 2.5,

qipi+1 · · · pi+k > 0.

Finally, we deal with the case that some equality signs hold in 0 ≤ p[1] ≤ p[2] ≤
· · · ≤ p[n] ≤ 1. If p[1] = p[2] = · · · = p[n], then Theorem 2.1 is trivially true. If
p[i] < p[i+1], then, for sufficiently small ε > 0, we have

0 < p[1] + ε < · · · < p[i] + iε < p[i+1] − (n− i)ε < · · · < p[n] − ε < 1.

For them, we already proved the optimality of assignment C∗ in Theorem 2.1; that is,
for any assignment C, R(C∗) ≥ R(C). Now we can complete our proof of Theorem
2.1 by setting ε→ 0.

3. Discussion. An invariant optimal assignment is a nice thing to have in prac-
tice and also an interesting mathematical problem to solve. The existence of an
invariant optimal assignment has been widely studied for the consecutive-k-out-of-n:
F systems and G systems, where a F system works if and only if there do not exist k
consecutive components that all fail. Usually, the nonexistence of invariant optimal
assignments was demonstrated [12, 7, 13]. There are only four nontrivial cases that
invariant optimal assignments may exist. The first is an invariant optimal assignment
for the consecutive-2-out-of-n: F line conjectured by Derman, Lieberman, and Ross
[2] and independently proved by Du and Hwang [3] and Malon [11]. In fact, the
former proved the harder cycle version which is the second case of existence. Note
that the cycle version implies the line version since by setting p[n] = 1 (p[1] = 0 in
the G system), the line problem is reduced to the cycle problem. The third case is
an invariant optimal assignment for the consecutive-k-out-of-n: G line for n ≤ 2k
conjectured by Kuo, Zhang, and Zuo [10], and proved by Jalali et al. [9]. The fourth
case is its cycle version, the current case. Note that again the cycle version implies the
line version but is much harder. In the line version, one needs only to prove the case
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n = 2k, and the n < 2k case can be reduced to the n = 2k case. No similar reduction
is possible for the cycle case. One may wonder whether a simpler proof exists by
considering other pairings. In the current paper, we break the term qipi+1 · · · pi+k
into two parts, pi+1 · · · pi+k and −pi · · · pi+k. Use the pairing of p−a+i · · · p−a+i+k−1

with p(−a+i)′ · · · p(−a+i+k−1)′ for the first part and a similar one for the second part;
then compare the C assignment with the CI assignment. However, since the com-
parison of one part is positive and the other is negative, we have to further compare
their sizes, thus complicating the proof. Can we not break the term qipi+1 · · · pi+k
and find a pairing to work? One such possibility is also to consider the clockwise
representation of R(C), namely, R(C) = p1 · · · pn +

∑n
i=1 qipi−1 · · · pi−k. We then

pair each term qipi+1 · · · pi+k from the counterclockwise representation with the term
qi′p(i+1)′ · · · p(i+k)′ from the clockwise representation. The CI assignment is better
than the C assignment in all cases except when qi < q′i and i′ does not belong to
i, . . . , i+ k. The determination of invariant optimal assignments on lines and cycles
is an application of the broader problem of finding an optimal permutation, linear or
cyclic, under a certain objective function. This type of problem has been considered
before [1, 8] when the arguments of the objective function are |xi − xi+1| for all i.
In the optimal assignment problem, the arguments are products like qipi+1 · · · pi+k,
which seems to raise a new type of optimal permutation problem. In this paper we
give a solution to one such problem and hope the approach may work for other similar
problems [1, 8, 4, 5].
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Abstract. We consider the fault-tolerant capabilities of networks of processors whose underlying
topology is that of the k-ary n-cube Qk

n, where k ≥ 3 and n ≥ 2. In particular, given a copy of Qk
n

where some of the interprocessor links may be faulty but where every processor is incident with at
least two healthy links, we show that if the number of faults is at most 4n− 5, then Qk

n still contains
a Hamiltonian circuit, but that there are situations where the number of faults is 4n− 4 (and every
processor is incident with at least two healthy links) and no Hamiltonian circuit exists. We also
remark that given a faulty Qk

n, the problem of deciding whether there exists a Hamiltonian circuit
is NP-complete.
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1. Introduction. The hypercube or, more precisely, the binary n-cube Bn
(where n ≥ 2), is a popular interconnection network for parallel processing as it
possesses a number of topological properties which are highly desirable in the con-
text of parallel processing: for example, it contains a Hamiltonian circuit; many
other networks can be embedded into a binary n-cube; and its symmetry results in
rich communication properties (see, for example, [3, 5, 8, 10, 12] and the references
therein).

Fault-tolerance in the binary n-cube is an important issue, given that many other
networks can be embedded therein, and has been studied in a number of contexts.
For example, the ability of the binary n-cube to route and reconfigure itself in spite
of faults has been considered (see the references in [8]), as has the embedding of
Hamiltonian circuits in binary n-cubes in the presence of faults [8]. In particular,
Chan and Lee [8] proved that a binary n-cube where at most 2n− 5 links are faulty
and where every node is incident with at least two healthy links (a natural assumption
to make) has a Hamiltonian circuit, but that there exist binary n-cubes with 2n− 4
faults (and where every node is incident with at least two healthy links) not containing
a Hamiltonian circuit. It is with an analogous version of this result that we are
concerned in this paper.

One drawback of the binary n-cube is that the number of links incident with
each node is logarithmic in the number of nodes, and this causes problems with
regard to current VLSI technology when the networks built upon the binary n-cube
topology involve a large number of processors. One means proposed to alleviate this
problem is to base networks on the topology of the k-ary n-cube Qkn (where k ≥ 3 and
n ≥ 2). A network based on Qkn is such that each node is incident with 2n links, and
consequently k can be increased, in order to incorporate more processors, at the same
time keeping n constant. Moreover, “high-dimensional” networks generally cost more

∗Received by the editors October 28, 1996; accepted for publication (in revised form) March 22,
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and run more slowly than “low-dimensional” networks, and it has also been shown
that low-dimensional networks achieve lower latency and better hot-spot throughput
than their high-dimensional counterparts [9, 11].

The properties of the k-ary n-cube Qkn relevant to parallel processing have not
been determined to such an extent as those of the binary n-cube: however, some work
has been done (see, for example, [1, 2, 4, 6, 7]). In particular, it has been shown that
Qkn has a Hamiltonian circuit [6].

In this paper, we examine the number of link faults that a k-ary n-cube Qkn can
tolerate so that there is still a Hamiltonian circuit. (Of course, we assume that every
node is incident with at least two healthy links.) In particular, we show that a k-ary
n-cube Qkn where at most 4n−5 links are faulty and where every node is incident with
at least two healthy links has a Hamiltonian circuit, but that there exist k-ary n-cubes
with 4n− 4 faults (and where every node is incident with at least two healthy links)
not containing a Hamiltonian circuit. We also remark that the general problem of
deciding whether a faulty k-ary n-cube contains a Hamiltonian circuit is NP-complete
for all (fixed) k ≥ 3. Our results can be regarded as direct analogues of those in [8]
for k-ary n-cubes as opposed to binary n-cubes.

2. Tolerating faults. Throughout this paper, we prefer to use the terminology
“nodes” and “links” as opposed to “vertices” and “edges,” for whilst the results in
this paper are entirely graph-theoretic, the use of “nodes” and “links” accentuates the
motivational source of our research, i.e., the fault-tolerating capabilities of networks
of processors when the faults which may occur are the failures of the links between
processors in the network.

The binary n-cube, for n ≥ 2, can be represented as the set of 2n nodes {0, 1}n
where there is a link joining nodes u and v if and only if u and v agree on all com-
ponents except one. Note that each node has degree n. The k-ary n-cube Qkn, for
k ≥ 2 and n ≥ 2, can be represented as the set of kn nodes {0, 1, . . . , k − 1}n where
there is a link joining nodes u and v if and only if u and v agree on all components
except one, and on that component they differ by 1 modulo k. Note that each node
has degree 2n, when k ≥ 3, and n when k = 2. In particular, Q2

n is simply Bn.
For each i ∈ {1, 2, . . . , n}, we refer to all links whose incident nodes differ in the

ith component as lying in dimension i. Note that for any i ∈ {1, 2, . . . , n}, Qkn consists
of k disjoint copies of Qkn−1 where corresponding nodes are joined in circuits of length
k using links in dimension i. When we consider Qkn in this way, with the disjoint
copies joined by links lying in dimension i, we say that we have partitioned Qkn over
dimension i.

Let us now proceed to the proof of our main theorem. This proof is by induction.
We begin by proving the inductive step, and then we return to the base cases of the
induction.

Theorem 2.1. Let k ≥ 4 and n ≥ 2, or let k = 3 and n ≥ 3. If Qkn has at most
4n−5 faulty links and is such that every node is incident with at least 2 healthy links,
then Qkn has a Hamiltonian circuit.

Proof. The proof proceeds by induction on n. We handle the base cases, when
n = 2 and k ≥ 4 and when n = 3 and k = 3, later. As our induction hypothesis,
assume that the result holds for Qkn, for some n ≥ 2 and for all k ≥ 4, or for some
n ≥ 3 and k = 3. Let Qkn+1 have 4n−1 faults and be such that every node is incident
with at least two healthy links. Then there exists some dimension, say dimension 1,
which contains at least three faults. We can partition Qkn+1 over dimension 1 and
consider Qkn+1 to consist of k disjoint copies Q1, Q2, . . . , Qk of Qkn with corresponding
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nodes joined in circuits of length k, where the faults contained in Q1, Q2, . . . , Qk total
at most 4n − 4 (see Figure 2.1). Throughout this proof, if u is a node of Qi, say,
then we often denote it by ui, and we refer to its corresponding node in Qj as uj .
Our general aim below is to argue, using induction, that Hamiltonian circuits exist in
each of Q1, Q2, . . . , Qk and that we can “join” these circuits together using links in
dimension 1 to obtain a Hamiltonian circuit in Qkn+1. (What we mean by “join” will
become clear later: also, the general aim of connecting together circuits in Q1, Q2,
. . ., Qk actually has to be more sophisticated in some scenarios.) Naturally, different
scenarios arise according to the distribution of faulty links in Q1, Q2, . . . , Qk and in
dimension 1. Another complication is that the chosen Hamiltonian circuit in Q2, for
example, might depend upon the Hamiltonian circuit chosen in Q1.

Case (i). Each Qi is such that every node is incident with at least two healthy
links and no Qi contains 4n− 4 faults.

Without loss of generality (w.l.o.g.) we may assume that Q1 has most faults
from amongst Q1, Q2, . . . , Qk. Hence, each of Q2, Q3, . . . , Qk has at most 2n − 2
faults. By the induction hypothesis, Q1 has a Hamiltonian circuit C1. Following our
basic strategy, outlined above, we wish to find a Hamiltonian circuit Ck in Qk or a
Hamiltonian circuit C2 in Q2 so that we might “join” such a Hamiltonian circuit to
C1 using healthy links in dimension 1. By “join” we mean replace a link (x1, y1) of
C1 and the (corresponding) link (x2, y2) of C2, for example, with the links (x1, x2)
and (y1, y2) in dimension 1. However, we must ensure that two mutually compatible
links exist in C1 and C2 and also that the relevant dimension 1 links are healthy.

We begin by applying a counting argument to show that there exist links (x1, y1)
and (y1, z1) of C1 such that either

• (x2, y2), (y2, z2), (x1, x2), (y1, y2), and (z1, z2) are all healthy

or

• (xk, yk), (yk, zk), (x1, xk), (y1, yk), and (z1, zk) are all healthy.

Suppose that it were otherwise. Then there would exist at least 2�kn/3� faults not
in Q1. (Split C1 into groups of three consecutive vertices and look at the links on
either side in dimension 1 and in Q2 and Qk.) However, when n ≥ 2 and k ≥ 4 or
when n ≥ 3 and k = 3, we have that 2�kn/3� > 4n− 1, which yields a contradiction.
Hence, w.l.o.g. we may assume that there exist links (x1, y1) and (y1, z1) of C1 such
that (x2, y2), (y2, z2), (x1, x2), (y1, y2), and (z1, z2) are all healthy.
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What we need to do now is to show that there is a Hamiltonian circuit C2 in Q2

containing either (x2, y2) or (y2, z2): we can then join C1 and C2 as described above.
Suppose that it were otherwise. If necessary, mark some of the links of Q2 incident
with y2 as faulty (that is, temporarily regard them as faulty) so that y2 is incident
with at most three healthy links in Q2, two of which are always (x2, y2) and (y2, z2).
Consequently, as there were originally at most 2n − 2 faulty links in Q2, there are
now at most 4n− 5 faulty links. However, in order to apply our induction hypothesis
(and deduce that this amended Q2 has a Hamiltonian circuit), we need that every
node in (the amended) Q2 is incident with at least two healthy links. Suppose that
it were otherwise. Then there is a node w2 incident with exactly one healthy link.
This must have been because (y2, w2) was a healthy link in the original Q2 and it was
subsequently marked as faulty. Amend the marking of healthy links so that (w2, y2)
is the third healthy link in the amended Q2. Note that in the amended marking
every node is incident with at least two healthy links (because Q2 originally had at
most 2n − 2 faults). Now we can apply the induction hypothesis and deduce that
Q2 has a Hamiltonian circuit C2 containing either (x2, y2) or (y2, z2) (possibly both).
No matter which, we can join C2 to C1 (as described above) to obtain a circuit D2

containing every node of Q1 and Q2. (Henceforth, we now treat those links of Q2

which were temporarily marked as faulty as being healthy again.)

All links of D2 except for (x1, x2) and (y1, y2) are links in Q1 or Q2. Hence, there
is much potential to join D2, as above, to a Hamiltonian circuit in Q3 or Qk. Similarly
to as before (by applying exactly the same counting argument), w.l.o.g. there exist
two consecutive links (u2, v2) and (v2, w2) of D2 ∩ Q2 such that the links (u3, v3),
(v3, w3), (u2, u3), (v2, v3), and (w2, w3) are healthy. Again, by arguing exactly as
before, there is a Hamiltonian circuit C3 in Q3 containing either the link (u3, v3) or
the link (v3, w3); and we can join D2 to C3 using links in dimension 1 to obtain a
circuit D3 containing all nodes of Q1, Q2, and Q3. Exactly the same arguments apply
so that we might extend D3 to a circuit D4, containing all nodes of Q1, Q2, Q3, and
Q4, and so on until we obtain a Hamiltonian circuit in Qnk+1.

Case (ii). Each Qi is such that every node is incident with at least two healthy
links and some Qj has exactly 4n− 4 faults.

W.l.o.g. we may assume that j = 1. Suppose that there is some fault (x1, y1) ofQ1

such that (x1, x2) and (y1, y2) are healthy. Amend Q1 so that (x1, y1) is temporarily
marked as healthy. By the induction hypothesis applied to this amended Q1, there
is a Hamiltonian circuit C1 which may or may not contain (x1, y1); and C1 is a
circuit in the original Q1. The circuit C1 has an isomorphic copy Ci in each Qi for
i = 2, 3, . . . , k. If (x1, y1) is in C1, the circuit C1 can be joined to C2 using the
healthy links (x1, x2) and (y1, y2). Otherwise, because there are exactly three faults
in dimension 1 and �kn/2� > 3, there is a link (u1, v1) of C1 such that (u1, u2) and
(v1, v2) are healthy. (Use a counting argument similar to that used before except split
C1 into groups of two consecutive vertices and look at the pairs of links in dimension
1 joining Q1 to Q2.) C1 can now be joined to C2 using these links to yield a circuit
D2 containing every node of Q1 and Q2. The circuit D2 contains kn − 1 links of Q2.
As �(kn− 1)/2� > 3, the same argument yields that there is a link (u2, v2) of D2 ∩Q2

such that the links (w3, z3), (w2, w3), and (z2, z3) are all healthy. Moreover, (w3, z3)
lies on the circuit C3 of Q3. Hence, we can join D2 and C3 to obtain a circuit D3

containing every node of Q1, Q2, and Q3. Exactly the same arguments apply so that
we can extend D3 to a Hamiltonian circuit of Qnk+1.

On the other hand, suppose that, for every fault (x1, y1) of Q1, at least one of
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(x1, x2) and (y1, y2), and at least one of (x1, xk) and (y1, yk), are faulty. Let (x1, y1)
be some fault of Q1. As there are exactly three faults in dimension 1, it cannot be
the case that two faults in Q1 are not incident with one another. Let us now count
the maximum number µ of faults of Q1 which could be incident with either x1 or y1.
Consider x1. The number of faults incident with x1, apart from the fault (x1, y1), is
at most 2n− 3. Similarly, the number of faults incident with y1, apart from the fault
(x1, y1), is at most 2n − 3. Hence, µ ≤ (2n − 3) + (2n − 3) + 1 = 4n − 5. However,
there are 4n− 4 faults in Q1 and so we obtain a contradiction.

Case (iii). There exists some Qi in which there is a node incident with exactly
one healthy link in Qi.

W.l.o.g. we may assume that the node x1 in Q1 is incident with exactly one
healthy link, (x1, y1), in Q1. As x1 is incident with 2n − 1 faults in Q1, each Qi,
for i = 2, 3, . . . , k, contains at most 2n − 3 faults; there is no node in any Qi, for
i = 2, 3, . . . , k, which is incident with less than three healthy links in that Qi; and
apart from x1, there is no other node in Q1 which is incident with less than two
healthy links in Q1. Also, as x1 is incident with at least two healthy links in Qkn+1,
we may suppose that (x1, x2) is healthy. Consider w1, one of the 2n − 1 potential
neighbors of x1 in Q1 for which the link (x1, w1) is faulty. There are two scenarios.

Case (iii)(a). (w1, w2) is a healthy link.

Mark the previously faulty link (x1, w1) as temporarily healthy. By the induction
hypothesis applied to this amended Q1, there is a Hamiltonian path P1 from x1 to w1.
Moreover, this Hamiltonian path P1 is a Hamiltonian path in the original Q1 (where
the links temporarily marked as faulty resume their healthy status).

Mark some of the previously healthy links in Q2 that are incident with x2 as
temporarily faulty and mark the link (x2, w2) as temporarily healthy (if necessary)
so as to ensure that x2 is incident with exactly two healthy links in this amended
Q2 (one of which is (x2, w2)). Note that in order to build this amended Q2 we have
introduced at most 2n − 2 temporary faults; and so this amended Q2 has at most
4n−5 faults and every node is incident with at least two healthy links. Hence, by the
induction hypothesis, there exists a Hamiltonian path P2 in this amended Q2 from
x2 to w2. Moreover, this Hamiltonian path P2 is a Hamiltonian path in the original
Q2. Join P1 and P2 using the healthy links (x1, x2) and (w1, w2) to form a circuit D2

which contains all nodes of Q1 and Q2.

Applying a counting argument similar to that used in Case (ii), along with the fact
that �(kn−1)/2� > 2n (note that the total number of faults in Qkn+1 not contained in
Q1 is at most 2n), there exists a link (u2, v2) of D2 ∩Q2 such that the links (u3, v3),
(u2, u3), and (v2, v3) are healthy. Temporarily mark healthy links in Q3 incident with
u3 as faulty so that in this amended Q3, u3 is incident with exactly two healthy links,
one of which is (u3, v3). In order to build this amended Q3 we have introduced at
most 2n− 2 temporary faults; and so this amended Q3 has at most 4n− 5 faults and
every node is incident with at least two healthy links. By the induction hypothesis,
there is a Hamiltonian circuit C3 in the original Q3 containing the link (u3, v3). We
can join D2 and C3, using the healthy links (u2, u3) and (v2, v3), to obtain a circuit
D3 containing every node of Q1, Q2, and Q3. Exactly the same argument can be
applied to extend D3 to a circuit D4 and so on until we have a Hamiltonian circuit
of Qkn+1.

Case (iii)(b). All links from every such w1 to its corresponding node w2 in Q2

are faulty.

This accounts for another 2n− 1 faults in Qkn+1. Also, if (x1, xk) is healthy, then
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by symmetry we are in Case (iii)(a) (as all but at most one link of the form (w1, wk)
is healthy). Hence, we may assume that (x1, xk) is faulty, and this accounts for all
the faults in Qkn+1.

Consequently, (y1, y2) and (y1, yk) are both healthy links. (Recall that (x1, y1)
is the only healthy link of Q1 incident with x1.) Let w1 be some potential neighbor
of x1 in Q1 for which the link (x1, w1) is faulty. Amend Q1 by marking the link
(x1, w1) as temporarily healthy. By the induction hypothesis applied to this amended
Q1, there is a Hamiltonian path P1 in the original Q1 from x1 to w1. Rename the
nodes of P1 as x1,1 = x1, x1,2 = y1, x1,3, . . . , x1,kn = w1, and note that in each Qi,
i ≥ 2, there is a corresponding Hamiltonian path Pi which can be extended to a
Hamiltonian circuit Ci of Qi (as (xi, wi) is healthy in Qi). Rename the nodes of Ci
as xi,1 = xi, xi,2 = yi, xi,3, . . . , xi,kn = wi for each i ≥ 2.

For ease of notation, denote kn by m. Suppose k is even. Then the following is a
Hamiltonian circuit in Qkn+1:

(x1,1, x2,1, . . . , xk,1, xk,2, xk,3, x1,3, x1,4, . . . , x1,m, xk,m, xk−1,m, . . . , x2,m,

x2,m−1, x3,m−1, . . . , xk,m−1, xk,m−2, xk−1,m−2, . . . , x2,m−2, x2,m−3,

x3,m−3, . . . , xk,m−3, xk,m−4, . . . , xk,4, xk−1,4, . . . , x2,4, x2,3, x3,3, . . . ,

xk−1,3, xk−1,2, xk−2,2, . . . , x2,2, x1,2, x1,1).

(See Figure 2.2 where some of the healthy links between the Qi’s are shown and bold
links denote the links of the Hamiltonian circuit.) If k is odd, then the following is a
Hamiltonian circuit in Qkn+1:

(x1,1, x2,1, . . . , xk,1, xk,2, xk−1,2, . . . , x2,2, x2,3, x3,3, . . . , xk,3, xk,4, xk−1,4, . . . ,

x2,4, x2,5, . . . , x2,m, x3,m, . . . , x2,m, xk,m, . . . , x1,m, x1,m−1, . . . , x1,2, x1,1).

(See Figure 2.3.)
Case (iv). There exists some Qi in which there is a node incident with no healthy

links in Qi.
W.l.o.g. we may assume that x1 is incident with no healthy links in Q1. As x1 is

incident with at least two healthy links in Qkn+1, the links (x1, x2) and (x1, xk) must
be healthy. There are at least 2n faults in Q1, and so there must be at most 2n − 4
faults distributed amongst Q2, Q3, . . . , Qk. Hence, apart from x1, there are no nodes
which are incident with less than four healthy links in their respective copy of Qkn.

The node x1 has 2n potential neighbors in Q1. Each of these potential neighbors
is incident with a potential dimension 1 link to Q1 and a potential dimension 1 link to
Qk. (These dimension 1 links might be faulty.) As there are at most 2n− 1 faults in
dimension 1, there must exist potential neighbors y1 and z1 of x1 such that the links
(y1, y2) and (z1, zk) are healthy. (Partition the potential neighbors into n pairs {y1, z1}
and look at the pairs of dimension 1 links {(y1, y2), (z1, zk)} and {(y1, yk), (z1, z2)}.)
Mark the faulty links (x1, y1) and (x1, z1) as temporarily healthy in Q1. Applying
the induction hypothesis to this amended Q1, we obtain a path P1 in the original Q1

from y1 to z1 upon which every node of Q1 appears exactly once, except for x1 which
does not appear at all.

By marking previously healthy links inQ2 that are incident with x2 as temporarily
faulty, and by marking the link (x2, y2) as temporarily healthy (if necessary), ensure
that x2 is incident with exactly two healthy links in this amended Q2, one of which
is (x2, y2). This involves introducing at most 2n− 2 temporary faults into Q2; and so
the amended Q2 has at most 4n − 6 faults and every node is incident with at least
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Fig. 2.2. The Hamiltonian circuit when k is even.

two healthy links. The induction hypothesis yields that there is a Hamiltonian path
from x2 to y2 in the original Q2. Likewise, there is a Hamiltonian path from xk to
zk in Qk. Hence, let D2 be the circuit obtained by joining P1, P2, and Pk using the
healthy links (x1, x2), (y1, y2), (x1, xk), and (z1, zk).

Applying a counting argument similar to that used in Case (ii), along with the
fact that �(kn − 1)/2� > 2n − 1 (note that the total number of faults in Qkn+1 not
contained in Q1 is at most 2n − 1), there exists a link (u2, v2) of D2 ∩ Q2 such that
the links (u3, v3), (u2, u3), and (v2, v3) are healthy. Temporarily mark healthy links in
Q3 incident with u3 as faulty so that in this amended Q3, u3 is incident with exactly
two healthy links, one of which is (u3, v3). In order to build this amended Q3 we
have introduced at most 2n − 2 temporary faults; and so this amended Q3 has at
most 4n− 6 faults and every node is incident with at least two healthy links. By the
induction hypothesis, there is a Hamiltonian circuit C3 in the original Q3 containing
the link (u3, v3). We can join D2 and C3, using the healthy links (u2, u3) and (v2, v3),
to obtain a circuit D3 containing every node of Qk, Q1, Q2, and Q3. Exactly the
same argument can be applied to extend D3 to a circuit D4 and so on until we have
a Hamiltonian circuit of Qkn+1.

It remains to show that the result holds for the base cases of the induction, namely,
when n = 2 and k ≥ 4, and when n = 3 and k = 3.

Lemma 2.2. If Qk2 , where k ≥ 4, has three faulty links and is such that every
node is incident with at least two healthy links, then Qk2 has a Hamiltonian circuit.

Proof. There exists some dimension, say dimension 1, that contains at least two
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Fig. 2.3. The Hamiltonian circuit when k is odd.

faults. Partition Qk2 over dimension 1 to obtain k copies of Qk1 , namely Q1, Q2, . . . , Qk.
Case (i). All faults are in dimension 1.
Consider the circuit Q1 of length k. As there are three faults in dimension 1,

w.l.o.g. there exists an edge (x1, y1) of Q1 such that the links (x1, x2) and (y1, y2)
are both healthy. (Apply our usual counting argument.) Join Q1 and Q2 using these
links to obtain a circuit D2 containing every node of Q1 and Q2. By proceeding as
we have done throughout, the same argument can be used to extend D2 to (w.l.o.g.)
a circuit D3 and so on until we obtain a Hamiltonian circuit of Qk2 .

Case (ii). Dimension 1 has exactly two faults.
W.l.o.g. the only fault not in dimension 1 may be assumed to be (x1, y1) in Q1.

If the links (x1, x2) and (y1, y2) are both healthy or the links (x1, xk) and (y1, yk) are
both healthy, then we can join Q1 with Q2 or Qk, respectively, as in Case (i), and
extend this circuit to a Hamiltonian circuit of Qk2 .

Hence, w.l.o.g. we may assume that the links (x1, x2) and (y1, yk) are both faulty.
If k is even, then there exists a Hamiltonian circuit in Qk2 as pictured in Figure 2.2. (In
that picture, x1,3, x1,2, x2,3, and xk,2 play the roles of x1, y1, x2, and yk, respectively.)
If k is odd, then there exists a Hamiltonian circuit in Qk2 as pictured in Figure 2.3.
(In that picture, x1,m, x1,1, x2,m, and xk,1 play the roles of x1, y1, x2, and yk,
respectively.)

Lemma 2.3. If Q3
2 has three faulty links and is such that every node is incident

with at least two healthy links, then Q3
2 has a Hamiltonian circuit unless these three

faulty links form a circuit of length 3.
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Proof. There exists some dimension, say dimension 1, that contains at least two
faults. Partition Q3

2 over dimension 1 to obtain three copies of Q3
1, namely Q1, Q2, and

Q3. We may assume that either Q1 contains one fault or all faults are in dimension
1. Denote the nodes of Qi by xi, yi, and zi for i = 1, 2, 3.

Case (i). Q1 contains one fault.
W.l.o.g. we may assume that the fault in Q1 is (x1, y1).
Case (i)(a). The links (x1, x2) and (y1, y2) are healthy.
Form the circuit C = (x1, z1, y1, y2, z2, x2, x1) in Q3

2. There are two possibilities:
either one of the sets of pairs

{(x1, x3), (z1, z3)}, {(y1, y3), (z1, z3)}, {(x2, x3), (z2, z3)}, {(y2, y3), (z2, z3)}

consists of two healthy links or the faulty links in dimension 1 are (z1, z3) and (z2, z3).
In the former case, the circuit C can be joined to the circuit (x3, y3, z3, x3) using the
pair of healthy links to obtain a Hamiltonian circuit in Q3

2: in the latter case, we can
define our Hamiltonian circuit in Q3

2 to be (x1, z1, z2, y2, y1, y3, z3, x3, x2, x1).
Case (i)(b). At least one of the links (x1, x2) and (y1, y2) is faulty.
By symmetry, we may also assume that at least one of (x1, x3) and (y1, y3) is

faulty (as otherwise we are in Case (i)(a)); so this accounts for all faults in Q3
2. The

only configuration possible, up to isomorphism, is that in Figure 2.4(a), and so there
is a Hamiltonian circuit as depicted in that figure. (In Figure 2.4(a), the nodes x1,
y1, and z1 of Q1 form the central column, with the other two columns similarly
depicting the nodes of Q2 and Q3. Faults are denoted by missing links, and links of
the Hamiltonian circuit are drawn in bold.)

Case (ii). All faults are in dimension 1.
Up to isomorphism, there are six different configurations possible, shown in Fig-

ure 2.4(b)–(g), with Hamiltonian circuits as depicted except for Figure 2.4(g) where
no such Hamiltonian circuit exists. (In Figure 2.4(g), w.l.o.g. the bold links are neces-
sarily in any Hamiltonian circuit, if there were to exist one; and one can immediately
see that there is no extension of these bold links to a Hamiltonian circuit.)

Lemma 2.4. If Q3
3 has seven faulty links and is such that every node is incident

with at least two healthy links, then Q3
3 has a Hamiltonian circuit.

Proof. Case (i). Q3
3 contains faults forming a circuit C of length 3.

All of the faults in C must appear in the same dimension, say dimension 1.
Partition Q3

3 across dimension 1 to obtain three copies of Q3
2, namely Q1, Q2, and

Q3, and let the faulty links in C be (x1, x2), (x2, x3), and (x3, x1). We may assume
that Q1 contains the most faults amongst these copies, then Q2, and then Q3.

Case (i)(a). Q1 contains faults forming a circuit D of length 3.
Let y1 and z1 be nodes of D different from x1 (x1 may or may not be on D) so

that the number of faults incident with y1 is no greater than the number of faults
incident with any node of D different from x1. (Note that x1 is incident with at most
two faults in Q1.) If y1 is incident with one healthy link in Q1, then every other node
of Q1 is incident with at least two healthy links in Q1. (As Q3

3 has seven faults, y1
must be incident with at least one healthy link in Q1.) In this case, temporarily mark
the link (y1, z1) as healthy so that there are at most three faults in the amended Q1.
(And these faults do not form a circuit.) Lemma 2.3 yields that there is a Hamiltonian
path in the original Q1 from y1 to z1.

If y1 is incident with two healthy links in Q1, then every node in Q1 is incident
with at least two healthy links in Q1. Mark the link (y1, z1) as temporarily healthy
and a healthy link of Q1 incident with y1 as temporarily faulty. Every node in the
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no Hamiltonian
circuit!

(b)(a) (c)

(d) (e) (f)

(g)

Fig. 2.4. The different configurations for Q3
2.

amended Q1 is incident with at least two healthy links, and there are at most three
faults. (And these faults do not form a circuit.) Lemma 2.3 yields that there is a
Hamiltonian path in the original Q1 from y1 to z1.

Whichever of the above scenarios applies, denote the Hamiltonian path in Q1

from y1 to z1 by P1. The faults in Q1 and the faults (x1, x2), (x2, x3), and (x3, x1)
account for at least six of the seven faults in Q3

3. Hence, w.l.o.g. we may assume
that the links (x1, x2) and (y1, y2) are healthy. There is at most one fault in Q2. By
marking healthy links of Q2 as temporarily faulty (if necessary), ensure that (y2, z2) is
healthy and y2 is incident with exactly two healthy links. Applying Lemma 2.3 to this
amended Q2 yields that there is a Hamiltonian circuit C2 (that is also a Hamiltonian
circuit in the original Q2) including the link (y2, z2). Join P1 and C2 using the healthy
links (y1, y2) and (z1, z2) to obtain a circuit D2 containing every node of Q1 and Q2.

Q3 has an isomorphic copy C3 of C2, and there are no faults in Q3. As C3 has
length 9 and there are at most four faults in dimension 1, by applying our counting
argument as we have done throughout, we can join D2 and C3 using appropriate
dimension 1 links to obtain a Hamiltonian circuit in Q3

3.

Case (i)(b). Q1 does not contain faults forming a circuit D of length 3.

Note that the proofs of Cases (i), (ii), (iii), and (iv) of the main theorem hold for
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Q3
3 except that, throughout, instead of appealing to an inductive hypothesis, we use

Lemma 2.3; in Case (i), we assume that dimension 1 contains at most five faults; and
in Case (iii)(a), when amending Q2 we must ensure that we do not introduce a circuit
of faults of length 3. (This can be done as Q2 has at most 1 fault.) Consequently,
we are left with one scenario to consider: the subcase of Case (i) when each Qi is
such that every node is incident with at least two healthy links and when dimension
1 contains six or seven faults.

Let (a new) 3-ary 2-cube Q3
2 be such that there is a fault (x, y) in Q3

2 if and only
if there is a fault (xi, yi) in Qi for some i ∈ {1, 2, 3}. Then Q3

2 has at most two faults
and, by Lemma 2.3, it has a Hamiltonian circuit C. For each i ∈ {1, 2, 3}, let Ci
be the isomorphic copy of C in Qi. (Note that each Ci consists entirely of healthy
links.) Even if dimension 1 (of our original Q3

3) contains seven faults, our usual
counting argument yields that there exists a pair of healthy links {(u1, u2), (v1, v2)}
or {(u1, u3), (v1, v3)}, where (u1, v1) is a link of C1: w.l.o.g. we may assume that these
healthy links are (u1, u2) and (v1, v2). We can join C1 and C2 using these healthy links
and then proceed similarly to join the resulting circuit to C3 and obtain a Hamiltonian
circuit of Q3

3.

Case (ii). Q3
3 does not contain faults forming a circuit of length 3.

There exists a dimension, say dimension 1, containing at least three faults. Parti-
tion Q3

3 across dimension 1 to obtain three copies of Q3
2, namely Q1, Q2, and Q3. Let

Q1 contain the most faults amongst these copies, then Q2, and then Q3. Proceeding
as in Case (i)(b) yields the result.

The main theorem now follows by induction.

The result in Theorem 2.1 is optimal in the following sense. Let a, b, c, and d
be four nodes in Qkn, where k ≥ 4 and n ≥ 2, or k = 3 and n ≥ 3, such that there
are links (a, b), (b, c), (c, d), and (d, a). Let the faults of Qkn consist of those links
incident with a that are different from (a, b) and (a, d), and those links incident with
c that are different from (b, c) and (c, d). In particular, Qkn has 4n−4 faults and every
node is incident with at least two healthy links; but this faulty Qkn does not contain
a Hamiltonian circuit, as any Hamiltonian circuit necessarily contains the links (a, b)
and (a, d), and also the links (c, b) and (c, d), which yields a contradiction.

3. Conclusions. We have proven that every k-ary n-cube Qkn which has at most
4n−5 faulty links and is such that every node is incident with at least two healthy links
has a Hamiltonian circuit. As mentioned earlier, an analogous result for hypercubes
was proven by Chan and Lee [8]. In [8], it was also shown that the problem of
deciding whether a faulty binary n-cube has a Hamiltonian circuit is NP-complete.
Their complexity-theoretic reduction (from the 3-satisfiability problem) can easily be
adapted to show that the problem of deciding whether a faulty k-ary n-cube has a
Hamiltonian circuit is also NP-complete. (We leave the proof of this as a simple
exercise.)

As open problems relating to the research in this paper, we propose the following.
The construction of our Hamiltonian circuits in our faulty k-ary n-cubes does not yield
efficient parallel distributed algorithms for actually building the Hamiltonian circuits.
For example, suppose one had a parallel computer whose underlying interconnection
network was a k-ary n-cube and each node, i.e., processor, had local (or even global)
knowledge of the faulty links. How could we develop an efficient message-passing
algorithm so that, upon termination, every node knew its successor and predecessor
on a Hamiltonian circuit (without necessarily knowing the Hamiltonian circuit in its
entirety)? Such an algorithm would be extremely useful. Also, whilst we provide a



328 YAAGOUB A. ASHIR AND IAIN A. STEWART

precise result as to the threshold value on the number of faulty links occurring in a
k-ary n-cube so that there still exists a Hamiltonian circuit (under the assumption
that every node is incident with at least two healthy links) and we also remark that
the general decision problem is NP-complete, it would be useful if “safe patterns” of
faults could be established so that even though there were more than 4n − 5 faulty
links present, one could still be sure of the existence of a Hamiltonian circuit because
these faults were arranged in some specific formation. Finally, we have addressed only
the problem of finding longest circuits in k-ary n-cubes in the presence of faulty links.
It would be interesting to do likewise in the presence of faulty nodes, or even faulty
nodes and links.
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Abstract. A binary clutter is the family of odd circuits of a binary matroid, that is, the family
of circuits that intersect with odd cardinality a fixed given subset of elements. Let A denote the 0, 1
matrix whose rows are the characteristic vectors of the odd circuits. A binary clutter is ideal if the
polyhedron {x ≥ 0 : Ax ≥ 1} is integral. Examples of ideal binary clutters are st-paths, st-cuts, T -
joins or T -cuts in graphs, and odd circuits in weakly bipartite graphs. In 1977, Seymour [J. Combin.
Theory Ser. B, 22 (1977), pp. 289–295] conjectured that a binary clutter is ideal if and only if it
does not contain LF7 , OK5 , or b(OK5 ) as a minor. In this paper, we show that a binary clutter
is ideal if it does not contain five specified minors, namely the three above minors plus two others.
This generalizes Guenin’s characterization of weakly bipartite graphs [J. Combin. Theory Ser. B,
83 (2001), pp. 112–168], as well as the theorem of Edmonds and Johnson [Math. Programming, 5
(1973), pp. 88–124] on T -joins and T -cuts.

Key words. ideal clutter, signed matroid, multicommodity flow, weakly bipartite graph, T -cut,
Seymour’s conjecture, connectivity, separation
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1. Introduction. A clutter H is a finite family of sets, over some finite ground
set E(H), with the property that no set of H contains, or is equal to, another set of

H. A clutter is said to be ideal if the polyhedron {x ∈ R
|E(H)|
+ :

∑
i∈S xi ≥ 1 for all

S ∈ H} is an integral polyhedron; that is, all its extreme points have 0, 1 coordinates.
A clutter H is trivial if H = ∅ or H = {∅}. Given a nontrivial clutter H, we write
A(H) for a 0, 1 matrix whose columns are indexed by E(H) and whose rows are the
characteristic vectors of the sets S ∈ H. With this notation, a nontrivial clutter H is
ideal if and only if {x ≥ 0 : A(H)x ≥ 1} is an integral polyhedron.

Given a clutter H, a set T ⊆ E(H) is a transversal of H if T intersects all
the members of H. The clutter b(H), called the blocker of H, is defined as follows:
E
(
b(H)) = E(H) and b(H) is the set of inclusion-wise minimal transversals of H. It is

well known that b
(
b(H)) = H [13]. Hence we say that H, b(H) form a blocking pair of

clutters. Lehman [14] showed that if a clutter is ideal, then so is its blocker. A clutter
is said to be binary if, for any S1, S2, S3 ∈ H, their symmetric difference S1�S2�S3

contains, or is equal to, a set of H.
Given a clutter H and i ∈ E(H), the contraction H/i and deletion H \ i are

clutters defined as follows: E(H/i) = E(H\ i) = E(H)−{i}, the family H/i is the set
of inclusion-wise minimal members of {S−{i} : S ∈ H}, and H\ i = {S : i �∈ S ∈ H}.
Contractions and deletions can be performed sequentially, and the result does not
depend on the order. A clutter obtained from H by a set of deletions Jd and a set of
contractions Jc (where Jc∩Jd = ∅) is called a minor of H and is denoted by H\Jd/Jc.
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It is a proper minor if Jc ∪ Jd �= ∅. A clutter is said to be minimally nonideal (mni)
if it is not ideal but all its proper minors are ideal.

The clutterOK5 is defined as follows: E(OK5) is the set of 10 edges of the complete
graph K5 and OK5 is the set of odd circuits of K5 (the triangles and the circuits of
length 5). The 10 constraints corresponding to the triangles define a fractional extreme
point (1

3 ,
1
3 , . . . ,

1
3 ) of the associated polyhedron {x ≥ 0 : A(OK5)x ≥ 1}. Thus OK5

is not ideal and neither is its blocker. The clutter LF7 is the family of circuits of length
three of the Fano matroid (or, equivalently, the family of lines of the Fano plane), i.e.,
E(LF7) = {1, 2, 3, 4, 5, 6, 7} and

LF7
=
{{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, {1, 2, 7}, {3, 4, 7}, {5, 6, 7}}.

The fractional point (1
3 ,

1
3 , . . . ,

1
3 ) is an extreme point of the associated polyhedron,

and hence LF7 is not ideal. The blocker of LF7 is LF7 itself. The following excluded
minor characterization is predicted.

Seymour’s conjecture (Seymour [23, p. 200], [26, (9.2), (11.2)]). A binary
clutter is ideal if and only if it has no LF7 , no OK5 , and no b(OK5

) minor.
Consider a clutter H and an arbitrary element t �∈ E(H). We write H+ for the

clutter with E(H+) = E(H) ∪ {t} and H+ = {S ∪ {t} : S ∈ H}. The clutter Q6 is
defined as follows: E(Q6) is the set of edges of the complete graph K4 and Q6 is the
set of triangles of K4. The clutter Q7 is defined as follows:

A(Q7) =




1 0 1 0 1 0 1
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 1 1 0 0 1 1
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0




.

Note that the first six columns of A(Q7) form the matrix A
(
b(Q6)

)
.

The main result of this paper is that Seymour’s conjecture holds for the class of
clutters that do not have Q+

6 and Q+
7 minors.

Theorem 1.1. A binary clutter is ideal if it does not have LF7 , OK5 , b(OK5),
Q+

6 , or Q+
7 as a minor.

Since the blocker of an ideal binary clutter is also an ideal, we can restate Theo-
rem 1.1 as follows.

Corollary 1.2. A binary clutter is ideal if it does not have LF7 , OK5 , b(OK5),
b(Q+

7 ), or b(Q+
6 ) as a minor.

We say that H is the clutter of odd circuits of a graph G if E(H) is the set of
edges of G and H is the set of odd circuits of G. A graph is said to be weakly bipartite
if the clutter of its odd circuits is ideal. This class of graphs has a nice excluded minor
characterization.

Theorem 1.3 (Guenin [10]). A graph is weakly bipartite if and only if its clutter
of odd circuits has no OK5 minor.

The class of clutters of odd circuits is closed under minor taking (Remark 8.2).
Moreover, one can easily check that OK5 is the only clutter of odd circuits among
the five excluded minors of Theorem 1.1 (see Remark 8.3 and [20]). It follows that
Theorem 1.1 implies Theorem 1.3. It does not provide a new proof of Theorem 1.3,
however, as we shall use Theorem 1.3 to prove Theorem 1.1.
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Consider a graph G and a subset T of its vertices of even cardinality. A T -join is
an inclusion-wise minimal set of edges J such that T is the set of vertices of odd degree
of the edge-induced subgraph G[J ]. A T -cut is an inclusion-wise minimal set of edges
δ(U) := {(u, v) : u ∈ U, v �∈ U}, where U is a set of vertices of G that satisfies |U ∩ T |
odd. T -joins and T -cuts generalize many interesting special cases. If T = {s, t}, then
the T -joins (resp., T -cuts) are the st-paths (resp., inclusion-wise minimal st-cuts) of
G. If T = V , then the T -joins of size |V |/2 are the perfect matchings of G. The case
where T is identical to the set of odd-degree vertices of G is known as the Chinese
postman problem [6, 12]. The families of T -joins and T -cuts form a blocking pair of
clutters.

Theorem 1.4 (Edmonds and Johnson [6]). The clutters of T -cuts and T -joins
are ideal.

The class of clutters of T -cuts is closed under minor taking (Remark 8.2). More-
over, it is not hard to check that none of the five excluded minors of Theorem 1.1
are clutters of T -cuts (see Remark 8.3 and [20]). Thus Theorem 1.1 implies that the
clutter of T -cuts is ideal and thus that its blocker, the clutter of T -joins, is ideal.
Hence Theorem 1.1 implies Theorem 1.4. However, we shall also rely on this result
to prove Theorem 1.1.

The paper is organized as follows. Section 2 considers representations of binary
clutters in terms of signed matroids and matroid ports. Section 3 reviews the notions
of lifts and sources, which are families of binary clutters associated with a given binary
matroid [20, 29]. Connections between multicommodity flows and ideal clutters are
discussed in section 4. The material presented in sections 2, 3, and 4 is not all new. We
present it here for the sake of completeness and in order to have a unified framework
for the remainder of the paper. In sections 5, 6, and 7 we show that mni clutters do
not have small separations. The proof of Theorem 1.1 is given in section 8. Finally,
section 9 presents an intriguing example of an ideal binary clutter.

2. Binary matroids and binary clutters. We assume that the reader is fa-
miliar with the basics of matroid theory. For an introduction and all undefined terms,
see, for instance, Oxley [21]. Given a matroid M , the set of its elements is denoted
by E(M) and the set of its circuits by Ω(M). The dual of M is written M∗. The
deletion minor M \ e of M is the matroid defined as follows: E(M \ e) = E(M)−{e}
and Ω(M \ e) = {C : e �∈ C ∈ Ω(M)}. The contraction minor M/e of M is defined as
(M∗ \ e)∗. Contractions and deletions can be performed sequentially, and the result
does not depend on the order. A matroid obtained from M by a set of deletions Jd
and a set of contractions Jc is a minor of M and is denoted by M \ Jd/Jc.

A matroid M is binary if there exists a 0, 1 matrix A with column set E(M) such
that the independent sets of M correspond to independent sets of columns of A over
the two element field. We say that A is a representation of M . Equivalently, a 0, 1
matrix A is a representation of a binary matroid M if the rows of A span the circuit
space of M∗. If C1 and C2 are two cycles of a binary matroid, then C1�C2 is also a
cycle of M . In particular, this implies that every cycle of M can be partitioned into
circuits. Let M be a binary matroid and Σ ⊆ E(M). The pair (M,Σ) is called a
signed matroid, and Σ is called the signature of M . We say that a circuit C of M is
odd (resp., even) if |C ∩ Σ| is odd (resp., even).

The results in this section are fairly straightforward and have appeared explicitly
or implicitly in the literature [8, 13, 20, 23]. We include some of the proofs for the
sake of completeness.

Proposition 2.1 (Lehman [13]). The following statements are equivalent for a
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clutter: (i) H is binary; (ii) for every S ∈ H and T ∈ b(H), |S ∩ T | is odd; (iii) for
every S1, . . . , Sk ∈ H where k is odd, S1 � S2 � . . . Sk contains, or is equal to, an
element of H.

Proposition 2.2. The odd circuits of a signed matroid (M,Σ) form a binary
clutter.

Proof. Let C1, C2, C3 be three odd circuits of (M,Σ). Then L := C1 � C2 � C3

is a cycle of M . Since each of C1, C2, C3 intersects Σ with odd parity, so does L.
Since M is binary, L can be partitioned into a family of circuits. One of these circuits
must be odd since |L∩Σ| is odd. The result now follows from the definition of binary
clutters (see section 1).

Proposition 2.3. Let F be a clutter such that ∅ �∈ F . Consider the following
properties: (i) For all C1, C2 ∈ F and e ∈ C1 ∩ C2 there exists C3 ∈ F such that
C3 ⊆ C1∪C2−{e}. (ii) For all C1, C2 ∈ F there exists C3 ∈ F such that C3 ⊆ C1�C2.
If property (i) holds, then F is the set of circuits of a matroid. If property (ii) holds,
then F is the set of circuits of a binary matroid.

Property (i) is known as the circuit elimination axiom. Circuits of matroids satisfy
this property. Note that property (ii) implies property (i). Both results are standard;
see Oxley [21].

Proposition 2.4. Let H be a binary clutter such that ∅ �∈ H. Let F be the
clutter consisting of all inclusion-wise minimal, nonempty sets obtained by taking the
symmetric difference of an arbitrary number of sets of H. Then H ⊆ F and F is the
set of circuits of a binary matroid.

Proof. By definition, F satisfies property (ii) in Proposition 2.3. Thus F is the
set of circuits of a binary matroid M . Suppose for a contradiction there is S ∈ H−F .
Then there exists S′ ∈ F such that S′ ⊂ S. Thus S′ is the symmetric difference of a
family of, say t, sets of H. If t is odd, then Proposition 2.1 implies that S′ contains
a set of H. If t is even, then Proposition 2.1 implies that S′ � S contains a set of H.
Thus S is not inclusion-wise minimal, a contradiction.

Consider a binary clutter H such that ∅ �∈ H. The matroid defined in Propo-
sition 2.4 is called the up matroid and is denoted by u(H). Proposition 2.1 implies
that every circuit of u(H) is either an element of H or the symmetric difference of
an even number of sets of H. Since H is a binary clutter, sets of b(H) intersect with
odd parity the circuits of u(H) that are elements of H. Hence, we have the following
remark.

Remark 2.5. A binary clutter H such that ∅ �∈ H is the clutter of odd circuits of
(u(H),Σ), where Σ ∈ b(H).

Moreover, this representation is essentially unique.

Proposition 2.6. Let H be the clutter of odd circuits of the signed matroid
(M,Σ). If H is not trivial and N is connected, then N = u(H).

To prove this, we use the following result (see Oxley [21, Theorem 4.3.2]).

Theorem 2.7 (Lehman [13]). Let e be an element of a connected binary matroid
M . The circuits of M not containing e are of the form C1 � C2, where C1 and C2

are circuits of M containing e.

We shall also need the following observation which follows directly from Proposi-
tion 2.3.

Proposition 2.8. Let (M,Σ) be a signed matroid and e an element not in E(M).
Let F := {C ∪ {e} : C ∈ Ω(M), |C ∩ Σ| odd} ∪ {C : C ∈ Ω(M), |C ∩ Σ| even}. Then
F is the set of circuits of a binary matroid.

Proof of Proposition 2.6. Let N and N ′ be connected matroids and suppose that



IDEAL BINARY CLUTTERS 333

the clutters of odd circuits of (N,Σ) and (N ′,Σ′) are the same and are not trivial.
Let M (resp., M ′) be the matroid constructed from (N,Σ) (resp., (N ′,Σ)) as in
Proposition 2.8. By construction the circuits of M and M ′ using e are the same.
Since N is connected and H is not trivial, M and M ′ are connected. It follows from
Theorem 2.7 that M = M ′ and in particular N = M/e = M ′/e = N ′. By the same
argument and Remark 2.5, N = u(H).

In a binary matroid, any circuit C and cocircuit D have an even intersection.
Therefore, if D is a cocircuit, the clutter of odd circuits of (M,Σ) and (M,Σ� D)
are the same (see Zaslavsky [28]). Let e ∈ E(M). The deletion (M,Σ) \ e of (M,Σ) is
defined as (M \ e,Σ−{e}). The contraction (M,Σ)/e of (M,Σ) is defined as follows:
If e �∈ Σ, then (M,Σ)/e := (M/e,Σ); if e ∈ Σ and e is not a loop, then there exists a
cocircuit D of M with e ∈ D and (M,Σ)/e := (M/e,Σ�D). Note that if e ∈ Σ is
a loop of M , then H/e is a trivial clutter. A minor of (M,Σ) is any signed matroid
which can be obtained by a sequence of deletions and contractions. A minor of (M,Σ)
obtained by a sequence of Jc contractions and Jd deletions is denoted (M,Σ)/Jc \Jd.

Remark 2.9. Let H be the clutter of odd circuits of a signed matroid (M,Σ). If
Jc does not contain an odd circuit, then H/Jc \Jd is the clutter of odd circuits of the
signed matroid (M,Σ)/Jc \ Jd.

Let M be a binary matroid and e an element of M . The clutter Port(M, e), called
a port of M , is defined as follows: E

(
Port(M, e)

)
:= E(M)− {e} and Port(M, e) :=

{S − {e} : e ∈ S ∈ Ω(M)}.
Proposition 2.10. Let M be a binary matroid; then Port(M, e) is a binary

clutter.
Proof. By definition S ∈ Port(M, e) if and only if S ∪ {e} is an odd circuit

of the signed matroid (M, {e}). We may assume Port(M, e) is nontrivial; hence, in
particular, e is not a loop of M . Therefore, there exists a cocircuit D that contains e.
Thus Port(M, e) is the clutter of odd circuits of the signed matroid (M/e,D� {e}).
Proposition 2.2 states that these odd circuits form a binary clutter.

Proposition 2.11. Let H be a binary clutter. Then there exists a binary matroid
M with element e ∈ E(M)− E(H) such that Port(M, e) = H.

Proof. If ∅ ∈ H, define M to have element e as a loop. If ∅ �∈ H, we can represent
H as the set of odd circuits of a signed matroid (N,Σ) (see Remark 2.5). Construct
a binary matroid M from (N,Σ) as in Proposition 2.8. Then Port(M, e) = H.

Proposition 2.12 (Seymour [23]). Port(M, e) and Port(M∗, e) form a blocking
pair.

Proof. Proposition 2.10 implies that Port(M, e) and Port(M∗, e) are both binary
clutters. Consider T ∈ Port(M∗, e). Then T ∪ {e} is a circuit of M . For all S ∈
Port(M, e), S ∪ {e} is a circuit of M∗. Since T ∪ {e} and S ∪ {e} have an even
intersection, |S ∩ T | is odd. Thus we proved that, for all T ∈ Port(M∗, e), there is
T ′ ∈ b(Port(M, e)), where T ′ ⊆ T . To complete the proof it suffices to show that, for
all T ′ ∈ b(Port(M, e)), there is T ∈ Port(M∗, e), where T ⊆ T ′. Since Port(M, e)
is binary, for every S ∈ Port(M, e), |S ∩ T ′| is odd (Proposition 2.1). Thus T ′ ∪ {e}
intersects every circuit of M using e with even parity. It follows from Theorem 2.7
that T ′ ∪ {e} is orthogonal to the space spanned by the circuits of M ; i.e., T ′ ∪ {e}
is a cycle of M∗. It follows that there is a circuit of M∗ of the form T ∪ {e}, where
T ⊆ T ′. Hence, T ∈ Port(M∗, e) as required.

3. Lifts and sources. Let N be a binary matroid. For any binary matroid M
with element e such that N = M/e, the binary clutter Port(M, e) is called a source
of N . Note that H is a source of its up matroid u(H). For any binary matroid M
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with element e such that N = M \ e, the binary clutter Port(M, e) is called a lift
of N . Note that a source or a lift can be a trivial clutter.

Proposition 3.1. Let N be a binary matroid. H is a lift of N if and only if
b(H) is a source of N∗.

Proof. Let H be a lift of N ; i.e., there is a binary matroid M with M \ e = N
and H = Port(M, e). By Proposition 2.12, b(H) = Port(M∗, e). Since M∗/e =
(M \ e)∗ = N∗ we have that b(H) is a source of N∗. Moreover, the implications can
be reversed.

It is useful to relate a description of H in terms of excluded clutter minors to a
description of u(H) in terms of excluded matroid minors.

Theorem 3.2. Let H be a binary clutter such that its up matroid u(H) is con-
nected and let N be a connected binary matroid. Then u(H) does not have N as a
minor if and only if H does not have H1 or H+

2 as a minor, where H1 is a source of
N and H2 is a lift of N .

To prove this we will need the following result (see Oxley [21, Proposition 4.3.6]).

Theorem 3.3 (Brylawski [3], Seymour [25]). Let M be a connected matroid and
N a connected minor of M . For any i ∈ E(M)−E(N), at least one of M \ i or M/i
is connected and has N as a minor.

Proof of Theorem 3.2. Let M := u(H) and let Σ ∈ b(H). Remark 2.5 states
that H is the clutter of odd circuits of (M,Σ). Suppose first that H has a minor H1

that is a source of N . Remark 2.9 implies that H1 is the clutter of odd circuits of a
signed minor (N ′,Σ′) of (M,Σ). Since N is connected, H1 is nontrivial and therefore
Proposition 2.6 implies N = N ′. In particular, N is a minor of M . Now suppose that
H has a minor H+

2 , where H2 is a lift of N . Let e be the element of E(H+
2 )−E(H2).

Remark 2.9 implies that H+
2 is the clutter of odd circuits of a signed minor (M̂, Σ̂)

of (M,Σ). Since H2 is a lift of N there is a connected matroid M̂ ′ with element e
such that M̂ ′ \ e = N and Port(M̂ ′, e) = H2. Thus H+

2 is the clutter of odd circuits

of (M̂ ′, {e}). Proposition 2.6 implies M̂ = M̂ ′. Thus M̂ ′ is a minor of M and so is
N = M̂ ′ \ e.

Now we prove the converse. Suppose thatM hasN as a minor and does not satisfy
the theorem. Let H be such a counterexample minimizing the cardinality of E(H).
Clearly, N is a proper minor of M as otherwise u(H) = N ; i.e., H is a source of N . By
Theorem 3.3, for every i ∈ E(M)−E(N), one of M \ i and M/i is connected and has
N as a minor. Suppose M/i is connected and has N as a minor. Since i is not a loop of
M , it follows from Remark 2.9 that H/i is nontrivial and is a signed minor (M/i,Σ′)
of (M,Σ). Proposition 2.6 implies M/i = u(H/i). Therefore H/i contradicts the
choice of H minimizing the cardinality of E(H). Thus for every i ∈ E(M) − E(N),
M \ i is connected and has an N minor. Suppose for some i ∈ E(M) − E(N), H \ i
is nontrivial. Then because of Remark 2.9 and Proposition 2.6 u(H \ i) = M \ i, a
contradiction to the choice of H. Thus for every i ∈ E(M) − E(N), H \ i is trivial,
or, equivalently, all odd circuits of (M,Σ) use i. As M = u(H), even circuits of M
do not use i. We claim that E(M) − E(N) = {i}. Suppose not and let j �= i be an
element of E(M) − E(N). The set of circuits of (M,Σ) using j is exactly the set of
odd circuits. It follows that the elements i, j must be in series in M . Thus M \ i is
not connected, a contradiction. Therefore E(M) − E(N) = {i} and M \ i = N . As
the circuits of (M,Σ) using i are exactly the odd circuits of (M,Σ), it follows that
column i of A(H) consists of all 1’s. Thus H = H+

2 , where H2 = Port(M, i); i.e., H2

is a lift of N .

Next we define the binary matroids F7, F
∗
7 , and R10. For any binary matroid N ,
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let BN be a 0, 1 matrix whose rows span the circuit space of N . (Equivalently, BN
is a representation of the dual matroid N∗.) Square identity matrices are denoted I.
Observe that R∗10 = R10.

BF7
=


 I

0 1 1
1 0 1
1 1 0
1 1 1


 , BF∗

7
=


 I

0 1 1 1
1 0 1 1
1 1 0 1


 ,

BR10 =


 I

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1


 .

Given a binary matroid N , let M be a binary matroid with element e such that
N = M/e. The circuit space of M is spanned by the rows of a matrix of the form
[BN |x], where x is a 0, 1 column vector indexed by e. Assuming M is connected,
we have (up to isomorphism) the following possible columns x for each of the three
aforementioned matroids N :

(1) F ∗7 :
xa = (1, 1, 1)T .

(2) F7:
xa = (0, 1, 1, 1)T , xb = (1, 1, 1, 0)T , and xc = (1, 1, 1, 1)T .

(3) R10:
xa = (1, 0, 1, 0, 0)T , xb = (1, 0, 1, 0, 1)T , xc = (1, 0, 1, 1, 0)T ,
xd = (1, 0, 1, 1, 1)T , xe = (1, 1, 0, 0, 0)T , xf = (1, 1, 1, 1, 1)T .

Note that (1), (2) are easy and (3) can by found in [24, p. 357]. The rows of the matrix
[BF7 |xb] (resp., [BF7 |xc]) span the circuit space of a matroid known as AG(3, 2) (resp.,
S8). If [BN |x] is a matrix whose rows span the circuits of M , then by definition of
sources Port(M, e) is a source of N . Thus, we have the following remark.

Remark 3.4.
• F ∗7 has a unique source, namely Q+

6 .
• F7 has three sources: b(Q6)

+ (when x = xa), LF7
(when x = xb), and b(Q7)

(when x = xc).
• R10 has six sources including b(OK5) (when x = xf ).

Luetolf and Margot [16] have enumerated all mni clutters with at most 10 elements
(and many more). Using Remark 3.4, we can then readily check the following.

Proposition 3.5. Let H be the clutter of odd circuits of a signed matroid (M,Σ).
• If M = R10, then either H = b(OK5

) or H is ideal.
• If M = F7, then either H = LF7 or H is ideal.
• If M = F ∗7 , then H is ideal.

4. Multicommodity flows. In this section, we show that a binary clutter H
is ideal exactly when certain multicommodity flows exist in the matroid u(H). This
equivalence will be used in sections 6 and 7 to show that mni binary clutters do not
have small separations. Given a set S, a function p : S → Q+, and T ⊆ S, we write
p(T ) for

∑
i∈T p(i). Consider a signed matroid (M,F ). The set of circuits of M that

have exactly one element in common with F is denoted ΩF . Let p : E(M) → Q+

be a cost function on the elements of M . Seymour [26] considers the following two
statements about the triple (M,F, p).
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For any cocircuit D of M

p(D ∩ F ) ≤ p(D − F ).(4.1)

There exists a function η : ΩF → Q+ such that

∑
C:e∈C∈ΩF

η(C)

{ ≥ p(e) if e ∈ F,
≤ p(e) if e ∈ E − F.

(4.2)

We say that the cut condition holds if inequality (4.1) holds for all cocircuits D.
We say that M is F -flowing with costs p if statement (4.2) holds; the corresponding
solution is an F -flow satisfying costs p. M is F -flowing [26] if, for every p for which
the cut condition holds, M is F -flowing with costs p. Elements in F (resp., E−F ) are
called demand (resp., capacity) elements. It is helpful to illustrate the aforementioned
definitions in the case where M is a graphic matroid [9]. For a demand edge f , p(f)
is the amount of flow required between its endpoints. For a capacity edge e, p(e) is
the maximum amount of flow that can be carried by e. Then M is F -flowing with
costs p when a multicommodity flow meeting all demands and satisfying all capacity
constraints exists. The cut condition requires that for every cut the demand across
the cut does not exceed its capacity. When F consists of a single edge f and when
M is graphic, then M is f -flowing [7].

The cut condition states that p(D ∩ F ) ≤ p(D − F ) = p(D)− p(D ∩ F ). Adding
p(F )−p(D∩F ) to both sides, we obtain p(F ) ≤ p(D)−p(D∩F )+p(F )−p(D∩F ) =
p(D� F ). Hence, we have the following remark.

Remark 4.1. The cut condition holds if and only if p(F ) ≤ p(D � F ) for all
cocircuits D.

Let H be the clutter of odd circuits of (M,F ). We define

τ(H, p) = min




∑
e∈E(M)

p(e)xe :
∑
e∈S

xe ≥ 1 ∀S ∈ H, xe ∈ {0, 1} ∀e ∈ E(M)


 ,(a)

ν∗(H, p) = max

{∑
C∈H

yC :
∑

C:e∈C∈H
yC ≤ p(e) ∀e ∈ E(M), yC ≥ 0 ∀C ∈ H

}
.(b)

By linear programming duality we have τ(H, p) ≥ ν∗(H, p). When p(e) = 1 for all
e ∈ E(M), then we write τ(H) for τ(H, p) and ν∗(H) for ν∗(H, p).

Proposition 4.2. Let H be the clutter of odd circuits of a signed matroid (M,F )
and let p : E(M)→ Q+.

(i) τ(H, p) = p(F ) if and only if the cut condition holds.
(ii) ν∗(H, p) = p(F ) if and only if M is F -flowing with costs p.
(iii) If η(C) > 0 for a solution to 4.2, then C ∈ ΩF for all F ∈ b(H) with

p(F ) = τ(H, p).
Proof. We say that a set X ⊆ E(M) is a (feasible) solution for (a) if its charac-

teristic vector is. Consider (i). Suppose τ(H, p) = p(F ). We can assume that F is an
inclusion-wise minimal solution of (a) and thus F ∈ b(H). Let D be any cocircuit of
M and consider any S ∈ H. Since S is a circuit of M , |D ∩ S| is even and since H is
binary, |F ∩S| is odd. Thus |(D�F )∩S| is odd. It follows that D�F is a transversal
of H. Therefore, D � F is a feasible solution to (a) and we have p(F ) ≤ p(D � F ).
Hence, by Remark 4.1, the cut condition holds. Conversely, assume the cut condition
holds and consider any set X that is feasible for (a). We need to show p(F ) ≤ p(X).
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We can assume that X is inclusion-wise minimal, i.e., that X ∈ b(H). Observe that
F and X intersect circuits of M with the same parity. Thus D := F �X is a cocycle
of M . Since the cut condition holds, by Remark 4.1, p(F ) ≤ p(D� F ) = p(X).

Consider (ii). Suppose ν∗(H, p) = p(F ). Since ν∗(H, p) ≤ τ(H, p) ≤ p(F ), it
follows from linear programming duality that F is an optimal solution to (a). Let y
be an optimal solution to (b). Complementary slackness states that if |F∩C| > 1, then
the corresponding dual variable yC = 0. Thus

∑
C:e∈C∈H yC =

∑
C:e∈C∈ΩF

yC for all
e ∈ E(M). Complementary slackness states that if e ∈ F , then

∑
C:e∈C∈ΩF

yC = p(e).
Hence, choosing η(C) = yC for every C ∈ ΩF satisfies (4.2). Conversely, suppose η
is a solution to (4.2). For each e ∈ F such that

∑
C: e∈C∈ΩF

ηC > p(e), reduce the
values ηC on the left-hand side until equality holds. Since C contains no element of
F other than e, we can get equality for every e ∈ F . So we may assume

∑
C:e∈C∈ΩF

η(C) ≤ p(e) for all e ∈ E(M). Set yC = 0 if C �∈ ΩF and yC = η(C) if C ∈ ΩF . Now
y is a feasible solution to (b) and F, y satisfy all complementary slackness conditions.
Thus F and y must be a pair of optimal solutions to (a) and (b), respectively.

Finally, consider (iii). From (ii) we know there is an optimal solution y to (b)
with yC > 0. By complementary slackness, it follows that |F ∩ C| = 1 for all F that
are optimal solutions to (a).

The last proposition implies in particular that, if M is F -flowing with costs p, then
the cut condition is satisfied. We say that a cocircuit D is tight if the cut condition
(4.1) holds with equality, or, equivalently (Remark 4.1), if p(F ) = p(D� F ).

Proposition 4.3. Suppose M is F -flowing with costs p and let D be a tight
cocircuit. If C is a circuit with η(C) > 0, then C ∩D = ∅ or C ∩D = {e, f}, where
e ∈ E(M)− F and f ∈ F .

Proof. We may assume C ∩ D �= ∅. As C ∈ ΩF , it follows that C ∩ F = {f}.
Moreover, C ∩D �= {f}, since M is binary. To complete the proof, it suffices to show
that there is no pair of elements e, e′ ∈ (C ∩D)−F . Suppose for a contradiction that
we have such a pair and let F ′ = D� F . As D is tight, p(F ) = p(D� F ) = p(F ′).
It follows from Proposition 4.2(iii) that C ∈ ΩF ′ . However, e, e′ ∈ F ′, a contra-
diction.

Corollary 4.4. Let H be the clutter of odd circuits of a signed matroid (M,F ).
(i) If H is ideal, then M is F -flowing with costs p for all p : E(M) → Q+, where
(M,F, p) satisfies the cut condition. (ii) If H is nonideal, then M is not F ′-flowing
with costs p for some p : E(M)→ Q+ and some F ′ ∈ b(H) that minimizes p(F ′).

Proof. Consider (i). Proposition 4.2 states that τ(H, p) = p(F ). Because H is
ideal, τ(H, p) = ν∗(H, p), i.e., p(F ) = ν∗(H, p). This implies by Proposition 4.2(ii)
that M is F -flowing with costs p. Consider (ii). If H is nonideal, then for some
p : E(M) → Z+, τ(H, p) > ν∗(H, p) [5]. Let F ′ be an optimal solution to (a). Then
p(F ′) = τ(H, p) and F ′ ∈ b(H). Proposition 4.2(ii) states that M is not F ′-flowing
with costs p.

We leave the next result as an easy exercise.
Corollary 4.5. A binary clutter H is ideal if and only if u(H) is F -flowing for

every F ∈ b(H).
Consider the case where H = OK5

. Let F be a set of edges of K5 such that
E(K5)− F induces a K2,3. Then F ∈ b(H) and u(H) (the graphic matroid of K5) is
not F -flowing.

5. Connectivity, preliminaries. Let E1, E2 be a partition of the elements E
of a matroid M and let r : 2|E| → Z+ be the rank function. M is said to have a k-
separation E1, E2 if r(E1)+ r(E2)− r(E) ≤ k−1 and |E1|, |E2| ≥ k. If |E1|, |E2| > k,
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then the separation is said to be strict . A matroid M has a k-separation E1, E2 if
and only if its dual M∗ does (Oxley [21, 4.2.7]). A matroid is k-connected if it has no
(k−1)-separation and is internally k-connected if it has no strict (k−1)-separation. A
2-connected matroid is simply said to be connected. We now follow Seymour [24] when
presenting k-sums. Let M1,M2 be binary matroids whose element sets E(M1), E(M2)
may intersect. We define M1 �M2 to be the binary matroid on E(M1) � E(M2),
where the cycles are all the subsets of E(M1)� E(M2) of the form C1 � C2, where
Ci is a cycle of Mi, i = 1, 2. The following special cases will be of interest to us.

Definition 5.1.
1. E(M1) ∩ E(M2) = ∅. Then M1 �M2 is the 1-sum of M1,M2.
2. E(M1) ∩ E(M2) = {f} and f is not a loop of M1 or M2. Then M1 �M2 is
the 2-sum of M1,M2.

3. |E(M1) ∩ E(M2)| = 3 and E(M1) ∩ E(M2) is a circuit of both M1 and M2.
Then M1 �M2 is the 3-sum of M1,M2.

We denote the k-sum of M1 and M2 as M1⊗kM2. The elements in E(M1)∩E(M2)
are called the markers of Mi (i = 1, 2). As an example, for k = 1, 2, 3, the k-sum
of two graphic matroids corresponds to taking two graphs, choosing a k-clique from
each, identifying the vertices in the clique pairwise and deleting the edges in the clique.
The markers are the edges in the clique. We have the following connection between
k-separations and k-sums.

Theorem 5.2 (Seymour [24]). Let M be a k-connected binary matroid and k ∈
{1, 2, 3}. Then M has a k-separation if and only if it can be expressed as M1 ⊗k M2.
Moreover, M1 (resp., M2) is a minor of M obtained by contracting and deleting
elements in E(M2)− E(M1) (resp., E(M1)− E(M2)).

We say that a binary clutter H has a (strict) k-separation if u(H) does.
Remark 5.3. H has a 1-separation if and only if A(H) is a block diagonal matrix.

Moreover, H is ideal if and only if the minors corresponding to each of the blocks are
ideal.

Recall (Proposition 2.11) that every binary clutter H can be expressed as
Port(M, e) for some binary matroid M with element e. Therefore we could define
the connectivity of H to be the connectivity of the associated matroid M . The two
notions of connectivity are not equivalent as the clutter LF7 illustrates. The matroid
AG(3, 2) has a strict 3-separation while F7 does not, but Port(AG(3, 2), t) = LF7

and
LF7

is the clutter of odd circuits of the signed matroid
(
F7, E(F7)

)
.

Chopra [4] gives composition operations for matroid ports and sufficient condi-
tions for maintaining idealness. This generalizes earlier results of Bixby [1]. Other
compositions for ideal (but not necessarily binary clutters) can be found in [19, 17, 18].
Novick and Sebö [20] give an outline on how to show that mni binary clutters do not
have 2-separations; the argument is similar to that used by Seymour [26, 7.1] to show
that k-cycling matroids are closed under 2-sums. We will follow the same strategy (see
section 6). Proving that mni binary clutters do not have 3-separations is more com-
plicated and requires a different approach (see section 7). In closing observe that none
of LF7 ,OK5 , and b(OK5) have strict 4-separations. Therefore, if Seymour’s conjecture
holds, then mni binary clutters are internally 5-connected.

6. 2-separations. Let (M,F ) be a signed matroid with a 2-separation E1, E2,
i.e., M = M1 ⊗2 M2 and E1 = E(M1)− E(M2), E2 = E(M2)− E(M1). We say that
(Mi, Fi) (for i = 1, 2) is a part of (M,F ) if it is a signed minor of (M,F ). It is not
hard to see that at most two choices of Fi can give distinct signed matroids (Mi, Fi).
Therefore (M,F ) can have at most four distinct parts. In light of Remark 2.5 we can
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identify binary clutters with signed matroids. The main result of this section is the
following.

Proposition 6.1. A binary clutter with a 2-separation is ideal if and only if all
its parts are ideal.

To prove this, we shall need the following results.
Proposition 6.2 (Seymour [24]). If M = M1 ⊗2 M2, then M is connected if

and only if M1 and M2 are connected.
Proposition 6.3 (Seymour [24]). Let M be a binary matroid with a 2-separation

E1, E2 and let C1, C2 be two circuits of M . If C1∩Ei ⊆ C2∩Ei, then C1∩Ei = C2∩Ei
(for i = 1, 2).

Proposition 6.4 (Seymour [24]). Let M = M1⊗2 M2. Then choose any circuit
C of M such that C ∩ E1 �= ∅ and C ∩ E2 �= ∅. Let i, j = 1, 2 and i �= j. For any
f ∈ C ∩ Ej, Mi = M \ (Ej − C)/(Ej ∩ C − {f}).

Proof of Proposition 6.1. LetH be a binary clutter with a 2-separation, M = u(H)
and F ∈ b(H). Assume without loss of generality that M is connected. Remark 2.5
states that H is the clutter of odd circuits of (M,F ). If H is ideal, then so are all its
parts by Remark 2.9. Conversely, suppose all parts of (M,F ) are ideal. Consider any
p : E(M) → Z+ and assume F ∈ b(H) minimizes p(F ). Because of Corollary 4.4(ii),
it suffices to show that M is F -flowing with costs p. Observe that the cut condition
is satisfied because of Proposition 4.2(i).

Since M has a 2-separation, it can be expressed as M1 ⊗2 M2. Throughout this
proof, i, j will always denote arbitrary distinct elements of {1, 2}. Define Fi = F ∩Ei
and let fi be the marker of Mi. Since fi is not a loop, there is a cocircuit Di of Mi

using fi. Let αi denote the smallest value of

p[Di − (Fi ∪ {fi})]− p(Di ∩ Fi),(*)

where Di is any cocircuit of Mi using fi. In what follows, we let Di denote some
cocircuit where the minimum is attained. Expression (*) gives the difference between
the sum of the capacity elements and the sum of the demand elements in Di, excluding
the marker fi. Thus α1 +α2 = p([D1�D2]−F )− p([D1�D2]∩F ). Since D1�D2

is a cocycle of M and the cut condition is satisfied, we must have

α1 + α2 ≥ 0.

Claim 1. If αi > 0, then there is an even circuit of (Mi, Fi) that uses marker fi.
Proof. Suppose for a contradiction that all circuits C of Mi that use fi satisfy

|C ∩ Fi| odd. Then D = Fi ∪ {fi} intersects all these circuits with even parity. By
hypothesis, M is connected and, because of Proposition 6.2, so is Mi. We know from
Theorem 2.7 that all circuits that do not use the marker fi are the symmetric dif-
ference of two circuits that do use fi. It follows that D intersects all circuits of Mi

with even parity. Thus D is a cocycle of Mi. However, expression (*) is nonposi-
tive for cocycle D. D can be partitioned into cocircuits. Because the cut condition
holds, expression (*) is nonpositive for the cocircuit that uses fi, a contradiction as
αi > 0.

Claim 2. If αi < 0, then there is an odd circuit of (Mi, Fi) that uses marker fi.
Proof. Suppose, for a contradiction, that all circuits C of Mi that use fi satisfy

|C ∩ Fi| even. By the same argument as in Claim 1, we know that in fact so do all
circuits of Mi. This implies that F and Fj intersect each circuit of M with the same
parity. As F is inclusion-wise minimal (F ∈ b(H)) we must have F = Fj , i.e., Fi = ∅.
However, this implies that expression (*) is nonnegative, a contradiction.
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Claim 3. If αj < 0 (resp., αj > 0), then (Mi, Fi ∪ {fi}) (resp., (Mi, Fi)) is a part
of (M,F ).

Proof. From Claim 2 (resp., Claim 1) there is an odd (resp., even) circuit C
using fj of (Mj , Fj). Proposition 6.3 implies that elements C ∩ E are in series in
M \ (Ej − C). Proposition 6.4 implies that Mi is obtained from M \ (Ej − C) by
replacing series elements of C∩Ej by a unique element fj . The required signed minor
is (M,F ) \ (Ej − C)/(C − {f}), where f is any element of C ∩ Ej .

Because α1 + α2 ≥ 0, it suffices to consider the following cases.
Case 1. α1 ≥ 0, α2 ≥ 0.
We know from Proposition 6.4 that Mi is a minor of M (where no loop is con-

tracted), say M \Jd/Jc. For i = 1, 2, let (Mi, F̂i) be the signed minor (M,F ) \Jd/Jc.
Since (Mi, F̂i) is a part of (M,F ), it is ideal. Therefore in particular (Mi, F̂i) \ fi =
(Mi \ fi, Fi) are ideal. Let pi : E(Mi) − fi → Z+ be defined as follows: pi(e) = p(e)
if e ∈ Ei. Let D be a cocircuit of Mi \ fi. The inequality p(D ∩ Fi) ≤ p(D − Fi)
follows from αi ≥ 0 when D ∪ fi is a cocircuit of Mi, and it follows from the fact
that the cut condition holds for (M,F ) when D is a cocircuit of Mi. Therefore the
cut condition holds for (Mi \ fi, Fi). It follows from Corollary 4.4(i) that each of
these signed matroids has an Fi-flow satisfying costs pi. Let ηi = ΩFi → Q+ be the
corresponding function satisfying (4.2). By scaling p, we may assume ηi(C) ∈ Z+ for
each circuit in ΩFi

. Let Li be the multiset where each circuit C in ΩFi appears ηi(C)
times. Define Lj similarly. The union (with repetition) of all circuits in Li and Lj
correspond to an F -flow of M satisfying costs p.

Case 2. αi < 0, αj > 0.
Because of Claim 3, there are parts (Mi, Fi) and (Mj , Fj ∪ {fj}) of (M,F ). Let

pi : E(Mi) → Z+ be defined as follows: pi(fi) = αj and pi(e) = p(e) for e ∈ Ei.
Let pj : E(Mj) → Z+ be defined as follows: pj(fj) = −αi and pj(e) = p(e) for
e ∈ Ej . Since we can scale p, we can assume that the Fi-flow of Mi satisfying costs
pi is a multiset Li of circuits and that the Fj ∪ {fj}-flow of Mj satisfying costs pj

is a multiset Lj . For l = 1, 2, Ll can be partitioned into Ll0 := {C ∈ Ll : fl �∈ C}
and Ll1 := {C ∈ Ll : fl ∈ C}. Since fj is a demand element for the flow Lj ,
|Lj1| = pj(fj) = −αi. Since fi is a capacity element for the flow Li, |Li1| ≤ pi(fi) = αj .

Because α1+α2 ≥ 0, |Lj1| ≤ |Li1|. Let us define a collection of circuits of M as follows:

include all circuits of Li0∪Lj0. Pair each circuit Cj ∈ Lj1 with a different circuit Ci ∈ Li1
and add to the collection the circuit included in Ci�Cj that contains the element of
F . The resulting collection corresponds to an F -flow of M satisfying costs p.

7. 3-separations. The main result of this section is the following,
Proposition 7.1. A mni binary clutter H has no strict 3-separation.
The proof follows from two lemmas, stated next and proved in sections 7.1 and

7.2, respectively.
Lemma 7.2. Let H be a mni binary clutter with a strict 3-separation E1, E2.

There exists a set F ∈ b(H) of minimum cardinality such that F ⊆ E1 or F ⊆ E2.
Let (M,F ) be a signed matroid with a strict 3-separation E1, E2, i.e., M =

M1⊗3M2 and E1 = E(M1)−E(M2), E2 = E(M2)−E(M1). Let C0 = E(M1)∩E(M2)
be the triangle common to both M1 and M2. Let M̄i (with i = 1, 2) be obtained by
deleting from Mi a (possibly empty) set of elements of C0. We call (M̄i, Fi) a part of
(M,F ) if it is a signed minor of (M,F ).

Lemma 7.3. Let (M,F ) be a connected signed matroid with a strict 3-separation
E1, E2 and suppose F ⊆ E1. Then M is F -flowing with costs p if the cut condition
is satisfied and all parts of (M,F ) are ideal.
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Proof of Proposition 7.1. Suppose H is a mni binary clutter that is connected with
a strict 3-separation. Remark 2.5 states thatH is the clutter of odd circuits of a signed
matroid (M,F ). Consider p : E(M)→ Z+ defined by p(e) = 1 for all e ∈ E(M). We
know (see Remark 7.5) that τ(H, p) > ν∗(H, p). From Lemma 7.2 and Remark 2.5,
we may assume F ⊆ E1 and p(F ) = τ(H, p). It follows from Proposition 4.2(i) that
the cut condition holds. Since the separation of (M,F ) is strict, all parts of (M,F )
are proper minors, and hence ideal. It follows therefore from Lemma 7.3 that M is
F -flowing with costs p. Hence, because of Proposition 4.2(ii), ν∗(H, p) = p(F ), a
contradiction.

7.1. Separations and blocks. In this section, we shall prove Lemma 7.2. How-
ever, first let us review some results on mni clutters. For every clutter H, we can
associate a 0, 1 matrix A(H). Hence we shall talk about mni 0, 1 matrices, block-
ers of 0, 1 matrices, and binary 0, 1 matrices (when the associated clutter is binary).
The next result on mni 0,1 matrices is due to Lehman [15] (see also Padberg [22],
Seymour [27]). We state it here in the binary case.

Theorem 7.4. Let A be a mni binary 0, 1 matrix with n columns. Then B = b(A)
is mni binary as well, and the matrix A (resp., B) has a square, nonsingular row
submatrix Ā (resp., B̄) with r (resp., s) nonzero entries in every row and column,
rs > n. Rows of A (resp., B) not in Ā (resp., B̄) have at least r + 1 (resp., s + 1)
nonzero entries. Moreover, ĀB̄T = J + (rs− n)I, where J denotes an n× n matrix
filled with ones.

It follows that (1
r , . . . ,

1
r ) is a fractional extreme point of the polyhedron {x ∈

R
n
+ : Ax ≥ 1}. Hence, we have the following remark.

Remark 7.5. If H is a mni binary clutter, then τ(H) > ν∗(H).
The submatrix Ā is called the core of A. Given a mni clutter H with A = A(H),

we define the core of H to be the clutter H̄ for which A(H̄) = Ā. Let H and G = b(H)
be binary and mni. Since H,G are binary, for all S ∈ H̄ and T ∈ Ḡ, we have |S ∩ T |
odd. As ĀB̄T = J + (rs − n)I, for every S ∈ H̄, there is exactly one set T ∈ Ḡ
called the mate of S such that |S ∩ T | = 1 + (rs− n). Note that if A is binary, then
rs− n+ 1 ≥ 3.

Proposition 7.6. Let A be a mni binary matrix. Then no column of Ā is in
the union of two other columns.

Proof. Bridges and Ryser [2] proved that square 0, 1 matrices Ā, B̄ that satisfy
ĀB̄T = J + (rs− n)I commute, i.e., ĀT B̄ = J + (rs− n)I. Thus col(Ā, i)col(B̄, i) =
rs − n + 1 ≥ 3 for every i ∈ {1, . . . , n}. Hence there is no j, k ∈ {1, . . . , n} − {i}
such that col(Ā, j) ∪ col(Ā, k) ⊇ col(Ā, i), for otherwise col(Ā, j)col(B̄, i) > 1 or
col(Ā, k)col(B̄, i) > 1, contradicting the equation ĀT B̄ = J + (rs− n)I.

Proposition 7.7 (Guenin [10]). Let H be a mni binary clutter and e ∈ E(H).
There exist S1, S2, S3 ∈ H̄ such that S1 ∩ S2 = S2 ∩ S3 = S1 ∩ S3 = {e}.

Proposition 7.8 (Guenin [10]). Let H be a mni binary clutter and S1, S2 ∈ H̄.
If S ⊆ S1 ∪ S2 and S ∈ H, then either S = S1 or S = S2.

Proposition 7.9. Let H be a mni binary clutter and let S, S′ ∈ H̄. Then
|S − S′| ≥ 2.

Proof. Let T be the mate of S. Then |T ∩ S| ≥ 3 and |T ∩ S′| = 1.

Proposition 7.10 (Luetolf and Margot [16]). Let H be a mni binary clutter.
Then τ(H) = τ(H̄). Furthermore, if T is a transversal of H̄ and |T | = τ(H̄), then T
is a transversal of H.

We shall also need the following proposition.
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Proposition 7.11 (Seymour [24]). Let M be a binary matroid with 3-separation
E1, E2. Then there exist circuits C1, C2 such that every circuit of M can be expressed
as the symmetric difference of a subset of circuits in {C ∈ Ω(M) : C ⊆ E1 or C ⊆
E2} ∪ {C1, C2}.

Throughout this section, we shall consider a signed matroid (M,F ) with a 3-
separation E1, E2, and C1, C2 will denote the corresponding circuits of Proposi-
tion 7.11. Let H be the clutter of odd circuits of (M,F ). We shall partition b(H) into
sets B1, B2, B3, B4 as follows:

B1 = {S ∈ b(H) : |S ∩ C1 ∩ E1| even, |S ∩ C2 ∩ E1| even},
B2 = {S ∈ b(H) : |S ∩ C1 ∩ E1| even, |S ∩ C2 ∩ E1| odd},
B3 = {S ∈ b(H) : |S ∩ C1 ∩ E1| odd, |S ∩ C2 ∩ E1| even},
B4 = {S ∈ b(H) : |S ∩ C1 ∩ E1| odd, |S ∩ C2 ∩ E1| odd}.

Proposition 7.12. If S1, S2 ∈ Bi where i ∈ {1, . . . , 4}, then (S1∩E1)∪(S2∩E2)
contains a set of b(H).

Proof. Let S′ := (S1 ∩ E1) ∪ (S2 ∩ E2). Note that since S1, S2 ∈ b(H) for all
circuits C of M , |S1∩C| and |S2∩C| have the same parity. This implies that if C is a
circuit where C ⊆ Ek (k ∈ {1, 2}), then C intersects S′ and S1 with the same parity.
It also implies, together with the definition of Bi, that S′ intersects Ck (k ∈ {1, 2})
with the same parity as S1. It follows from Proposition 7.11 that S′ and S1 intersect
all circuits of M with the same parity.

Proof of Lemma 7.2. Let G denote the blocker of H and let B1, B2, B3, B4 be
the sets partitioning G. We will denote by Ḡ the core of G. It follows that Ḡ can be
partitioned into sets B̄i with i ∈ {1, . . . , 4} and B̄i ⊆ Bi. Assume for a contradiction
that for all S ∈ Ḡ, S ∩E1 �= ∅ �= S ∩E2. We will say that a set B̄i with i ∈ {1, . . . , 4}
forms an E1-block if, for all pairs of sets S, S′ ∈ B̄i, we have S ∩ E1 = S′ ∩ E1 �= ∅.
Similarly we define E2-blocks.

Claim 1. For i ∈ {1, . . . , 4}, each nonempty B̄i is either an E1- or an E2-block.
Proof. Consider S1, S2 in B̄i. Proposition 7.12 states that (S1 ∩ E1) ∪ (S2 ∩ E2)

contains a set S′ ∈ G. Proposition 7.8 implies that S′ = S1 or S′ = S2. If S′ = S1,
then (S1 ∩ E2) = (S2 ∩ E2). If S′ = S2, then (S1 ∩ E1) = (S1 ∩ E2). Moreover, by
hypothesis neither S′ ∩ E1 nor S′ ∩ E2 is empty. Since S, S′ were chosen arbitrarily,
the result follows.

For any nonempty B̄i, consider any S ∈ B̄i. We define E(B̄i) to be equal to
S ∩ E1 if B̄i is an E1-block and to S ∩ E2 if B̄i is an E2-block. Let r (resp., s) be
the cardinality of the members of H̄ (resp., Ḡ) and n = |E(H̄)|. As H is binary, r ≥ 3
and s ≥ 3.

Claim 2. Let U ⊆ E(Ḡ) be a set that intersects E(B̄i) for each nonempty B̄i.
Then U is a transversal of Ḡ and |U | ≥ τ(G) = r.

Proof. Clearly, U is a transversal of Ḡ; thus |U | ≥ τ(Ḡ). Proposition 7.10 states
that τ(Ḡ) = τ(G).

Claim 3. Let U,U ′ be distinct transversals of Ḡ. If τ(Ḡ) = |U | = |U ′|, then
|U − U ′| ≥ 2.

Proof. Proposition 7.10 implies that U and U ′ are minimum transversals of G.
Hence, U,U ′ ∈ H̄. The result now follows from Proposition 7.9.

Claim 4. None of the B̄i is empty.
Proof. Let U be a minimum cardinality set that intersects E(B̄i) for each nonempty

B̄i. Since r ≥ 3, it follows from Claim 2 that at most one of the B̄i can be empty.



IDEAL BINARY CLUTTERS 343

Assume for a contradiction that one of the B̄i, say B̄4, is empty. It follows from
Claim 2 and the choice of U that each of E(B̄1), E(B̄2), E(B̄3) are pairwise disjoint.
(Otherwise U contains an element common to at least 2 of E(B̄1), E(B̄2), E(B̄3)
and |U | ≤ 2.) If |E(B̄1)| > 1, then let t1, t

′
1 be distinct elements of E(B̄1). Let

t2 ∈ E(B̄2) and t3 ∈ E(B̄3). Then U = {t1, t2, t3} and U ′ = {t′1, t2, t3} contradict
Claim 3. Thus |E(B̄1)| = 1 and, similarly, |E(B̄2)| = |E(B̄3)| = 1. As |E1| > 3 and
|E2| > 3, B̄1, B̄2, B̄3 are not all E1-blocks and not all E2-blocks. Thus without loss
of generality we may assume B̄1, B̄2 are E1-blocks and B̄3 is an E2-block. Let t1 be
any element in E1 − E(B̄1) − E(B̄2) and t2 be the unique element in E(B̄3). Then
the column of A(Ḡ) indexed by t1 is included in the column of A(Ḡ) indexed by t2, a
contradiction to Proposition 7.6.

First consider the case where every B̄i is an E1-block. Suppose that no two
E(B̄i) intersect. Then A(Ḡ) has four columns that add up to the vector of all ones.
By Theorem 7.4, each of these columns has s ones and therefore n = 4s. Furthermore,
the four elements that index these columns form a transversal of Ḡ and therefore r ≤ 4
(see Claim 2). This contradicts Theorem 7.4 stating that rs > n. Thus two E(B̄i)
intersect, say B̄1 and B̄2. For otherwise n = 4s, a contradiction to rs > n. Let t be
any element of E(B̄1) ∩ E(B̄2) and let g3 (resp., g4) be any element of E(B̄3) (resp.,
E(B̄4)). Let U = {t, g3, g4}. It follows from Claim 2 that r = 3. It follows from Claim
3 that each of E(B̄3) and E(B̄4) have cardinality one, and E(B̄1) ∩ E(B̄2) contains
a unique element e. Since there are no dominated columns in A(Ḡ) we have that
E(B̄1) − {e} = E(B̄2) − {e} = ∅. Thus |E1| ≤ 3, a contradiction to the hypothesis
that the 3-separation is strict.

Now consider the case where B̄1, B̄2 are E1-blocks and B̄3, B̄4 are E2-blocks.
Suppose there exists e ∈ E(H) that is not in any of E(B̄i) for i ∈ {1, . . . , 4}. Assume
without loss of generality that e ∈ E1. Then column e of A(Ḡ) is included in the union
of any two columns f1 ∈ E(B̄3) and f2 ∈ E(B̄4), a contradiction to Proposition 7.6.
Thus every element of E(H) is in E(B̄i) for some i ∈ {1, . . . , 4}. Suppose there is
e ∈ E(B̄1) ∩ E(B̄2). Let U = {e, f1, f2}. Then Claim 2 implies r = 3 and Claim 3
implies that |E(B̄3)| = |E(B̄4)| = 1. Hence |E2| = 2, a contradiction. Thus E1 is
partitioned into E(B̄1), E(B̄2), and E2 is partitioned into E(B̄3), E(B̄4). If r = 4, then
we can use Claim 3 to show that for each i ∈ {1, . . . , 4}, |E(B̄i)| = 1, a contradiction
as then |E1| = |E2| = 2. Thus r = 3 and let T = {u, v, w} be a minimum transversal
of Ḡ. Suppose both u, v ∈ E(B̄i) for some i ∈ {1, . . . , 4}, say i = 3. If T ⊆ E2,
then w ∈ E(B̄4), as T is a transversal. It then follows that T intersects all sets of B̄3

with even parity, a contradiction as H is binary. Thus we may assume w ∈ E(B̄1)
and w intersects all sets in B̄4. It follows that, for any x ∈ E(B̄2), y ∈ E(B̄3),
the set {w, x, y} is a transversal of Ḡ, a contradiction to Claim 3. Hence for any
transversal T = {u, v, w} each element of T is in a different E(B̄i). We may assume
u ∈ E(B̄1), v ∈ E(B̄3), w ∈ E(B̄4). It follows that for any x ∈ E(B̄1), {x, v, w} is a
transversal and thus by Claim 3 E(B̄1) contains a unique element t. Since |E1| > 2,
we cannot have a transversal u ∈ E(B̄2), v ∈ E(B̄3), w ∈ E(B̄4), as this would
imply |E(B̄2)| = 1. Hence every minimum transversal contains t, a contradiction to
Theorem 7.4.

Finally, consider the case where B̄1, B̄2, B̄3 are E1-blocks and B̄4 is an E2-block.
Note that every t ∈ E1 is in some E(B̄i) for i ∈ {1, 2, 3}. Otherwise the corresponding
column t of A(Ḡ) is dominated by any column t′ ∈ E(B̄4). Suppose there is t ∈
E(B̄i)−E(B̄j)−E(B̄k), where i, j, k are distinct elements in {1, 2, 3}. Proposition 7.7
states that there exist three sets of Ḡ that intersect exactly in t. This implies |E(B̄i)| =
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1. Now since E(B̄j) �= E(B̄k), there is a column in, say, E(B̄j) − E(B̄i) − E(B̄k).
Thus |E(B̄j)| = 1. Similarly, |E(B̄k)| = 1, a contradiction to |E1| > 3. Thus E(B̄i) ⊆
E(B̄j)∪E(B̄k) for all distinct i, j, k ∈ {1, 2, 3} and therefore either (1) for some distinct
i, j, k ∈ {1, 2, 3}, E(B̄j), E(B̄k) is a partition of E(B̄i) or (2) E(B̄i) ∩ E(B̄j) �= ∅ for
each distinct i, j ∈ {1, 2, 3}. By considering sets U containing one element of E(B̄4)
and intersecting each of E(B̄1), E(B̄2), and E(B̄3) we can use Claim 3 to show that
|E1| ≤ 2 in case (1) and |E1| ≤ 3 in case (2), a contradiction.

7.2. Parts and minors. In this section, we prove Lemma 7.2. Consider the
matroid with exactly three elements 1, 2, 3 which form a circuit C0. Let I0, I1 be
disjoint subsets of C0. We say that a signed matroid (N,Γ) is a fat triangle (I0, I1) if
Γ = I1 and N is obtained from C0 by adding a parallel element for every i ∈ I0 ∪ I1.
Let (M,Σ) be a signed binary matroid with a circuit C0 = {1, 2, 3}, where C0∩Σ = ∅,
and let i ∈ C0. A circuit Ci of M is a simple circuit of type i if Ci ∩ C0 = {i} and
|Ci ∩Σ| = 1. We say that a cocircuit D has a small intersection with a simple circuit
C if either D ∩ C = ∅ or |D ∩ C| = 2 and the unique element in C ∩ Σ is in D.

Lemma 7.13. Let (M,Σ) be a signed binary matroid with a circuit C0 = {1, 2, 3}
such that C0 ∩ Σ = ∅.

(1) Let I ⊆ C0 be such that for all i ∈ I there is a simple circuit Ci of type i.
Suppose for all distinct i, j ∈ C0 we have a cocircuit Dij, where Dij ∩ C0 =
{i, j} and Dij has a small intersection with the simple circuits in {Ct : t ∈ I}.
Then the fat triangle (∅, I) is a minor of (M,Σ).

(2) Let C1 be a simple circuit of type 1. Suppose we have a cocircuit D12, where
D12∩C0 = {1, 2} and D12 has a small intersection with C1. If C1−{1}∪{2}
is dependent, then C1 −{1} ∪ {2} contains an odd circuit using 2 and the fat
triangle ({3}, {2}) is a minor of (M,Σ).

(3) Suppose for each i = 1, 2 we have a simple circuit Ci of type i. Suppose we
have a cocircuit D12, where D12∩C0 = {1, 2} and D12 has a small intersection
with C1 and C2. If both C1 − {1} ∪ {2} and C2 − {2} ∪ {1} are independent,
then the fat triangle (∅, {1, 2}) is a minor of (M,Σ).

Proof. Throughout the proof i, j, k will denote distinct elements of C0.
Let us prove (1). For each i ∈ I let fi be the unique element in Ci ∩Σ. For each

Djk either Djk ∩ Ci = ∅ or Djk ∩ Ci = {fi, gi}, where gi is an element not in Σ. Let
E0 be the set of elements in C0 or in any of Ci, where i ∈ I. Observe that

(a) If gi exists, then fi is in each of D12, D13, D23 and gi is in Djk but not
Dij , Dik;

(b) If gi does not exist but fi does, then fi is in Dij , Dik but not in Djk.
Define Γ := (Σ�D12�D13�D23)∩E0. Observe that (a) and (b) imply, respectively,
(a’) and (b’).

(a’) If gi exists, then fi �∈ Γ and gi ∈ Γ.
(b’) If gi does not exist, then fi ∈ Γ.

Let (N,Γ) be the minor of (M,Σ) obtained by deleting the elements not in E0 and
then contracting the elements not in C0 ∪ Γ. It follows from (a’) and (b’) that if C0

is a circuit, then (N,Γ) is the fat triangle (∅, I). Otherwise some element i ∈ C0 is a
loop of N , say i = 1. Then there is a circuit C of M such that C ⊆ E0, C ∩C0 = {1},
and C ∩Γ = ∅. Clearly, C ∩C0 does not intersect D12 and D23 with the same parity.
Consider any e ∈ C − C0 such that e is in some cocircuit Dij . Since e �∈ Γ, it follows
from (a’) and (b’) that e = fi for some i ∈ I and that gi exists. However, then (a)
implies that e ∈ D12 ∩ D13 ∩ D23. It follows that C cannot intersect D12 and D23

with the same parity, a contradiction.
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Let us prove (2). Let f be the unique element in C1 ∩ Σ. By hypothesis there
is a circuit C in C1 − {1} ∪ {2}. Since C1 is a circuit 2 ∈ C. Since D12 has a small
intersection C1∩D12 = {1, f}. It follows that C ∩D12 = {2, f}. Let C ′ be the circuit
using 3 in C1�C�C0. Since C0 is a circuit, 3 is not a loop; hence C ′−{3} contains
at least one element, say g. Let (N,Γ) = (M,Σ)\(E(M) − C0 − C1)/(C1 − {f, g}).
Observe that {2, f} is an odd cycle of (N,Γ) and that {3, g} and C0 are even cycles
of (N,Γ). Hence, if C0 is a circuit of N , then (N,Γ) is the fat triangle ({3}, {2}).
Because D12 is a cocircuit of M , {1, 2, f} is a cocycle of N ; in particular, 1, 2, f are
not loops. If 3 is a loop of N , then there is a circuit S ⊆ C1 − {1, 2, f, g} ∪ {3} of
(M,Σ). However, C ′�S is a cycle and C ′�S ⊂ C1, a contradiction as C1 is a circuit.

Let us prove (3). Let M ′ be obtained from M by deleting all elements not in
C0 ∪ C1 ∪ C2 and let Σ′ := (Σ� D12) ∩ E(M ′). Since D12 has a small intersection
with C1 and C2 we have Σ′ = {1, 2}. Then (M ′, {1, 2}) is a signed minor of (M,Σ).
Choose a minor N of M ′ which is minimal and satisfies the following properties:

(i) C0 is a circuit of N .
(ii) For i = 1, 2 there exist circuits Ci of N such that Ci ∩ C0 = {i}.
(iii) C1 − {1} ∪ {2} is independent.
(iv) C2 − {2} ∪ {1} is independent.

Note that by hypothesis M satisfies properties (i)–(iv) and thus so does M ′. Hence
N is well defined. We will show that |C1| = |C2| = 2 in N . Then (N, {1, 2}) is a
minor of (M,Σ) and after resigning on the cocircuit containing 1, 2 we obtain the fat
triangle (∅, {1, 2}). There is no circuit S ⊆ C1 − {1} ∪ {3} of N , for otherwise there
exists a cycle C1 � S � C0 ⊆ C1 − {1} ∪ {2}, a contradiction with (iii). Hence, we
have the following claims.

Claim 1. C1 − {1} ∪ {3} is independent.
Claim 2. C1 ∩ C2 = ∅.
Proof. Otherwise define N ′ := N/(C1 ∩ C2). Note that N ′ satisfies (ii)–(iv).

Suppose (i) does not hold for N ′; i.e., C0 is a cycle but not a circuit of N ′. Then
3 is a loop of N ′. Thus there is S ⊆ C1 ∩ C2 such that S ∪ {3} is a circuit of N ,
contradicting Claim 1.

Assume for a contradiction |Ci| > 2 for some i ∈ {1, 2}, say i = 1.

Claim 3. There exists a circuit S ⊆ C1 ∪ C2 − {1, 2} of N .

Proof. Let e ∈ C1 − {1} and consider (N ′,Γ′) := (N,Γ)/e. Suppose C0 is not a
circuit of N ′. Then 2 or 3 is a loop of N . However, then either {2, e} or {3, e} is a
circuit of N . In the former case it contradicts (iii); in the latter it contradicts Claim 1.
Hence (i) holds for N ′. Trivially (iii) holds for N ′ as well. Suppose (ii) does not hold;
then C2 is not a circuit of N ′. It implies there exists a circuit S ⊆ C2 ∪ {e} − {2} of
N . Then S is the required circuit. Suppose (iv) does not hold. Then there is a circuit
S ⊆ C2 ∪ {e, 1} − {2} of N , and S � C1 contains the required circuit.

Let S be the circuit in the previous claim. Since C1, C2 are circuits, S∩C1, S∩C2

are nonempty. Let C ′2 be the circuit in C2�S which uses 2. Note thatN\(E(N)−C0−
C1−C ′2) satisfies properties (i)–(iii) using C ′2 instead of C2. Thus, by minimality, (iv)
is not satisfied for C ′2; i.e., C

′
2 −{2} ∪ {1} contains a circuit C ′1. Since C ′2 is a circuit,

1 ∈ C ′1. By the same argument as above, (iii) is not satisfied for C ′1; i.e., C
′
1−{1}∪{2}

contains a circuit C ′′2 using 2. Since C ′′2 ⊆ C ′2 it follows that C ′′2 = C ′2 (since C ′2 is
a circuit). Therefore, C ′1 = C ′2 − {2} ∪ {1}. However, the cycle C ′1 � C ′2 = {1, 2}
contradicts the fact that C0 is a circuit.

Lemma 7.14. Let (M,Σ) be an ideal signed binary matroid with a circuit C0 =
{1, 2, 3}, where C0 ∩ Σ = ∅. Suppose we have p : E(M) → Q+ such that the cut
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condition is satisfied. Then there exists p′ : E(M)→ Q+ which satisfies the following
properties: (i) p′ satisfies the cut condition; (ii) p′(e) = p(e) for all e �∈ C0; and (iii)
p′(i)+p′(j) ≤ p(i)+p(j) for all distinct i, j ∈ C0. Let I = {i ∈ C0 : p

′(i) > 0}. There
is a Σ-flow η : ΩΣ → Q+ with costs p′. Moreover, either

(1) the fat triangle (∅, I) is a signed minor of (M,Σ) and
(2) |C ∩ C0| ≤ 1 for all odd circuits C such that η(C) > 0,

or after possibly relabeling elements of C0 we have p′(3) = 0 and p′(2) ≤ p(2) + p(3).
Moreover,

(3) the fat triangle ({3}, {2}) is a signed minor of (M,Σ) and
(4) for all odd circuits C with η(C) > 0 and C ∩ C0 �= ∅ either C ∩ C0 = {2} or

C ∩ C0 = {1}and C − {1} ∪ {2} contains an odd circuit using 2.
Proof.

Claim 1. We can assume that there exists p′ : E(M)→ Q+ such that properties
(i)–(iii) hold. For distinct i, j ∈ C0 let αij be the minimum of p′(D−Σ)− p′(D ∩Σ),
where D∩C0 = {i, j}. We then have (after possibly relabeling the elements of C0) the
following cases: either (a) α12 = α13 = α23 = 0 or (b) p′(3) = 0, p′(2) ≤ p(2), p′(1) ≤
p(1) + p(3), and α12 = 0.

Proof. Choose p′ : E(M) → Q+ which minimizes p′(C0) and which satisfies the
following properties: The cut condition holds for p′; p′(e) = p(e) for all e �∈ C0; and
p′(i) ≤ p(i) for all i ∈ C0. Clearly, (i)–(iii) holds for p′. Suppose (a) does not hold.
Then we may assume (after relabeling) that α23 > 0 and that p′(3) ≤ p′(2).

First consider the case where α12 > 0. Then 2 is in no tight cocircuit; it follows
from the choice of p′ that p′(2) = 0. Hence p′(3) = 0. Suppose α13 > 0; then p′(1) = 0.
Therefore for all circuits C such that η(C) > 0 we have C ∩ C0 = ∅ and (2) holds.
Moreover, (1) is satisfied since (M,Σ)\(E(M) − C0) is the (∅, ∅) fat triangle. Thus
we may assume α13 = 0. However, by relabeling 2 and 3 we satisfy (b).

Hence we can assume α12 = 0. If α13 > 0, then 3 is in no tight cocircuit; thus
p′(3) = 0, and (b) holds. Thus we may assume α13 = 0. Let ε = min{α23/2, p

′(3)}.
Let p̂ : E(M) → Q+ be defined as follows: p̂(e) = p′(e) if e �∈ C0 and p̂(1) =
p′(1) + ε, p̂(2) = p′(2) − ε, p̂(3) = p′(3) − ε. Note that (i)–(iii) hold for p̂. Suppose
ε = p′(3). Then p̂(3) = 0, and (b) holds with p̂ since p̂(2) ≤ p′(2) ≤ p(2) and p̂(1) =
p′(1)+ε ≤ p(1)+p(3). Thus we may assume ε = α32/2. Then for each distinct i, j ∈ C0

there is a cocircuit D, where D ∩ C0 = {i, j}, which is tight for p̂. It follows that (a)
holds.

Throughout the proof i, j, k will denote distinct elements of C0. Let p′ be the
costs given in Claim 1. Since (M,Σ) is ideal, Corollary 4.4(i) implies that there is a
Σ-flow, η : ΩΣ → Q+ for M with costs p′. Let Dij be the cocircuits of M for which
Dij ∩ C0 = {i, j} and p(Dij − Σ)− p(Dij ∩ Σ) = αij .

First consider case (a) of Claim 1; i.e., Dij is tight for all distinct i, j ∈ C0. We
will show that (1) and (2) hold. Let C be any circuit with η(C) > 0. Then |C∩Σ| = 1.
Suppose there is an element i in C0 ∩C. Proposition 4.3 states that C ∩Dij = {i, f}
and C ∩Dik = {i, f}, where f is the unique element in C ∩Σ. Thus C ∩C0 = {i} and
(2) holds. Every element i ∈ C0 is in a tight cocircuit; thus if p′(i) > 0, then there is a
circuit Ci with i ∈ Ci and η(Ci) > 0. Moreover, (2) implies that Ci is a simple circuit
of type i. Proposition 4.3 implies that D12, D13, D23 all have small intersections with
each of the simple circuits. Then (1) follows from Lemma 7.13(1).

Consider case (b) of Claim 1, i.e., p′(3) = 0, p′(2) ≤ p(2), p′(1) ≤ p(1) + p(3) and
α12 = 0.

Claim 2. Let C be a circuit with η(C) > 0. If i ∈ C ∩ {1, 2}, then Ci is a simple
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circuit of type i.
This follows from the fact that 3 �∈ C (as p′(3) = 0) and that |C ∩ {1, 2}| = 1

(because of Proposition 4.3 and the fact that D12 is tight). The case where p′(i) = 0
for all i ∈ C0 has already been considered (see the proof of Claim 1). Suppose for
some i ∈ {1, 2}, p′(3 − i) = 0. Then p′(i) > 0 and let f be the unique element in
Ci ∩Σ. The minor (M,Σ)\(E(M)−C0 −Ci)/(Ci − {i, f}) is the fat triangle (∅, {i})
and both (1) and (2) hold. Thus p′(1) > 0, p′(2) > 0. Suppose now for all i ∈ {1, 2}
there exists a circuit Ci with η(Ci) > 0 and i ∈ Ci such that Ci − {i} ∪ {3 − i} is
independent. Claim 2 states that these circuits are simple circuits of type i. Then (2)
holds and Lemma 7.13(3) implies that (M,Σ) contains the fat triangle (∅, {1, 2}), i.e.,
(1) holds. Thus we may assume, for some i ∈ {1, 2}, that for all circuits Ci such that
η(Ci) > 0 and i ∈ Ci, Ci −{i} ∪ {3− i} is dependent. If i = 2, interchange the labels
2 and 1. Since we had p′(1) ≤ p(1) + p(3) we get in that case p′(2) ≤ p(2) + p(3).
Otherwise (if i = 1) we have p′(2) ≤ p(2) ≤ p(2) + p(3). Lemma 7.13(2) implies that
for all circuits C1 with η(C1) > 0 and 1 ∈ C1, C1 − {1} ∪ {2} contains an odd circuit
using 1 and that (M,Σ) contains the fat triangle ({3}, {2}) as a minor. Together with
Claim 2 this implies that (3) and (4) hold.

We are now ready for the proof of the main lemma.
Proof of Lemma 7.3. Since M has a strict 3-separation, M = M1 ⊗3 M2, where

C0 = E(M1) ∩ E(M2) is a triangle. Throughout this proof i, j, k will denote distinct
elements of C0. Recall that F ⊆ E1. Let α1

ij denote the smallest value of

p(Dij − F − C0)− p(Dij ∩ F ),(*)

where Dij is some cocircuit of M1 with Dij ∩ C0 = {i, j}. Expression (*) gives the
difference between the sum of the capacity elements and the sum of the demand
elements in Dij , excluding the marker C0. Denote by D1

ij the cocircuit for which the

minimum is attained in (*). Let α2
ij denote the smallest value of p(Dij − C0), where

Dij is some cocircuit of M2 with Dij ∩C0 = {i, j}. In what follows, we let D2
ij denote

the cocircuit for which p(D2
ij − C0) = α2

ij . For each i ∈ C0 define

βi =
1

2
(α2
ij + α2

ik − α2
jk).

Claim 1. βi ≥ 0 for all i ∈ C0.
Proof. We have α2

ij+α2
ik = p(D2

ij−C0)+p(D2
ik−C0) ≥ p

(
(D2

ij�D2
ik)−C0

) ≥ α2
jk.

Thus (α2
ij + α2

ik)− α2
jk ≥ 0 and βi ≥ 0.

Claim 2. α1
ij + α2

ij ≥ 0.

Proof. α1
ij +α2

ij = p(D1
ij −F −C0)− p(D1

ij ∩F )+ p(D2
ij −C0) = p((D1

ij�D2
ij)−

F ) − p((D1
ij �D2

ij) ∩ F ). The last expression is nonnegative since the cut condition
holds for (M,F, p).

Claim 3. (M1, F ) is a signed minor of (M,F ).
Proof. Theorem 5.2 implies that M1 is a minor of M obtained by contracting and

deleting elements in E2 only. Since F ⊆ E1 the result follows.
Define p1 : E(M1) → Q+ as follows: p1(e) = p(e) for all e ∈ E1 and p1(i) = βi

for all i ∈ C0.
Claim 4. The cut condition is satisfied for (M1, F, p1).
Proof. Since the cut condition holds for (M,F, p) the cut condition is satisfied

for all cocircuits of M1 disjoint from C0. Let D be a cocircuit of M1 such that
D∩C0 = {i, j}. Then p1(D−F )−p1(D∩F ) = p(D−F−C0)−p(D∩F )+p1(i)+p1(j) ≥
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α1
ij+p1(i)+p1(j) = α1

ij+βi+βj = α1
ij+α2

ij . It follows from Claim 2 that the previous
expression is nonnegative.

Claim 3 implies that (M1, F ) is a part of (M,F ), and hence its clutter of odd
circuits is ideal. Together with Claim 4 it implies that (M1, F ) and p1 satisfy the
hypothesis of Lemma 7.14. It follows that M1 is F -flowing with costs p′1 (where p′1 is
as described in the lemma) and either Case 1 or Case 2 occurs.

Case 1. Statements (1) and (2) hold.

We define I := {i ∈ C0 : p
′
1(i) > 0} and let M ′2 denote M2 \ (C0 − I).

Claim 5. (M ′2, I) is a signed minor of (M,F ).

Proof. Statement (1) says that the fat triangle (∅, I) is a signed minor of (M1, F );
i.e., it is equal to (M1, F ) \ Jd/Jc for some Jd, Jc ⊆ E1. Seymour [24] showed that
(M1 ⊗3 M2) \ Jd/Jc = (M1 \ Jd/Jc)⊗3 M2. Thus (M

′
2, I) = (M,F ) \ Jd/Jc.

Define p2 : E(M ′2)→ Q+ as follows: p2(e) = p(e) for all e ∈ E2 and p2(i) = p′1(i)
for all i ∈ I.

Claim 6. The cut condition is satisfied for (M ′2, I, p2).

Proof. It suffices to show the cut condition holds for cocircuits D that intersect
C0. Suppose D ∩ C0 = {i, j}. Lemma 7.14 states that p′1(i) + p′1(j) ≤ p1(i) + p1(j).
Moreover, p1(i) + p1(j) = βi + βj = α2

ij . Thus p2(D − I)− p2(D ∩ I) = p(D −C0)−
(p′1(i) + p′1(j)) ≥ α2

ij − α2
ij = 0.

Claim 5 implies that (M ′2, I) is a part of (M,F ), and hence its clutter of odd
circuits is ideal. It follows from Claim 6 and Corollary 4.4(i) that M ′2 is I-flowing
with costs p2. Since we can scale p (and hence p′1 and p2) we may assume that the
F -flow of M1 satisfying costs p′1 is a multiset L1 of circuits and that the I-flow of
M ′2 satisfying costs p2 is a multiset L2 of circuits. Because of statement (2), L1 can
be partitioned into L1

0 and L1
i for all i ∈ I, where L1

0 = {C ∈ L1 : C ∩ C0 = ∅}
and L1

i =
{
C ∈ L1 : C ∩ C0 = {i}}. Because C ∈ L2 implies C ∈ ΩI , L2 can

be partitioned into L2
i for all i ∈ I, where L2

i =
{
C ∈ L2 : C ∩ C0 = {i}}. Since

p2(i) = p′1(i) for each i ∈ I, |L1
i | ≤ |L2

i | for each i ∈ I. Let us define a collection of
circuits of M as follows: Include all circuits of L1

0, and for every i ∈ I pair each circuit
C1 ∈ L1

i with a different circuit C2 ∈ L2
i and add to the collection the circuit included

in C1�C2 that contains the element of F . The resulting collection corresponds to a
F -flow of M satisfying costs p.

Case 2. p′1(3) = 0, p′1(2) ≤ p(2) + p(3) and statements (3) and (4) hold (after
possibly relabeling C0).

Let M ′2 denote M2 \ 1. Statement (3) says that the fat triangle ({3}, {2}) is
a signed minor of (M1, F ). Proceeding as in the proof of Claim 5 we obtain the
following.

Claim 7. (M ′2, {2}) is a signed minor of (M,F ).

Define p2 : E(M ′2) → Q+ as follows: p2(e) = p(e) for all e ∈ E(M2); p2(2) =
p′1(2) + p′1(1) and p2(3) = p′1(1).

Claim 8. The cut condition is satisfied for (M ′2, {2}, p2).

Proof. Consider first a cocircuit D of M ′2 such that D ∩ C0 = {2, 3}. Let us
check that D does not violate the cut condition. The following expression should be
nonnegative: p2(D−{2})−p2(D∩{2}) = p(D−C0)+p2(3)−p2(2) = p(D−C0)+p′1(1)−
p′1(1)− p′1(2) = p(D − C0)− p′1(2). Lemma 7.14 states that p′1(2) ≤ p1(2) + p1(3) =
β2 + β3. Since p(D − C0) ≥ α2

23 = β2 + β3 it follows that p(D − C0) − p′2(1) ≥ 0.
Consider a cocircuit D of M ′2 such that 2 ∈ D but 3 �∈ D. Let us check that D
does not violate the cut condition. The following expression should be nonnegative:
p2(D−{2})−p2(D∩{2}) = p(D−C0)−p2(2) = p(D−C0)−(p′1(1)+p′1(2)). Lemma 7.14
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states that p′1(1)+p′1(2) ≤ p1(1)+p1(2) = β1+β2. Since D∪{1} is a cocircuit of M2,
p2(D − C0) ≥ α2

12 = β1 + β2. It follows that p(D − C0)− (p′1(1) + p′1(2)) ≥ 0.
Claim 7, Claim 8, and Corollary 4.4(i) imply that M ′2 is {2}-flowing with costs p2.

We may assume that the F -flow of M1 satisfying costs p′1 is a multiset L1 of circuits.
Because of statement (4), L1 can be partitioned into L1

0,L1
1,L1

2, where L1
0 = {C ∈

L1 : C∩C0 = ∅}, L1
1 =

{
C ∈ L1 : C∩C0 = {1}

}
, L1

2 =
{
C ∈ L1 : C∩C0 = {2}

}
. We

may assume that the {2}-flow of M ′2 satisfying costs p2 is a multiset L2 of circuits.
Since C ∈ L2 implies C ∈ Ω{2} and since 1 �∈ E(M ′2), L2 can be partitioned into

L2
1,L2

2, where L2
1 =

{
C ∈ L2 : C ∩ C0 = {2, 3}

}
and L2

2 =
{
C ∈ L2 : C ∩ C0 = {2}

}
.

Claim 9. (i) |L1
2| ≤ |L2

2| and (ii) |L1
1|+ |L1

2| ≤ |L2
1|+ |L2

2|.
Proof. Let us prove (i). 2 is a demand element for the flow L2; thus |L2

2|+ |L2
1| =

p2(2) = p′1(1) + p′1(2). 3 is a capacity element for the flow L2; thus |L2
1| ≤ p2(3) =

p′1(1). Hence, |L2
2| ≥ p′1(2) ≥ |L1

2| where the last inequality follows from the fact that
2 is a capacity element for the flow L1. Let us prove (ii). |L1

2|+ |L1
1| ≤ p′1(2)+p′1(1) =

p2(2) = |L2
2|+ |L2

1|.
Let us define a collection of circuits of M as follows: (a) Include all circuits of

L1
0; (b) pair every circuit C1 ∈ L1

2 with a different circuit C2 ∈ L2
2—such a pairing

exists because of Claim 9(i)—and add to the collection C1 � C2; (c) pair as many
circuits C1 of L1

1 to as many different circuits C2 of L2
1 as possible, and add to the

collection C1�C2; (d) pair all remaining circuits C1 of L1
1 to circuits of L2

2 not already
used in (b). Such a pairing exists because of Claim 9(ii). Statement (4) says that
C1−{1}∪{2} contains an odd circuit C ′1. For every pair C1, C2 add to the collection
the cycle C ′1�C2; (e) for each cycle C in the collection keep only the circuit included
in C that contains the element of F . The resulting collection corresponds to an F -flow
of M satisfying costs p.

8. Sufficient conditions for idealness. We will prove Theorem 1.1 in this
section, i.e., that a binary clutter is ideal if it has none of the following minors: LF7 ,
OK5 , b(OK5), Q

+
6 , and Q+

7 . The next result is fairly straightforward.
Proposition 8.1 (Novick and Sebö [20]).
• H is a clutter of odd circuits of a graph if and only if u(H) is graphic.
• H is a clutter of T -cuts if and only if u(H) is cographic.

Remark 8.2. The class of clutters of odd circuits and the class of clutters of
T -cuts is closed under taking minors.

This follows from the previous proposition, Remark 2.9, and the fact that the
classes of graphic and cographic matroid are closed under taking (matroid) minors.
We know from Remark 3.4 that b(Q6)

+ (a minor of Q+
7 ) is a source of F7, and Q+

6 is
a source of F ∗7 . Thus Proposition 8.1 implies the following remark.

Remark 8.3. Q+
7 and Q+

6 are not clutters of odd circuits or clutters of T -cuts.
We use the following two decomposition theorems.
Theorem 8.4 (Seymour [24]). LetM be a 3-connected and internally 4-connected

regular matroid. Then M = R10 or M is graphic or M is cographic.
Theorem 8.5 (Seymour [24, 26]). Let M be a 3-connected binary matroid with

no F ∗7 (resp., F7) minor. Then M is regular or M = F7 (resp., F
∗
7 ).

Corollary 8.6. Let H be a binary clutter such that u(H) has no F ∗7 minor. If
H is 3-connected and internally 4-connected, then H is one of b(Q7),LF7

, b(Q6)
+, or

one of the 6 lifts of R10, or a clutter of odd circuits or a clutter of T-cuts.
Proof. Since H is 3-connected, u(H) is 3-connected. Therefore, by Theorem 8.5,

u(H) is regular or u(H) = F7. In the latter case, Remark 3.4 implies that H is one of
b(Q7),LF7 , b(Q6)

+. Thus we can assume that u(H) is regular. By hypothesis, u(H) is
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internally 4-connected and therefore, by Theorem 8.4, u(H) = R10 or u(H) is graphic
or u(H) is cographic. Now the corollary follows from Proposition 8.1 and Remark
3.4.

We are now ready for the proof of the main result of this paper.

Proof of Theorem 1.1. We need to prove that if H is nonideal, then it contains
LF7 , OK5

, b(OK5
), Q+

6 , or Q+
7 as a minor. Without loss of generality we may assume

that H is mni. It follows from Remark 5.3 and Propositions 6.1 and 7.1 that H is
3-connected and internally 4-connected. First consider the case where u(H) has no
F ∗7 minor. Then, by Corollary 8.6 either (i) H is one of b(Q7),LF7 , b(Q6)

+, or (ii) H
is one of the 6 lifts of R10, or (iii) H is a clutter of odd circuits, or (iv) H is a clutter of
T-cuts. Since H is mni, it follows from Proposition 3.5 that if (i) occurs then H = LF7

and if (ii) occurs, then H = b(OK5
). If (iii) occurs, then, by Theorem 1.3, H = OK5

;
(iv) cannot occur because of Theorem 1.4.

Now consider the case where u(H) has an F ∗7 minor. It follows by Theorem 3.2
that H has a minor H1 or H+

2 , where H1 is a source of F ∗7 and H2 is a lift of
F ∗7 . Proposition 3.1 states that the lifts of F ∗7 are the blockers of the sources of F7.
Remark 3.4 states that the sources of F7 are b(Q7), LF7 , or b(Q6)

+ and that F ∗7 has
only one source, namely Q+

6 . This implies that H1 = Q+
6 and H+

2 = Q+
7 or b(LF7)

+

or b
(
b(Q+

6 )
)+

. Since b(LF7)
+ has an LF7 minor and b

(
b(Q+

6 )
)+

has a Q+
6 minor, the

proof of the theorem is complete.

One can obtain a variation of Theorem 1.1 by modifying Corollary 8.6 as follows:
Let H be a binary clutter such that u(H) has no F7 minor. If H is 3-connected and
internally 4-connected, then H is b(Q7), LF7

, b(Q+
6 ), or one of the 6 lifts of R10 or a

clutter of odd circuits or a clutter of T-cuts. Following the proof of Theorem 1.1, this
yields the following: A binary clutter is ideal if it does not have an LF7 , OK5 , b(OK5),
b(Q7), or b(Q+

6 ) minor. However, this result is weaker than Corollary 1.2. Other
variations of Theorem 1.1 can be obtained by using Seymour’s splitter theorem [24]
which implies, since u(H) is 3-connected and u(H) �= F ∗7 , that u(H) has either S8 or
AG(3, 2) as a minor. Again, by using Theorem 3.2, we can obtain a list of excluded
minors that are sufficient to guarantee that H is ideal.

9. Some additional comments. Corollary 8.6 implies the following result, us-
ing the argument used in the proof of Theorem 1.1.

Theorem 9.1. Let H be an ideal binary clutter such that u(H) has no F ∗7 minor.
If H is 3-connected and internally 4-connected, then H is one of b(Q7), b(Q6)

+, or
one of the 5 ideal lifts of R10, or a clutter of odd circuits of a weakly bipartite graph,
or a clutter of T-cuts.

A possible strategy for resolving Seymour’s conjecture would be to generalize this
theorem by removing the assumption that u(H) has no F ∗7 minor, while allowing in
the conclusion the possibility for H to also be a clutter of T-joins or the blocker of a
clutter of odd circuits in a weakly bipartite graph. However, this is not possible as
illustrated by the following example.

Let T12 be the binary matroid with the following partial representation:


1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1




.
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This matroid first appeared in [11]. It is self-dual and satisfies the following properties:

(i) For every element t of T12, T12/t is 3-connected and internally 4-connected.
(ii) For every element t of T12, T12/t is not regular.

We are indebted to James Oxley (personal communication) for bringing to our
attention the existence of the matroid T12 and pointing out that it satisfies properties
(i) and (ii). Let t be any element of T12 and let H = Port(T12, t). Because of (i),
T12/t = u(H) is 3-connected and internally 4-connected and thus so is H. Because
of (ii), T12/t = u(H) is not graphic or cographic; thus Proposition 8.1 implies that
H is not a clutter of T -cuts and not a clutter of odd circuits. We know from Propo-
sition 2.12 that b(H) = Port(T ∗12, t) = Port(T12, t). Thus, b(H) is also 3-connected,
internally 4-connected, and H is not the clutter of T -joins or the blocker of the clutter
of odd circuits. However, it follows from the results of Luetolf and Margot [16] that
the clutter H is ideal.
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Abstract. A pair of vertices of a graph is called a dominating pair if the vertex set of every
path between these two vertices is a dominating set of the graph. A graph is a weak dominating pair
graph if it has a dominating pair. Further, a graph is called a dominating pair graph if each of its
connected induced subgraphs is a weak dominating pair graph. Dominating pair graphs form a class
of graphs containing interval, permutation, cocomparability, and asteroidal triple-free graphs.

Our purpose is to study the structural properties of dominating pair graphs. Our main results
are a polar theorem for the dominating pairs in weak dominating pair graphs and an existence
theorem for minimum cardinality connected dominating sets that induce a simple path in connected
dominating pair graphs of diameter not equal to three. Furthermore, we present a forbidden induced
subgraph characterization of chordal dominating pair graphs.
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1. Introduction. A graph is called a dominating pair graph if each of its con-
nected induced subgraphs has a dominating pair. Similarly, a graph is called a di-
ametral path graph if every connected induced subgraph has a dominating diametral
path, where a diametral path is a shortest path of a graph whose length is equal
to the diameter of the graph. Diametral path graphs and dominating pair graphs
were introduced as models for the design and analysis of networks in an adversarial
environment [6, 7]. Both graph classes are natural extensions of the class of aster-
oidal triple-free graphs for which a long list of structural and algorithmic properties
has been developed, in particular by Corneil, Olariu, and Stewart (see, e.g., [3, 4]).
Furthermore, well-known graph classes such as interval, permutation, trapezoid, and
cocomparability graphs are subclasses of AT-free graphs and thus also of diametral
path graphs and dominating pair graphs.

Naturally diametral path graphs as well as dominating pair graphs are good candi-
dates for investigating structural properties similar to those established for asteroidal
triple-free graphs. Some structural properties of diametral path graphs are shown
in [7].

In this paper, our objective is to investigate structural properties of dominating
pair graphs. We are interested in the natural question, Which of the structural prop-
erties of asteroidal triple-free graphs can be extended to dominating pair graphs (or
even larger classes of graphs)? To anticipate, our main results are the following:

• An interesting polar theorem for dominating pairs in asteroidal triple-free
graphs is given in [3]. We shall show that it can be extended to all graphs
G = (V,E) having a dominating pair, called weak dominating pair graphs,
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if their diameter is sufficiently large: “There are disjoint sets X ⊆ V and
Y ⊆ V such that, for all x, y ∈ V , (x, y) is a dominating pair of G if and
only if x ∈ X and y ∈ Y .” (See Theorem 4.1.)

• We present a characterization by forbidden induced subgraphs of those domi-
nating pair graphs that are chordal. This theorem is related to a characteriza-
tion by forbidden induced subgraphs of interval graphs (i.e. those asteroidal
triple-free graphs that are chordal) by Lekkerkerker and Boland [12]. (See
Theorem 5.3.)
• Every connected dominating pair graph of diameter not equal to 3 has a
path-mcds (i.e., a minimum connected dominating set that induces a path),
which almost extends the theorem of [3] stating that every connected aster-
oidal triple-free graph has a path-mcds. (See Theorem 6.6.)

2. Preliminaries. We present some definitions and properties related to dom-
inating pair graphs. For standard graph theory notations not given here we refer
to [1]. For information on special graph classes and their structural properties we
refer to [2, 9].

By G = (V,E) we denote a finite, undirected, and simple graph, n denotes the
number of vertices, and m denotes the number of edges. G[W ] denotes the subgraph
of the graph G = (V,E) induced by the vertex set W ⊆ V . For any x ∈ V let
N(x) = {y : {x, y} ∈ E} be the open neighborhood of x and N [x] = N(x) ∪ {x} the
(closed) neighborhood of x . Furthermore, N [A] =

⋃
a∈AN [a] for any A ⊆ V .

Let G = (V,E) be a graph. A set of vertices D ⊆ V is a dominating set
of G if every vertex in V \ D has a neighbor in D . Furthermore, we say that
X ⊆ V dominates the set Y ⊆ V if Y ⊆ N [X] . Let W ⊆ V be any vertex set.
A vertex y ∈ V is a private neighbor of a vertex x ∈ W with respect to W if
x is the only neighbor of y in W , i.e., N [y] ∩ W = {x} . Accordingly, we define
Pr(x,W ) := N(x) \N [W \ {x}] . Private neighbors with respect to a dominating set
D are important for our investigations in this paper.

A sequence of vertices P = (u = x0, x1, . . . , xk = v) in G = (V,E) is called
a path in G if {xi, xi+1} ∈ E for all i ∈ {1, 2, . . . , k − 1} . To identify starting
and ending vertices in P , P is also called a u, v -path. The path P is simple if the
vertices x0, x1, . . . , xk are distinct. A simple path P = (u = x0, x1, . . . , xk = v) of G
is chordless if G[V (P )] ∼= Pk+1 . Furthermore, the path P = (u = x0, x1, . . . , xk = v)
is said to be dominating if its vertex set V (P ) = {x0, x1, . . . , xk} is a dominating
set of G . For A ⊆ V and B ⊆ V , an A,B -path is a u, v -path with u ∈ A and
v ∈ B . The distance between two vertices u and v in G , denoted by dG(u, v),
is the length of a shortest path between u and v . The diameter of a graph G is
defined as diam(G) = max{dG(u, v) : u, v ∈ V }. A pair of vertices u, v ∈ V with
dG(u, v) = diam(G) is called a diametral pair, and a shortest path between the
vertices of a diametral pair is called a diametral path.

Definition 2.1. A set of three independent vertices x, y, z of a graph G is
called an asteroidal triple (AT for short) if for any two of these vertices there exists
a path joining them that avoids the (closed) neighborhood of the third. A graph G is
asteroidal triple-free (AT-free for short) if G does not contain an AT.

AT-free graphs form a large class of graphs containing such well-known graph
classes as the classes of cocomparability, trapezoid, permutation, and interval graphs.
Corneil, Olariu, and Stewart have developed a number of structural and algorith-
mic properties of AT-free graphs [3, 4]. One of the main theorems of [3] considers
dominating pairs.



DOMINATING PAIR GRAPHS 355

a

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

h

gc d

feb

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

������

������

������������

������������

�������������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

������

Fig. 2.1. A dominating pair graph of diameter 4 without a diametral DP.

Definition 2.2. A pair (x, y) of vertices of a graph G is a dominating pair (DP
for short) if, for every path P between x and y , the vertex set V (P ) is a dominating
set of G . (It is worth mentioning that x = y is allowed.) (x, y) is a diametral
dominating pair (diametral DP for short) of G if (x, y) is a diametral pair and a
DP.

Theorem 2.3 (see [3]). Any connected AT-free graph has a DP. Moreover, any
connected AT-free graph has a diametral DP.

Diametral path graphs and dominating pair graphs were introduced in [7].

Definition 2.4. A graph G = (V,E) is a diametral path graph if every con-
nected induced subgraph H of G has a dominating diametral path, i.e., a diametral
path P such that the vertex set V (P ) is a dominating set of G . A graph G = (V,E)
is a dominating pair graph if every connected induced subgraph H of G has a DP.

Every AT-free graph is a dominating pair graph by Theorem 2.3. On the other
hand, it is easy to see that not every dominating pair graph is AT-free. (Consider,
e.g., C6 , the chordless cycle on six vertices.) Hence AT-free graphs form a proper
subclass of the class of dominating pair graphs. Notice that not every property of
AT-free graphs extends to dominating pair graphs: although every connected AT-
free graph has a diametral DP by Theorem 2.3, there are connected dominating pair
graphs without a diametral DP (see Figure 2.1).

3. Weak dominating pair graphs. It shall turn out that the following graph
class is interesting on its own.

Definition 3.1. A graph G = (V,E) is a weak dominating pair graph if G has
a DP.

In this section we investigate some structural properties of weak dominating pair
graphs. In the next section we establish a polar theorem for weak dominating pair
graphs.

Minimal separators are helpful for understanding the structure of weak dominat-
ing pair graphs.

Definition 3.2. Let G = (V,E) be a graph. S ⊆ V is a separator of G
if G[V \ S] is disconnected. A subset S ⊆ V is an x, y -separator for nonadjacent
vertices x and y if the removal of S separates x and y into distinct connected
components. If no proper subset of the x, y -separator S is itself an x, y -separator,
then S is a minimal x, y -separator.

Throughout the paper we make use of the following well-known property (see [9]).

Lemma 3.3. Let S be a minimal x, y -separator of G = (V,E) , and let Cx and
Cy be the connected components of G[V \ S] containing x and y , respectively. Then
every vertex of S has a neighbor in Cx and a neighbor in Cy .
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Definition 3.4. Let G = (V,E) be a graph and S a separator of G . Then a
component C of G[V \ S] is a far component if there is a vertex of C that is not
adjacent to all vertices of S .

Lemma 3.5 provides an important tool for the proof of the polar theorem in the
next section.

Lemma 3.5. Let G = (V,E) be a graph with DP (x, y) such that x and y are
nonadjacent. Let S be a minimal x, y -separator of G . Then the only possible far
components of G[V \S] are Cx and Cy , i.e., the components of G[V \S] containing
x and y , respectively.

Proof. Suppose C is a far component of G[V \ S] and C is different from Cx
and Cy . Then there is a vertex z of C and a vertex s ∈ S that are nonadjacent.
Hence there is an x, y -path avoiding N [z] consisting of an x, s-path with all internal
vertices in Cx followed by an s, y -path with all internal vertices in Cy . Hence (x, y)
is not a DP, a contradiction.

Definition 3.6. Let k be a positive integer. Then an AT {a, b, c} of a graph G
is said to be k -distant if dG(a, b) ≥ k , dG(a, c) ≥ k , and dG(b, c) ≥ k .

The following lemma provides a useful necessary condition for ATs in weak dom-
inating pair graphs.

Lemma 3.7. Let G = (V,E) be a weak dominating pair graph. Then G cannot
have a 3-distant AT.

Proof. Let (x, y) be a DP and let {a, b, c} be a 3-distant AT of G . Consider a
shortest x, y -path P = (x = x0, x1, . . . , xt = y) in G . V (P ) = {x0, x1, . . . , xt} is a
dominating set of G , since (x, y) is a DP. Thus every vertex of G has a neighbor in
the path P . Let w = xi be the leftmost vertex of P which is adjacent to a vertex of
{a, b, c} , and let z = xj be the rightmost vertex of P adjacent to a vertex of {a, b, c} .
Since {a, b, c} is 3-distant no two of the three vertices of {a, b, c} have a common
neighbor. Therefore j > i+ 1.

If there is a vertex in {a, b, c} , say vertex a , which is adjacent to both w and
z , then the path (x = x0, x1, . . . , xi = w, a, z = xj , . . . , xk = y) is an x, y -path not
containing any vertex of N [b] ; thus (x, y) cannot be a DP, a contradiction.

Otherwise, w.l.o.g. assume that a is the unique vertex of {a, b, c} adjacent to w
and that c is the unique vertex of {a, b, c} adjacent to z . Since {a, b, c} is an AT
there is an a, c-path Q avoiding N [b] . Consequently, there is an x, y -path avoiding
N [b] consisting of the x,w -subpath of P followed by the path Q and the z, y -subpath
of P . Hence (x, y) is not a DP, a contradiction.

Remark 3.1. Of course the necessary condition of Lemma 3.7 for a graph to have
a DP is not sufficient. Even if no connected induced subgraph of a graph G has a
3-distant AT, the graph G may not be a weak dominating pair graph. (Consider,
e.g., C7 .)

4. A polar theorem. The following polar theorem is one of the main contri-
butions of our paper. It extends the polar theorem for dominating pairs in AT-free
graphs of diameter at least 4 given in [3] to weak dominating pair graphs of diameter
at least 5.

Theorem 4.1. Let G = (V,E) be any weak dominating pair graph with diameter
at least 5 . Then there are disjoint sets X ⊆ V and Y ⊆ V such that, for all x, y ∈ V ,

(x, y) is a dominating pair of G if and only if x ∈ X and y ∈ Y .

Proof. Suppose G = (V,E) is a connected graph with diam(G) ≥ 5, and let (x, y)
be a DP of G . diam(G) ≤ dG(a, b) + 2 for any DP (a, b) of G ; thus dG(a, b) ≥ 3
and, in particular, dG(x, y) ≥ 3. Let S be any minimal x, y -separator of G . By
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Lemma 3.5 only the components of G[V \ S] that contain x and y , called Cx and
Cy , can be far components of G[V \ S] .

For a vertex v ∈ V \S we define depth(v) = mins∈S dG(v, s), and we set depth(s) =
0 for all vertices s ∈ S . Now we partition the vertex set S ∪ C for any component
C of G[V \ S] into levels Hk(C) = {v ∈ C : depth(v) = k} , k ≥ 0, containing all
vertices of depth k . We say that the maximum k for which Hk(C) = ∅ is the depth
of the component C and denote it by depth(C). Thus depth(C) = 1 for all nonfar
components of G[V \ S] .

Let (a, b) be any DP of G . Since diam(G) ≥ 5 and since every a, b-path is
dominating, one of the vertices a and b must belong to the last two levels of Cx and
the other one to the last two levels of Cy .

Now, for the DP (x, y) of G , we define the sets X = X(x, y) and Y = Y (x, y)
as follows. If (a, b) is a DP, then a ∈ X and b ∈ Y if and only if either a ∈ S and
{a, x} ∈ E or a ∈ Cx . Notice that the partition is well defined, since x and y have
no common neighbor. Notice that the theorem is true if, for every connected graph
G with diam(G) ≥ 5, (a, b) is a DP of G if and only if a ∈ X and b ∈ Y .

Suppose there is a connected graph G = (V,E) with diameter at least 5 violating
the theorem. Thus there is a DP(x, y) of G and a minimal x, y -separator S , and
there exist another DP (x′, y′) (x′ = x and y′ = y ) of G with x′ ∈ Cx , or x′ ∈ S
and {x′, x} ∈ E , such that (x′, y) is not a DP of G . As mentioned above, x′ ∈
Hdepth(Cx)(Cx) ∪Hdepth(Cx)−1(Cx) and y′ ∈ Hdepth(Cy)(Cy) ∪Hdepth(Cy)−1(Cy).

Furthermore, if (a, b) is a DP with a ∈ Cx ∪ S and b ∈ Cy ∪ S , then, by
Lemma 3.3, every a, S -path can be extended to an a, b-path by adding vertices of
Cy and vertex b only, and similarly every b, S -path can be extended to an a, b-path
by adding vertices of Cx and vertex a only. Thus since (a, b) is a DP the vertex set
of every a, S -path dominates Cx , and the vertex set of every b, S -path dominates
Cy . Consequently, the vertex set of every x, S -path as well as the vertex set of every
x′, S -path dominates Cx , and the vertex set of every y, S -path as well as the vertex
set of every y′, S -path dominates Cy .

We first establish the following three claims. Then we will complete the proof of
the theorem.

Claim 1. There is an x′, y -path P = (x′ = x0, x1, . . . , xk = y) of G such that
∅ = V \N [{x0, x1, . . . , xk}] ⊆ S .

Since (x′, y) is not a DP there is an x′, y -path P = (x′ = x0, x1, . . . , xk = y)
avoiding N [z] for some vertex z . Clearly, z cannot belong to a nonfar component
because this would imply {s, z} ∈ E for all s ∈ S and every x′, y -path has to contain
at least one vertex in S .

There is a vertex ŝ ∈ S that belongs to P . Now, the x′, ŝ-subpath of P as well
as the ŝ, y -subpath of P avoid N [z] . Suppose z belongs to one of the two possible
far components, say Cx . Then there is an x′, y′ -path avoiding N [z] consisting of the
x′, ŝ-subpath of P , a neighbor t of ŝ in Cy , and a t, y′ -path inside the component
Cy . This would imply that (x′, y′) is not a DP, a contradiction. •

Claim 2. The components Cx and Cy have depth at most 2.

By contradiction and w.l.o.g. we assume depth(Cx) ≥ 3. Consequently, depth(x) ≥
2 and depth(x′) ≥ 2. By Claim 1, there is an x′, y -path P and a vertex z ∈ S such
that P avoids N [z] . Therefore N [z] ⊆ S ∪H1(Cx) ∪H1(Cy), implying x and z are
not adjacent. The vertex set of P dominates Cx ; thus the vertex x has a neighbor
w in P . Consequently, the path consisting of x and the w, y -subpath of P is an
x, y -path avoiding N [z] , contradicting the assumption that (x, y) is a DP. •
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Claim 3. dG(x, y
′) ≤ 2, and thus (x, y′) is not a DP.

By Claim 1, there is an x′, y -path P = (x′ = x0, x1, . . . , xk = y) with ∅ =
V \N [{x0, x1, . . . , xk}] ⊆ S . Let z be any vertex of V \N [{x0, x1, . . . , xk}] ; i.e., the
path P avoids N [z] . Now x /∈ S implies that x has a neighbor w = xi in P . (x, y)
is a DP; thus the x, y -path (x,w = xi, xi+1, . . . , xk = y) contains a neighbor of z
which implies {z, x} ∈ E .

If y′ ∈ V \N [{x0, x1, . . . , xk}] , then {x, y′} ∈ E , since (x,w = xi, xi+1, . . . , xk =
y) contains a neighbor of y′ . Otherwise, y′ has a neighbor q = xj in P . Since
(x′, y′) is a DP, the x′, y′ -path (x′ = x0, x1, . . . , xj = q, y′) cannot avoid N [z] . Thus
{z, y′} ∈ E which implies dG(x, y

′) ≤ 2. Consequently, (x, y′) cannot be a DP since
this would imply diam(G) ≤ 4. •

Analogously, starting with the assumption that (x, y) and (x′, y′) are DPs and
that (x, y′) is not a DP, we obtain dG(x

′, y) ≤ 2 and that (x′, y) is not a DP.
Furthermore, dG(x, y) ≥ 3 and dG(x

′, y′) ≥ 3, since (x, y) and (x′, y′) are DPs in a
graph of diameter at least 5.

Now we are ready to complete the proof of our theorem.

Case 1. {x, y′} ∈ E .

Hence y′ ∈ S . Notice that x′ /∈ S ; otherwise, the definition of X implies
{x, x′} ∈ E , and thus dG(x, y) ≤ 2, a contradiction. Therefore x′ ∈ Cx , and,
since (x′, y′) is a DP, y′ is adjacent to all vertices in Cy . Therefore y and y′ are
adjacent, implying dG(x, y) ≤ 2, a contradiction.

Case 2. dG(x, y
′) = 2 and y′ ∈ S .

Since y′ ∈ S there is an x′, y′ -path in which all vertices except y′ belong to Cx .
Since (x′, y′) is a DP we obtain that y′ is adjacent to all vertices of Cy .

Let (x, t, y′) be a shortest x, y′ -path. Since y′ is adjacent to all vertices in Cy the
path Q = (x, t, y′, y) is an x, y -path of length 3 with N [{x, t, y′, y}] = V . Therefore
diam(G) ≤ 5.

Since diam(G) ≥ 5 there are vertices w and z with dG(w, z) = 5. W.l.o.g. we
may assume that w has only the neighbor x in Q and that z has only the neighbor
y in Q .

The vertex y′ is adjacent to all vertices in Cy , implying z ∈ S . Furthermore, x′

has a neighbor in Q ; otherwise, (x, y) would not be a DP. Since dG(x
′, y′) ≥ 3, the

only possible neighbor of x′ in Q is x ; thus (x′, x, t, y′) is an x′, y′ -path and therefore
dominating. Consequently, {x′, z} ∈ E which implies dG(w, z) ≤ 3, contradicting the
choice of w and z .

Case 3. dG(x, y
′) = 2 and y′ ∈ Cy .

Let (x, t, y′) be a shortest x, y′ -path; thus t ∈ S . Since (x′, y′) is a DP, y is
adjacent to t or to y′ . Moreover, {y, t} ∈ E would imply dG(x, y) ≤ 2, a contradic-
tion. Therefore {y, y′} ∈ E . Thus Q = (x, t, y′, y) is an x, y -path of length 3 with
N [{x, t, y′, y}] = V . Therefore diam(G) ≤ 5. As in Case 2, diam(G) ≥ 5 implies the
existence of vertices w and z with dG(w, z) = 5. We may assume that w has only
the neighbor x in Q and z has only the neighbor y in Q .

First let z ∈ Cy . Since (y′, t) is a y′, S -path, it dominates Cy . Hence z is
adjacent to t or y′ which contradicts the choice of z . Now let z ∈ S . As in Case 2,
x′ has a neighbor in Q . Since dG(x

′, y′) ≥ 3, the only possible neighbor is x ; thus
(x′, x, t, y′) is an x′, y′ -path and therefore dominating. Consequently, {x′, z} ∈ E
which implies dG(w, z) ≤ 3, contradicting the choice of w and z .

Thus we have shown that for any weak dominating pair graph G with diameter
at least 5, if (x, y) and (x′, y′) are DPs with x′ ∈ Cx or x′ ∈ S ∩N(x), then (x′, y)
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Fig. 4.1. A weak dominating pair graph of diameter 5 without a diametral DP.

and (x, y′) are also DPs. This proves the theorem.

Remark 4.1. Clearly our polar theorem can be formulated for all graphs with
diameter at least 5. However, such a statement will be of no interest for graphs
without a DP.

Remark 4.2. The original polar theorem for DPs in AT-free graphs establishes the
polar property under the condition that the diameter of the AT-free graph is at least
4. For weak dominating pair graphs the diameter has to be at least 5 to guarantee
the polar property, since there is a graph with diameter 4 violating the polar property
(see Figure 2.1). Notice that this graph is even a dominating pair graph and has the
following five dominating pairs: (a, g), (b, g), (c, f), (c, h), (c, g).

Remark 4.3. One could ask the question, If G is a weak dominating pair graph
with diameter at least 5, does G have a diametral DP? However, the answer is negative
and a counterexample is given in Figure 4.1. Furthermore, it is easy to see that this
counterexample can be extended to any diameter greater than 5. For example, replace
the edge {e, g} by a path e = e0, e1, . . . , et, et+1 = g (t ≥ 1), replace the edge {d, f}
by a path d = d0, d1, . . . , dt, dt+1 = f , and add edges {ei, di} for all i ∈ {1, 2, . . . , t} .

In the last two sections we consider dominating pair graphs. It is not hard to see
that the established theorems cannot be extended to weak dominating pair graphs.

5. Chordal dominating pair graphs. We need a lemma on chordal graphs
from Farber and Jamison [8]. For more information on chordal graphs we refer the
reader to [2, 9].

Definition 5.1. A subset S ⊆ V of a graph G is called m-convex if for any
pair of vertices u, v ∈ S each chordless u, v -path is contained in S .

Hence, if two vertices x and y of an m -convex set S can be joined by a path
outside S , i.e., all interior vertices of the path do not belong to S , then x and y
must be adjacent.

Let G = (V,E) be a graph, let v be a vertex of G , and let k be a positive integer.
The disk of radius k centered at v is the set Dk(v) = {w ∈ V : dG(v, w) ≤ k} .

Lemma 5.2 (see [8]). Any disk Dk(v) of a chordal graph is m-convex.

The next theorem gives a characterization of chordal dominating pair graphs by
forbidden induced subgraphs.

Theorem 5.3. A chordal graph G is a dominating pair graph if and only if it
does not contain the graphs A1 and Bn (n ≥ 1) as an induced subgraph (see Figure
5.1).

Proof. By Lemma 3.7, the graphs A1 and Bn , for all n ≥ 1, do not have a DP,
since each of them has a 3-distant AT. Hence a dominating pair graph cannot contain
any of the graphs A1 and Bn , n ≥ 1, as an induced subgraph.

Suppose the other direction of the theorem would not be true. Let G = (V,E) be
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n+1

nA B1

1 2 3

Fig. 5.1. Forbidden chordal dominating pair graphs.

a counterexample with the smallest number of vertices. That is, G is a chordal graph
that does not contain A1 and Bn , for each n ≥ 1, as an induced subgraph, and G
is not a dominating pair graph; however, each proper induced connected subgraph of
G is a dominating pair graph. Hence G itself is connected and has no DP.

Case 1. diam(G) ≤ 3.
We claim that any chordal graph with diameter at most 3 and no B1 as an

induced subgraph has a dominating set of cardinality at most two, which implies that
it has a DP.

First, every chordal graph G with diam(G) ≤ 3 has a dominating clique [10]. Let
C be a minimal dominating clique of G . Thus any vertex of C has a private neighbor
with respect to C . On the other hand, since G is chordal and does not contain B1

as an induced subgraph, there cannot be three different vertices x, y, z ∈ C such that
Pr(x,C) = ∅ , Pr(y, C) = ∅ , and Pr(z, C) = ∅ . Consequently, |C| ≤ 2. Hence G
either has a dominating vertex u or a dominating edge {v, w} , which implies that
either (u, u) or (v, w) is a DP of G .

Therefore the theorem is true for graphs of diameter at most 3.
Case 2. diam(G) ≥ 4.
Let (a, b) be a diametral pair of G , i.e., dG(a, b) = diam(G) ≥ 4. Let P = (a =

a0, a1, a2, . . . , ar = b) be a shortest a, b-path in G . Let u = a2 . Clearly neither a
nor b belongs to NG[u] .

We claim that a and b are in different components of G[V \NG[u]] . We prove the

claim by contradiction. Let P̃ be an a, b-path in G[V \NG[u]] . Then concatenating

the paths (a1, a), P̃ , and (b = ar, ar−1, . . . , a3) we obtain a path between a1 and a3

outside NG[u] . By Lemma 5.2, D1(u) = NG[u] is m -convex and thus a1 and a3 are
adjacent, contradicting the choice of P . Hence a and b are in different components
of G[V \NG[u]] .

Recall that the graph G− u is a chordal dominating pair graph by the choice of
G . We distinguish two cases.

Subcase A. G− u is disconnected.
First assume that a and b belong to the same component of G − u . Thus

there is a shortest a, b-path Q = (a = b0, b1, . . . , bs = b) in G − u . Hence Q
is an a, b-path in G not containing u . If no vertex of Q is adjacent to u , then
(a3, a4, . . . , ar = b = bs, bs−1, . . . , b1, b0 = a, a1) is an a1, a3 -path outside NG[u] .
Thus the chordality of G and Lemma 5.2 imply that a1 and a3 are adjacent, a
contradiction to the choice of P .

Consequently, there is at least one vertex of Q that is a neighbor of u . By the
chordality of G , and since {a, u} /∈ E and {b, u} /∈ E , we obtain that NG[u]∩V (Q) =
{bi, bi+1, . . . , bj} for suitable i, j with 1 ≤ i ≤ j ≤ s − 1. Let v be a neighbor
of u in a component of G − u different from the one containing a and b . Then
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{u, v, bi−1, bi, bi+1, . . . , bj , bj+1} induces an A1 in G , if i = j /∈ {1, s − 1} and it
induces a Bj−i in G , if i < j . Hence the remaining subcase is i = j ∈ {1, s− 1} .

Assume i = j = s− 1. Then (a1, a, b1, b2, . . . , bs−1) is a path in G between two
neighbors of u , and this path is outside of D1(u) = NG[u] . Therefore Lemma 5.2
implies {a1, bs−1} ∈ E and thus dG(a, b) ≤ 3, contradicting the choice of (a, b).
Assume i = j = 1. Then (a3, a4, . . . ar−1, b, bs−1, . . . , b1) is a path in G between two
neighbors of u , and it is outside of NG[u] . Thus Lemma 5.2 implies {a3, b1} ∈ E .
Hence dG(a, b) ≤ r − 1 = diam(G)− 1, contradicting the choice of (a, b).

Now assume that a and b are in different components of G−u . Hence G−u has
at least two far components, namely, Ca and Cb . Notice that there are at most two far
components of G−u , since otherwise A1 is an induced subgraph of G , contradicting
the choice of G . Clearly, these far components are Ca and Cb .

Consider any far component C of G−u . Let vC be a neighbor of u in any other
component of G− u . Then the graph G[C ∪ {u, vC}] is a connected proper induced
subgraph of G and has a DP (x, y). By the construction of G[C ∪ {u, vC}] , we may
assume x = xC ∈ C and y = u . This establishes the existence of a DP (xCa , u) of
G[Ca ∪ {u, vCa

}] and a DP (xCb
, u) of G[Cb ∪ {u, vCb

}] . Consequently, (xCa
, xCb

) is
a DP of G , since every xCa , xCb

-path in G passes through u . This contradicts the
choice of G as a graph without a DP.

Subcase B. G− u is connected.

Thus G − u has a DP. We choose a DP (x, y) of G − u such that dG(x, y) is
as small as possible. By the choice of G , (x, y) is not a DP of G . Hence there is a
vertex w ∈ V \ (NG[x]∪NG[y]) of G such that x and y belong to one component of
G[V \NG[w]] . Let P ′ be a chordless x, y -path in G avoiding NG[w] .

We claim that x and y belong to different components of G[V \NG[u]] . To prove
the claim, we suppose that x and y belong to the same component C of G[V \NG[u]] .
By the choice of u , G[V \NG[u]] is disconnected. Let z be any vertex of a component
of G[V \NG[u]] different from the one containing x and y . Thus any x, y -path inside
C is a path in G− u and contains no vertex of NG−u[z] , contradicting the choice of
(x, y). Therefore x and y belong to different components of G[V \NG[u]] . Therefore
w = u . For the remainder of the proof we denote by Cx and Cy , respectively, the
component of G[V \NG[u]] containing x and y , respectively.

The x, y -path P ′ avoids NG[w] in G . Since every x, y -path in G− u contains a
vertex of NG−u[w] , P ′ is not a path in G−u and thus P ′ contains u . Furthermore,
u and w are not adjacent in G .

Let P ′ = (x, . . . , u′x, ux, u, uy, u
′
y, . . . , y). Since G − u is connected, there is a

shortest ux, uy -path Q′ in G − u . Since Q′ is chordless, NG[u] is m -convex, and
{ux, uy} /∈ E , we conclude that all vertices of Q′ are neighbors of u .

Consider the x, y -path in G − u obtained by replacing the subpath (ux, u, uy)
in P ′ by Q′ . This path contains a neighbor of w since (x, y) is a DP in G − u ,
which implies that Q′ contains a neighbor of w , say w′ . By the chordality of G and
since P ′ is chordless, the neighbors of w′ in P ′ form a subpath (ci, ci+1, . . . , cj) of
P ′ containing u . If i = j , then ci = u and {u′x, ux, u, uy, u′y, w′, w} induces an A1 ,
a contradiction.

Therefore i < j . Suppose w′ is adjacent neither to x nor to y . Then
{ci−1, ci, . . . , cj , cj+1, w

′, w} induces a Bj−i in G , a contradiction. Otherwise, we
may assume {x,w′} ∈ E . By our choice of (x, y), (w′, y) is not a DP of G−u . Thus
there is a vertex z and a w′, y -path in G− u avoiding NG−u[z] . Since {x,w′} ∈ E ,
we can add the vertex x to this path and obtain a new x, y -path in G−u . This new
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n1 2
A n2 E

Fig. 5.2. Forbidden interval graphs.

path cannot avoid NG−u[z] , implying {z, x} ∈ E . z and w are not adjacent in G ;
otherwise, (w,w′, x, z) is a chordless cycle of length 4, contradicting the chordality of
G . Furthermore, z and u are not adjacent; otherwise, (z, x, w′, u) is a chordless cycle
of length 4, a contradiction. Hence z ∈ Cx . Note that z and uy are not adjacent in
G ; otherwise, G[{z, x, . . . , u′x, ux, u, uy}] contains a chordless cycle of length at least
4, contradicting the chordality of G . Consequently, z is not adjacent to any vertex in
the subpath (u, uy, u

′
y, . . . , y) of P ′ . Let cl be the neighbor of z in P ′ that is closest

to y . Then assuming that w′ and y are not adjacent, {z, cl, cl+1, . . . , cj , cj+1, w
′, w}

induces a Bj−l in G , a contradiction.
Finally, suppose that w′ is a common neighbor of x and y . By the choice of u ,

diam(G−u) ≥ diam(G) ≥ 4. Thus dG(x, y) = 2 and (x, y) being a DP in G−u imply
that either (a, x, w′, y, b) or (a, y, w′, x, b) is a shortest a, b-path in G− u and in G .
W.l.o.g. assume that (a, x, w′, y, b) is such a path. By the chordality of G , neither
a nor b is adjacent to w . By the choice of u , a and b are not adjacent to u in G .
Therefore a belongs to Cx and b belongs to Cy .

Now let ci′ be the neighbor of a in the x, u-subpath of P ′ that is closest to
u . Let cj′ be the neighbor of b in the u, y -subpath of P ′ that is closest to u .
Hence j′ − i′ ≥ 2. Consequently, {a, ci′ , ci′+1, . . . , cj′ , b, w

′, w} induces a Bj′−i′ in
G , contradicting the choice of G .

Therefore the theorem is true for graphs of diameter at least 4, and this completes
the proof.

Theorem 5.3 gives a characterization of a certain subclass of chordal graphs by
forbidden induced subgraphs.

The best-known theorem of this type was established by Lekkerkerker and Boland
in 1962. They showed that interval graphs are exactly the chordal AT-free graphs [12].
They also established the following characterization of interval graphs.

Theorem 5.4 (see [12]). A chordal graph G is AT-free if and only if it does not
contain the graphs A1 , A2 , Bn (n ≥ 1) , and En (n ≥ 1) as an induced subgraph
(see Figures 5.1 and 5.2).

Furthermore, a characterization of chordal diametral path graphs, showing that
A1 and B1 are the two minimal forbidden induced subgraphs, is given in [7].

The following corollaries are immediate consequences of Theorem 5.3.
Corollary 5.5. Let G = (V,E) be a chordal graph. Then G is a dominating

pair graph if and only if no connected induced subgraph of G has a 3-distant AT.
Corollary 5.6. A tree is a dominating pair graph if and only if it does not

contain the graph A1 (see Figure 5.1) as an induced subgraph.

6. PATH-MCDS. We start with a few definitions. A dominating set D of G is
called a connected dominating set if G[D] is connected. The connected domination
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number denoted by γconn(G) is the minimum cardinality of a connected dominating
set in G .

Definition 6.1. A minimum cardinality connected dominating set D (short
mcds) of G is a path-mcds if G[D] is a path on |D| vertices, i.e., G[D] ∼= P|D| .
A graph class G has the path-mcds property if every connected graph G ∈ G has a
path-mcds.

Some subclasses of the class of dominating pair graphs are known to have
the path-mcds property, among them permutation graphs [5], cocomparability
graphs [11], and AT-free graphs [3]. Furthermore, it is known that every connected
diametral path graph with diameter at least 5 has a path-mcds [7]. In this section
we show that every connected dominating pair graph of diameter not equal to 3 has
a path-mcds. We start with two easy lemmas.

Lemma 6.2. Let G = (V,E) be a graph with a dominating pair that is not
diametral. Then G has a path-mcds.

Proof. Let (x, y) be a DP of G with dG(x, y) < diam(G). Let P = (x =
x0, x1, . . . xk = y) be a shortest x, y -path in G . Clearly, V (P ) = {x0, x1, . . . , xk} is
a connected dominating set of G . Furthermore, γconn(G) ≥ diam(G) − 1, since any
mcds contains the diam(G) − 1 internal vertices of some shortest path between the
two vertices of a diametral pair. Consequently, V (P ) is a path-mcds if |V (P )| =
diam(G)− 1.

Suppose |V (P )| = diam(G). Then either γconn(G) = |V (P )| and V (P ) is a path-
mcds, or γconn(G) = |V (P )|−1 = diam(G)−1. In the latter case G has a path-mcds
since any mcds D contains the diam(G)−1 internal vertices of a shortest path between
the two vertices of a diametral pair. With γconn(G) = diam(G)− 1 we obtain that D
is exactly the set of those vertices.

Lemma 6.3. Let G = (V,E) be a graph with a diametral DP (x, y) . Then the
following implications hold:

1. If γconn(G) = diam(G) , then G has a path-mcds.
2. If γconn(G) = diam(G) and D is an mcds of G such that G[D] is not a path,

then x, y ∈ D , and dG[D](a, b) = diam(G) − 2 for all a ∈ N(x) ∩ D and
b ∈ N(y) ∩D .

Proof. Let (x, y) be a diametral DP of G . Let P = (x = x0, x1, . . . , xk = y) be a
shortest x, y -path in G . Hence k = dG(x, y) = diam(G), and P is dominating. Then
γconn(G) ≤ k+1, since V (P ) is a connected dominating set. Let D be an mcds of G .
Then k−1 ≤ |D| = γconn(G) ≤ k+1, since γconn(G) ≥ diam(G)−1. Let a ∈ D∩N [x]
and b ∈ D ∩N [y] . If γconn(G) = k + 1, then P is a path-mcds. If γconn(G) = k − 1,
then D is a path-mcds, since otherwise dG[D](a, b) < k − 2 implies dG(x, y) < k , a
contradiction.

Finally, suppose γconn(G) = |D| = k and G[D] is not a path. Let a ∈ N [x] ∩D
and b ∈ N [y] ∩ D . Clearly, dG[D](a, b) ≤ k − 2. As above dG[D](a, b) < k − 2
contradicts the choice of (x, y). Hence, dG[D](a, b) = k − 2 and x, y ∈ D .

We decompose our proof that every connected dominating pair graph of diameter
not equal to 3 has a path-mcds into two cases that will be given in Propositions 6.4
and 6.5.

Proposition 6.4. Every dominating pair graph G with diam(G) ∈ {1, 2, 4} has
a path-mcds.

Proof. Suppose G = (V,E) is a dominating pair graph with diam(G) ∈ {1, 2, 4}
that has no path-mcds. Then diam(G) = γconn(G) by Lemmas 6.2 and 6.3. Since
any mcds of cardinality at most 2 is a path-mcds we obtain that each dominating
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Fig. 6.1.

pair graph G with diam(G) ≤ 2 has a path-mcds.

Thus, for our proof by contradiction, we may assume that G = (V,E) is a dom-
inating pair graph with diam(G) = 4 that has no path-mcds. Let (x, y) be a DP
of G . By Lemma 6.2, (x, y) is a diametral DP of G . Thus dG(x, y) = 4 for every
DP (x, y). By Lemma 6.3, γconn(G) = 4 and diam(G[D]) ≥ 2 for any mcds D of G .
Thus any mcds D of G induces one of the four connected graphs on four vertices,
depicted in Figure 6.1.

Let (x, y) be a DP of G . Throughout the proof we assume D = {a, a1, b, u} ,
where a ∈ D ∩N(x), b ∈ D ∩N(y), and (x, a, a1, b, y) is a shortest x, y -path in G
and thus dominating. Since G has no path-mcds, no vertex set D with G[D] ∼= P4

is dominating; i.e., G has no dominating P4 . Consequently, neither (x, a, a1, b) nor
(a, a1, b, y) is dominating, which implies that Pr(u,D) can be partitioned into the
two nonempty sets Ux = N(x) ∩ Pr(u,D) and Uy = N(y) ∩ Pr(u,D). Notice
that {ux, uy} /∈ E for all ux ∈ Ux and all uy ∈ Uy ; otherwise, dG(x, y) ≤ 3, a
contradiction.

Case 1. G[D] is isomorphic to a claw, i.e., N(u) ∩ {a, a1, b} = {a1} .
First, dG(x, y) = 4 implies N [x] ∩N [y] = ∅ . Hence either u /∈ N [{x, y}] or u is

adjacent to exactly one of x and y ; w.l.o.g. we may assume {u, x} /∈ E .

Let ux ∈ Ux and uy ∈ Uy . Consider the path (a, a1, u, uy) that cannot be
dominating. Thus there is a vertex w ∈ Pr(b,D ∪ {uy}). Furthermore, {w, x} /∈
E , since {w, x} ∈ E would imply dG(x, y) ≤ 3, a contradiction. Altogether we
obtain that {x, a, a1, b, w, u, uy} induces an A1 (irrespective of whether {u, y} ∈ E
or not), which contradicts the choice of G as a dominating pair graph. Thus no
counterexample G can have an mcds D for which G[D] is isomorphic to a claw.

Case 2. G[D] is isomorphic to a diamond, i.e., N(u) ∩ {a, a1, b} = {a, a1, b} .
The vertex u is neither adjacent to x nor to y ; otherwise, dG(x, y) ≤ 3, a

contradiction. Let ux ∈ Ux and uy ∈ Uy . (x, y) is a DP of G ; thus (x, ux, u, uy, y) is
a shortest x, y -path in G and is dominating. On the other hand, neither (x, ux, u, uy)
nor (ux, u, uy, y) is dominating, since G has no dominating P4 . Hence there is a
vertex wx ∈ N(x) \ N(y) with wx ∈ N [{a, a1, b}] \ N [{ux, u, uy}] , and there is a
vertex wy ∈ N(y) \N(x) with wy ∈ N [{a, a1, b}] \N [{ux, u, uy}] .

The x, y -path (x, a, u, b, y) is dominating, since (x, y) is a DP. Furthermore, nei-
ther (x, a, u, b) nor (a, u, b, y) is dominating. Hence Pr(a1, D) can be partitioned
into the two nonempty sets Ax1 = N(x) ∩ Pr(a1, D) and Ay1 = N(y) ∩ Pr(a1, D).
Let ax1 ∈ Ax1 and ay1 ∈ Ay1 . Then {ax1 , y} /∈ E implies {ax1 , ux} ∈ E , since
{ax1 , y, ux, a1, b, u} cannot induce a B1 in the dominating pair graph G . Similarly,
{ay1, x} /∈ E implies {ay1, uy} ∈ E , since {ay1, x, uy, a, a1, u} cannot induce a B1 in
G .

Therefore any vertex of Pr(a1, D) is adjacent to ux or to uy . By our assumptions
in the first paragraph of this case, wx, wy /∈ N [{ux, u, uy}] . It follows that neither
wx nor wy belongs to Pr(a1, D). Furthermore, dG(x, y) = 4 implies {a,wy} /∈ E ,
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{b, wx} /∈ E , and {wx, wy} /∈ E . If wx ∈ Pr(a,D) and wy ∈ Pr(b,D), then
{wx, ux, wy, a, a1, b, u} induces a B2 , contradicting the fact that G is a dominating
pair graph. Otherwise, either N(wx) ∩ D = {a, a1} and N(wy) ∩ D = {b} , or
N(wx) ∩ D = {a} and N(wy) ∩ D = {a1, b} . Then either {wx, wy, ux, a1, b, u} or
{wx, wy, ux, a, a1, u} induces a B1 in G , a contradiction.

Thus no counterexample G can have an mcds D for which G[D] is isomorphic
to a diamond.

Case 3. G[D] is isomorphic to a paw; w.l.o.g. N(u) ∩ {a, a1, b} = {a, a1} .
Then dG(x, y) = 4 implies y ∈ Pr(b,D), while either x ∈ Pr(a,D) or x ∈

(N [a] ∩N [u]) \N [{a1, b}] . Thus x /∈ Pr(a,D); otherwise, {x, uy, b, a, a1, u} induces
a B1 in G .

Therefore x ∈ (N [a]∩N [u])\N [{a1, b}] . The path (ux, u, a1, b) is not dominating,
since G has no dominating P4 . Therefore there is a w ∈ Pr(a,D ∪ {ux}). Hence
{w, ux, b, a, a1, u} induces a B1 in the dominating pair graph G , a contradiction.
Thus no counterexample G can have an mcds D for which G[D] is isomorphic to a
paw.

Case 4. G[D] is isomorphic to a C4 , i.e., N(u) ∩ {a, a1, b} = {a, b} .
Then dG(x, y) = 4 implies x ∈ Pr(a,D) and y ∈ Pr(b,D). Now the x, y -paths

(x, a, a1, b, y) and (x, a, u, b, y) are dominating in G . Therefore Pr(a1, D ∪ {x, y}) ⊆
N [u] .

We claim that either (x, a, u, b) or (a, u, b, y) is dominating. To see this we
consider the sets N [x]∩N [a1] and N [y]∩N [a1] . If N [x]∩N [a1] = {a} , then (a, u, b, y)
is dominating, and, if N [y] ∩ N [a1] = {b} , then (x, a, u, b) is dominating. Thus we
may assume N [x]∩N [a1] = {a} and N [y]∩N [a1] = {b} . For every s ∈ N [x]∩N [a1]
and for every t ∈ N [y] ∩ N [a1] , the x, y -path (x, s, a1, t, y) is dominating, which
implies u ∈ N [s] ∪ N [t] . Consequently, either N [u] ⊇ (N [x] ∩ N [a1]) \ N [{a, b}] or
N [u] ⊇ (N [y]∩N [a1]) \N [{a, b}] . Thus either (a, u, b, y) is dominating or (x, a, u, b)
is dominating, a contradiction. Hence no counterexample G can have an mcds D for
which G[D] is isomorphic to a C4 .

This completes the proof.

Proposition 6.5. Every connected dominating pair graph with diameter at least
5 has a path-mcds.

Proof. Suppose G = (V,E) is a dominating pair graph with diam(G) = k > 4
that has no path-mcds. Let (x, y) be a DP of G . By Lemma 6.2 (x, y) must be a
diametral DP of G . Furthermore, γconn(G) = diam(G) by Lemma 6.3.

Let D be an mcds of G that does not induce a path. By Lemma 6.3, there is an
a, b-path in G[D] between a vertex a ∈ N(x) ∩D and a vertex b ∈ N(y) ∩D such
that dG[D](a, b) = k − 2. Let A = (a = a1, a2, . . . , ak−1 = b) be such a path. Let u
be the only vertex of D not belonging to the path A .

The path A′ = (x = a0, a = a1, a2, . . . , ak−1 = b, ak = y) is dominating, since
(x, y) is a DP in G . If any of the two paths (x = a0, a = a1, a2, . . . , ak−1 = b)
and (a = a1, a2, . . . , ak−1 = b, ak = y) is dominating, then it is a path-mcds of
G . Hence we may assume that this is not the case. Therefore there is a vertex
ux ∈ Pr(x, V (A′)) and a vertex uy ∈ Pr(y, V (A′)). Clearly, both are neighbors of
u . Hence (x, ux, u, uy, y) is a path in G , which is a contradiction to the assumption
dG(x, y) = diam(G) > 4.

The following theorem summarizes Propositions 6.4 and 6.5.

Theorem 6.6. Every connected dominating pair graph of diameter not equal to
3 has a path-mcds.
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7. Open problems. It is possible that other results known for AT-free graphs
can be generalized to dominating pair graphs. For example, it is known that the strong
perfect graph conjecture is true for AT-free graphs (see [3]), and it is a challenging
problem to show that the strong perfect graph conjecture is true for dominating pair
graphs.

Despite our strong efforts we were not able to settle the question of whether every
dominating pair graph of diameter 3 has a path-mcds. Finally, it is a very interesting
open question whether there is a polynomial time algorithm to recognize dominating
pair graphs.

Acknowledgment. We are grateful to the referees for their thorough reading
and many helpful comments.
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Abstract. Several formulations for the definition of a multidimensional convolutional code
are discussed in a symbolic dynamics setting and then one is adopted. Using this definition it is
shown that there are five other equivalent formulations. One is in terms of the dual space of linear
functionals, one is in terms of a parity check system, one is in terms of an algebraic conjugacy,
another is in terms of a convolutional encoder, and the last is in terms of a convolutional decoder.
Finally, two examples of two-dimensional convolutional codes are discussed in detail.
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1. Introduction. The purpose of this paper is to find a suitable formulation
for the definition of a multidimensional convolutional code from a symbolic dynamics
perspective. The study of symbolic dynamical systems and the study of modulation
coding has had a mutually profitable interaction in the past; see, for example, [11] or
[1]. In the past 15 years there has been a rapid development in the theory of multi-
dimensional algebraic dynamical systems; see, for example, [14]. It seems reasonable
to hope that the study of multidimensional convolutional coding and the study of
multidimensional algebraic dynamical systems will also have a useful interaction.

There is a considerable difference between a one-dimensional convolutional code
and a two-dimensional code. The difference mirrors the fact that a polynomial ring in
one variable with coefficients in a field is a principal ideal domain, while a polynomial
ring in more than one variable with coefficients in a field is not a principal ideal
domain. We examine three possible formulations for a definition of convolutional
code. They are in terms of the space of linear functionals for the code. The three
definitions agree in one dimension, and we illustrate with examples that they differ
in more than one dimension. After adopting one of the formulations as a definition
we show there are five conditions which are equivalent to the definition. One of the
conditions is in terms of the dual space of linear functionals, one is in terms of a parity
check system for the code, one is in terms of an algebraic conjugacy with another
symbolic dynamical system, another is in terms of the existence of a convolutional
encoder, and the last is in terms of the existence of a convolutional decoder. We give
two examples of two-dimensional convolutional codes and then analyze them in terms
of the five equivalent conditions.

The paper is organized as follows. Section 2 contains background material on
symbolic dynamical systems, the algebra of polynomial rings, modules over these
rings, and finally how these ideas are related using linear functionals. In section 3
we state three possible formulations for the definition of a convolutional code. Each
successive definition implies the preceding one. Then using the fundamental structure
theorem for modules over a principal ideal domain we see that the three conditions are
equivalent for one-dimensional codes. Following that there are three examples which
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show that in two dimensions the conditions are all different. In section 4 there are five
conditions on codes which are shown to be equivalent for a code to be a convolutional
code. Finally, in section 5 there are two examples of two-dimensional codes which
are analyzed in terms of the definition of a convolutional code and the five equivalent
conditions.

2. Background. First we will cover some background material on symbolic dy-
namical systems and then review some algebra of polynomial rings and of modules
over polynomial rings. After that we will see how these ideas are related through
duality. Both [4] and [8] contain introductions to symbolic dynamical systems. The
algebraic material can be found in [3] or [7]. A general introduction to the type of
algebraic dynamical systems we will be dealing with can be found in [14], and a more
detailed study can be found in [13]. A very nice introduction to one-dimensional
convolutional codes is in [12]. Connections between symbolic dynamical systems and
one-dimensional convolutional codes can be found in [5], and discussions of multidi-
mensional convolutional codes from slightly different perspectives can be found in [2]
and in [15].

The spaces used in symbolic dynamics are composed of infinite sequences or ar-
rays over a finite alphabet. We start with a finite symbol set {1, . . . , n} which is
usually called the alphabet. Then form the space of all two-sided infinite sequences
on this alphabet. It is denoted by {1, . . . , n}Z. A point x in this space is a two-sided
infinite sequence of symbols from the alphabet, x = . . . x−2x−1.x0x1x2 . . . , where
a decimal point is usually used to denote the 0th coordinate. So, for each i ∈ Z,
xi ∈ {1, . . . , n}. For each d = 1, 2, . . . we form the space of all d-dimensional arrays

on this alphabet. The d-dimensional array space is denoted by {1, . . . , n}Zd

. A point

x ∈ {1, . . . , n}Zd

is an infinite d-dimensional array of symbols from the alphabet and
for each (i1, . . . , id) ∈ Z

d, x(i1,... ,id) ∈ {1, . . . , n}. A natural metric can be put on
these spaces. It will say that two sequences are close together if they agree for a
long time around their center, and two d-dimensional arrays are close together if they
agree in a large d-dimensional box around their center. To define the metric on the
sequence space we say d(x, y) = 0 if x = y and d(x, y) = 1/2N with N the integer,
where xi = yi for |i| < N and xN �= yN or x−N �= y−N . To define the metric on
the d-dimensional array space we first put the supremum norm on Z

d which says that
||(i1, . . . , id)|| = max{|i1|, . . . , |id|}. Then we define the metric on the d-dimensional
array space by saying d(x, y) = 0 if x = y and d(x, y) = 1/2N with N the inte-
ger, where x(i1,... ,id) = y(i1,... ,id) for every (i1, . . . , id) with ||(i1, . . . , id)|| < N and
x(i1,... ,id) �= y(i1,... ,id) for some (i1, . . . , id) with ||(i1, . . . , id)|| = N . When d = 1
this metric is the same metric as defined for the sequence space. The sequence space,
which is the array space with d = 1, and the array spaces are compact spaces when
this metric is used. When the cardinality of the alphabet is greater than one it can
be shown that every array space is homeomorphic to the usual middle thirds Cantor
set.

We define the shift transformation, which is denoted by σ, on the sequence space.
The shift transformation acts on a point x in {1, . . . , n}Z by shifting it to the left by
one coordinate; that is, (σ(x))i = xi+1 for all i ∈ Z. In the metric topology we defined,
the shift is a continuous map. Its inverse map is the right shift, so σ is a homeomor-
phism of {1, . . . , n}Z to itself. On the d-dimensional array space we define d coordinate
shift transformations. For j = 1, . . . , d the jth coordinate shift transformation is de-

noted by σj . It acts on a point x in {1, . . . , n}Zd

by shifting it in the jth coordinate
direction by one coordinate; that is, (σj(x))(i1,... ,id) = x(i1,... ,ij−1,ij+1,ij+1,... ,id) for all
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(i1, . . . , id) ∈ Z
d. By the same reasoning as for the sequence space each coordinate

shift is a homeomorphism. They are commuting homeomorphisms because the shifts
along the coordinate directions act independently of each other.

For d = 1, 2, . . . the space {1, . . . , n}Zd

together with its d coordinate shift trans-
formations σ1, . . . , σd is a d-dimensional dynamical system, and it is called the full

d-dimensional n-shift. Suppose X is a subset of {1, . . . , n}Zd

which is closed in the

metric topology on {1, . . . , n}Zd

and is invariant under each coordinate shift; that is,
σj(X) = X. Then X together with its d coordinate shift transformations σ1, . . . , σd
is a d-dimensional dynamical system, and it is called a d-dimensional subshift.

Now we make some notational conventions. For any d = 1, 2, . . . we denote by
i an element of Z

d, i = (i1, . . . , id) ∈ Z
d. Then on the d-dimensional array space

{1, . . . , n}Zd

we denote by σi the transformation σi11 ◦ · · · ◦ σidd . These conventions
will help simplify some of the notation in the equations that follow.

To define a special class of algebraic dynamical systems we start with a finite field
F. The alphabet for the symbolic dynamical systems will be F

n, the direct sum of F

with itself n times. We form the d-dimensional array space on F
n which is denoted

by (Fn)Z
d

. It has the same metric as defined for an arbitrary alphabet and is again
a compact space which is homeomorphic to the usual middle thirds Cantor set when

|Fn| > 1. If x and y are two points in (Fn)Z
d

we can define their sum using coordinate

by coordinate addition, (x + y)i = xi + yi for all i ∈ Z
d. If x is a point in (Fn)Z

d

and α is an element in F we can multiply x by α using coordinate by coordinate

multiplication, (αx)i = αxi for all i ∈ Z
d. With these operations (Fn)Z

d

is a vector
space over F, and it is infinite-dimensional.

Suppose σj is the jth coordinate shift transformation. If α is an element in F and

x and y are two points in (Fn)Z
d

, then σj(x+y) = σj(x)+σj(y) and σj(αx) = ασj(x).

This means each σj is a vector space automorphism of (Fn)Z
d

. The vector space (Fn)Z
d

together with the d commuting automorphisms σ1, . . . , σd is a dynamical system and

is called the full d-dimensional F
n-shift. Suppose X is a subshift of (Fn)Z

d

which is

closed under addition, when x, y ∈ (Fn)Z
d

then x + y ∈ (Fn)Z
d

, and multiplication

by elements of F, when α ∈ F and x ∈ (Fn)Z
d

and then αx ∈ (Fn)Z
d

. When this

happens X is a subvector space of (Fn)Z
d

, and we say that it together with the d
automorphisms σ1, . . . , σd is a d-dimensional vector shift. In this paper we will be
concerned only with vector shifts.

Next we will discuss algebraic maps between vector shifts, the topological entropy
or Shannon capacity of a vector shift, some dynamical properties of vector shifts, and

some of their relationships. Let F be any finite field and X ⊆ (Fn)Z
d

a vector shift.
Define W(X,n) to be the set of d-dimensional words of size n that can occur in X,

W(X,n) =







...
· · · xi · · ·

...


 : x ∈ X, i with 0 ≤ ij , ||i|| < n


 .

Let X and Y be two vector shifts contained in (Fn)Z
d

. An algebraic map ϕ from X
into Y is a continuous vector space homomorphism from X into Y which commutes
with all d shift transformations, ϕ ◦ σj = σj ◦ ϕ, where the σj on the left is the jth
coordinate shift on X and the one on the right is the shift on Y . A standard result
about symbolic dynamical systems shows that any such map must be a sliding block
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code. These are known as block maps in symbolic dynamics. It means that there is an
m and a vector space homomorphism ϕ′ fromW(X, 2m+1) toW(Y, 1) which defines
ϕ,

(ϕ(x))i = ϕ′






...
· · · xj · · ·

...




 ,

for each i ∈ Z
d and j with ||j − i|| ≤ m. If the algebraic map ϕ takes X onto Y

we say that ϕ is an algebraic factor map and that Y is an algebraic factor of X. If
the homomorphism ϕ is a homeomorphism between X and Y we say that ϕ is an
algebraic conjugacy and that X and Y are algebraically conjugate.

To define the topological entropy or Shannon capacity of a vector shift let X ⊆
(Fn)Z

d

be a vector shift as above. Then the topological entropy usually simply called
entropy or the Shannon capacity of the vector shift X is defined to be

h(X) = lim
n→∞

1

nd
log |W(x, n)|,

where |W(x, n)| denotes the cardinality of the setW(x, n). Note that there is a strong
dependence in this definition on the dimension d of the vector shift. From the coding
theory point of view the entropy is a measure of the amount of information which can
be stored in the system.

Suppose X,Y ⊆ (Fn)Z
d

are vector shifts as above. Also from standard results in
symbolic dynamics we know that if Y is an algebraic factor of X, then the entropy
of Y is less than or equal to the entropy of X and, if X and Y are algebraically
conjugate, then their entropies are equal.

There are three dynamical properties of vector shifts that we will use. Let X ⊆
(Fn)Z

d

be a vector shift as above. Then X is transitive if it contains a point x whose
orbit is dense in X,

⋃
i∈Zd

σi(x) = X.

If Y ⊆ (Fn)Z
d

is another vector shift which is an algebraic factor of X, then Y is
transitive if X is transitive. This follows because the image of a point in X with
a dense orbit will have a dense orbit in Y . Another standard result from symbolic
dynamics says that if X is a transitive vector shift and Y is a vector shift properly
contained in X, then the entropy of Y is strictly less than the entropy of X. Next
we say that a transitive vector shift X has completely positive entropy if the following

condition holds. Whenever Y ⊆ (Fn)Z
d

is a vector shift with entropy zero which is
an algebraic factor of X then Y consists of the single point of all zeros. We will not
explicitly use this property, but it is interesting to see how it arises in our discussion.
The final dynamical property which we will use is self-explanatory; the property is
for a d-dimensional vector shift to be algebraically conjugate to the full d-dimensional
F
k-shift for the proper F and some k. We will see in section 3 that for vector shifts

in dimension one all three conditions are equivalent but in higher dimensions they
are not. In dimensions greater than one, if a vector shift is algebraically conjugate
to the full d-dimensional F

k-shift, then it has strictly positive entropy, and if it has
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strictly positive entropy, then it is transitive while neither of the converse implications
hold. This difference between dimension one and higher dimensions is what makes
the theory of vector shifts in dimension one and the theory of vector shifts in higher
dimensions quite different.

Next we will review some basic definitions and terminology about rings and mod-
ules. The rings which will be of interest are the Laurent polynomial rings in several
variables over finite fields. Let F be finite field and u1, . . . , ud be d indeterminates.
Then a Laurent polynomial over this field in these indeterminates is a sum of the form

m∑
k=1

α(i1(k),... ,id(k))u
i1(k)

1 · · ·uid(k)

k ,

where each (i1(k), . . . , id(k)) ∈ Z
d and each α(i1(k),... ,id(k)) ∈ F. These are the same

as polynomials in several variables over a finite field, only now we allow negative as
well as positive exponents. We can add or multiply two Laurent polynomials just as
we add or multiply two of the usual polynomials. With these operations the set of
all Laurent polynomials in the indeterminates u1, . . . , ud and coefficients in the field
F form a commutative ring. We will denote this ring by F[u±1

1 , . . . , u±1
d ]. Just as we

did for vector shifts we will make a notational convention; let i ∈ Z
d and then let ui

stand for the monomial ui11 · · ·uidd . Let F[u±1] denote the ring F[u±1
1 , . . . , u±1

d ]. This
will help simplify some of the later notation.

Recall that a ring R is an integral domain if it is commutative and has no zero
divisors; that is, if xy = 0 ∈ R, then either x = 0 or y = 0. Also recall the definition
of an ideal I in a commutative ring R. If x1, . . . , x
 ∈ R, then the ideal they generate
is the set of all their linear combinations w1x1 + · · ·w
x
 for any w1, . . . , w
 ∈ R.
We denote this ideal by 〈x1, . . . , x
〉. A ring is a principal ideal domain if it is an
integral domain and every ideal can be generated by a single element. The familiar
ring of integers Z is the best known principal ideal domain. An important fact for us
is that the ring of Laurent polynomials in a single variable with coefficients in a finite
field F[u±1] is also a principal ideal domain. We need a generalization of principal
ideal domain. A ring is a commutative Noetherian ring if it is an integral domain
and every ideal can be generated by a finite number elements. This is crucial for us
because the ring of Laurent polynomials in more than one variable over a finite field
F[u±1] is a commutative Noetherian ring but not a principal ideal domain. To see this
consider the ideal generated by the polynomials 1+u1 and 1+u2 in F[u±1

1 , u±1
2 ]. This

ideal cannot be generated by a single element. This follows because the only common
divisor of 1 + u1 and 1 + u2 is 1. This means 1 would have to be the generator, but 1
is not a linear combination of 1 + u1 and 1 + u2 and so is not in the ideal.

Next recall the definition of a module over a ring. All of the modules we will
consider will be modules over the Laurent polynomial rings just discussed F[u±1]. Let
M be a module over a commutative ring R. If x1, . . . , x
 ∈ M , then the submod-
ule they generate is the set of all their linear combinations α1x1 + · · ·α
x
 for any
α1, . . . , α
 ∈ R. As for ideals we denote this submodule by 〈x1, . . . , x
〉. For the pur-
poses of this paper we choose the term rank of a module M to denote the minimum
number of elements it takes to generate the entire module. A module M is a free
module if there is a set of generators that is linearly independent; and no nontrivial
linear combination of them is zero. If we let F[u±1]k denote the direct sum of k copies
of F[u±1], then it is a free module over F[u±1] with rank k. A linearly independent set
of generators for a free module is a base for the module, and every base has the same
cardinality. An element x in the module M is a torsion element if there is a nonzero
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α ∈ R and αx = 0. The set of all torsion elements in M forms a submodule of M .
We let torM denote this submodule. If a module has no torsion elements, except 0,
we say it is torsion free. A module may be torsion-free but not be a free module. An
example of this is the ideal previously discussed 〈1+u1, 1+u2〉 ⊆ F[u±1

1 , u±1
2 ] thought

of as a module over F[u±1
1 , u±1

2 ]. However, a finitely generated module over a principal
ideal domain is a free module if and only if it is torsion-free. This follows from the
fundamental structure theorem for such modules which we will discuss in section 3.
So any module over a Laurent polynomial ring in one variable with coefficients in a
finite field is free if and only if it is torsion-free. In section 3 we will see an important
consequence of this in terms of one- versus higher-dimensional vector shifts.

A module M over a commutative ring R is a commutative Noetherian module if
the ring R is a commutative Noetherian ring and every submodule of M is finitely
generated. The module F[u±1]n over the ring F[u±1] is a free commutative Noetherian
module. A submodule of a commutative Noetherian module is also a commutative
Noetherian module. If N is a submodule of the module M , then we can form the
quotient module M/N . If M is a commutative Noetherian module, then every quotient
module of M is also a commutative Noetherian module. In this paper we will deal only
with submodules and quotient modules of the modules F[u±1]n over the rings F[u±1].
Every one of these is a commutative Noetherian module, and they are relatively
concrete. We will need to use a deep result about modules over polynomial rings.
The Quillen–Suslin theorem which is the solution to the Serre conjecture in [6] and
[9] states that a finitely generated projective module over a polynomial ring with
coefficients in a field is a free module. The version of the theorem that we will use
states that if F[u±1]n can be written as a direct sum of two submodules, F[u±1]n =
M ⊕N , then both M and N are free modules.

Next we see how linear functionals for vector spaces and their duality theory
are related to the vector shifts and the modules we have just discussed. A linear
functional for a vector space X over a field F is a vector space homomorphism from
X into F. The collection of all the linear functionals is itself a vector space using
pointwise addition and multiplication of the linear functionals as the operations. The
collection of all linear functionals with these operations is the dual vector space of X
and is denoted X̂. The dual vector space X̂ of X separates the points of X meaning
that if x �= y ∈ X, then there is an f ∈ X̂ with f(x) �= f(y). As an example let F

be a finite field and F
n the vector space. The dual vector space F̂n is isomorphic to

F
n in a natural way. Let {ei} be the standard basis vectors for F

n. Then a linear
functional is determined by the value in F where it sends each ei. We denote a vector
in the vector space as a row vector and a linear functional by a column vector. The
linear functional 


α1

...
αn




sends the vector (v1, . . . , vn) to α1v1+· · ·+αnvn ∈ F. This natural correspondence be-

tween X and X̂ is unusual and happens because the vector space is finite-dimensional.
We will see that things are different for vector shifts. Duality theory does show that
the dual vector space of X̂ is isomorphic to X in a canonical manner. A point x ∈ X
is a linear functional on X̂ by sending f ∈ X̂ to f(x) ∈ F. Now we examine the

vector space (Fn)Z
d

. Because of the topology on (Fn)Z
d

and F, a linear functional on
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the vector space (Fn)Z
d

can depend on only a finite number of the coordinates of the

points in (Fn)Z
d

. If x ∈ (Fn)Z
d

and f is a linear functional, then

f(x) =

m∑
k=1

fik(xik),

where the sum is over a finite set {ik} ∈ Z
n, each xik ∈ F

n, and each fik ∈ F̂n. This

means the dual vector space of (Fn)Z
d

can naturally be identified with the vector

space F[u±1]n. Then f =
∑m
k=1 fiku

ik ∈ F[u±1]n acts on x ∈ (Fn)Z
d

as above. If X is
a vector space and Y is a subvector space, then there is a vector space homomorphism
from the dual vector space X̂ to the dual vector space Ŷ . A linear functional f ∈ X̂
goes to the linear functional f ′ ∈ Y which is the restriction of f to Y . The kernel of
this homomorphism is the annihilator of Y which is the subspace of X̂ consisting of
all linear functional which are identically zero on Y . The annihilator of Y is denoted
by Y ⊥. Consequently, the dual vector space Ŷ is isomorphic to X̂/Y ⊥. This is an
observation that we will use repeatedly in what follows. Similarly, if there is a vector
space homomorphism ϕ from the vector space X onto the vector space Y it induces
an embedding of Ŷ into X̂. A linear functional h ∈ Ŷ goes to the linear functional
h ◦ ϕ ∈ X̂. A vector space automorphism ϕ of the vector space X to itself induces
a dual automorphism ϕ̂ on the dual space X̂. As for a homomorphism the linear
functional f ∈ X̂ goes to the linear functional ϕ̂(f) = f ◦ ϕ ∈ X̂.

For the vector shift (Fn)Z
d

the coordinate shift σj is a vector space automorphism,
and its dual automorphism is isomorphic to multiplication by uj on F[u±1]n, σ̂j(f) �
ujf . If X is a vector shift contained in (Fn)Z

d

, then the dual space X̂ is isomorphic
to F[u±1]n modulo X⊥, and the dual automorphism of the shift σj restricted to X is
the map induced by multiplication by uj on F[u±1]n/X⊥.

Suppose X ⊆ (Fn)Z
d

is a vector shift. A parity check system for X is defined by
a collection of linear functionals f1, . . . , fm in F[u±1]n with the property that a point

x ∈ (Fn)Z
d

is in X if and only if fj(σ
m(x)) = 0 for every j = 1, . . . ,m and all m ∈ Z

d.
For our purposes it will be useful to change our viewpoint slightly. Instead of

viewing (Fn)Z
d

as a vector space with d commuting automorphisms we will think of
it as a module over the Laurent polynomial ring F[σ±1

1 , . . . , σ±1
d ]. We use the same

notational convention as before and denote this ring by F[σ±1]. A Laurent polynomial

f =
∑m
k=1 αikσ

ik ∈ F[σ±1] acts on a point x ∈ (Fn)Z
d

by f(x) =
∑m
k=1 αikσ

ik(x).

Then a vector shift X ⊆ (Fn)Z
d

is simply a closed submodule. The dual vector space

F[u±1]n of (Fn)Z
d

we now think of as a module over the Laurent polynomial ring
F[u±1] and from now on we refer to it as the dual module. Similarly, for a vector shift

X ⊆ (Fn)Z
d

we refer to the annihilator X⊥ as its annihilator module and to the dual

space X̂ as the dual module. This viewpoint will be very convenient.

3. Definition of a convolutional code. One problem in dimensions greater
than one is to formulate a suitable definition of a convolutional code. There are
at least three obvious candidates. All three agree in dimension one, and all three
are different in higher dimensions. The three candidates are listed below and then
discussed with examples to show how they differ.

Condition 1. A d-dimensional convolutional code is a vector shift X contained in
(Fn)Z

d

whose dual module X̂ contains no nontrivial finite submodules.
Condition 2. A d-dimensional convolutional code is a vector shift X contained in

(Fn)Z
d

whose dual module X̂ contains no torsion elements.
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Condition 3. A d-dimensional convolutional code is a vector shift X contained in
(Fn)Z

d

whose dual module X̂ is a free module.
Note. In terms of the dynamics of the vector shift, condition 1 is equivalent to

the vector shift being transitive; condition 2 is equivalent to the vector shift having
strictly positive entropy; and condition 3 is equivalent, as we will see, to the vector
shift being algebraically conjugate to a full vector shift.

Lemma 3.1. In one-dimension conditions 1, 2, and 3 are equivalent.
Proof. The Laurent polynomial ring in one variable over a finite field F[u±1] is a

principal ideal domain. The lemma follows immediately from the primary decompo-
sition theorem for finitely generated modules over principal ideal domains. See, for
example, [3]. In our case this states that if M is a finitely generated module over
F[u±1], then it can be written as

m⊕
i=1

F[u±1]⊕
n⊕
j=1

F[u±1]/〈pj〉,

where each pj ∈ F[u±1] is a nonzero polynomial. The point for us is that each
term F[u±1]/〈pj〉 is a finite submodule ofM. This follows because any polynomial is
equivalent modulo p to a polynomial with degree less than the degree of p. The lemma
then follows because if X is a vector shift and its dual module X̂ satisfies condition
1, then there are no F[u±1]/〈pj〉 terms and it is a free module.

The change happens in dimension two because the Laurent polynomial ring in
more than one variable over a finite field F[u±1] is no longer a principal ideal domain.
However, every ideal is finitely generated, so F[u±1] is a commutative Noetherian ring
and modules over these rings are reasonably well behaved.

Example 3.1. First we give an example of a vector shift in two dimensions that
satisfies condition 1 but not condition 2. It is a well-known example and is usually
called the three dot dynamical system or Ledrappier’s example. Let F2 be the finite
field with two elements. Let XL be the vector shift which consists of all z ∈ (F2)

Z
2

with

z(i,j) + z(i+1,j) + z(i,j+1) = 0

for all (i, j) ∈ Z
2. The annihilator submodule X⊥L of XL is the submodule of F2[u

±1
1 ,

u±1
2 ] generated by the polynomial 1+u1+u2. The dual module X̂L of XL is isomorphic

to F2[u
±1
1 , u±1

2 ]/〈1 + u1 + u2〉. This module contains no nontrivial finite submodules
because if p /∈ 〈1 + u1 + u2〉, then two multiples, qp and q′p, of p are equivalent if and
only if q + q′ ∈ 〈1 + u1 + u2〉. Since there are infinitely many Laurent polynomials
that pairwise do not add to a multiple of 1 + u1 + u2 any submodule containing p is
infinite. On the other hand, every element of the dual module X̂L is a torsion element
because any element multiplied by the polynomial 1 + u1 + u2 is zero in the module.
This means XL does not satisfy condition 2. A count shows that there are 2n − 1
admissible n× n squares in XL and, consequently, the entropy is zero.

Example 3.2. This example is of a vector shift in two dimensions that satisfies
condition 2 but not condition 3. Consider the full two-dimensional shift (F2

2)
Z
2

with
the entry in each coordinate of a point z given by z(i,j) = (z1

(i,j), z
2
(i,j)). Let X be the

vector shift contained in (F2
2)

Z
2

which consists of all z ∈ (F2
2)

Z
2

with

z1
(i,j) + z1

(i,j+1) + z2
(i,j) + z2

(i+1,j) = 0
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for all (i, j) ∈ Z
2. The annihilator module X⊥ in F2[u

±1
1 , u±1

2 ]2 is generated by the
element [

1 + u2

1 + u1

]

which means the dual module X̂ is isomorphic to the module

F2[u
±1
1 , u±1

2 ]2〈[
1 + u2

1 + u1

]〉 .

We will see that this module is a rank two module with no torsion elements, but it is
not a free module. To do this define a map from F2[u

±1
1 , u±1

2 ]2 to the ring F2[u
±1
1 , u±1

2 ]
by sending the elements [

1
0

]
and

[
0
1

]

to the polynomials 1 + u1 and 1 + u2, respectively. The point is that the kernel of the
map is generated by [

1 + u2

1 + u1

]
,

and the image of the map is the ideal 〈1 + u1, 1 + u2〉 in F2[u
±1
1 , u±1

2 ]. So the dual

module X̂ is isomorphic to the ideal 〈1 + u1, 1 + u2〉 thought of as an F2[u
±1
1 , u±1

2 ]
module. The polynomials 1 + u1 and 1 + u2 have no common factors, so the module
they generate is rank one if and only if it is all of F2[u

±1
1 , u±1

2 ]. However, it is clear
that 1 is not a linear combination of 1+u1 and 1+u2. Consequently, the dual module
X̂ is a rank two module. There are no torsion elements because any nonzero multiple
of a nontrivial linear combination of 1 + u1 and 1 + u2 is not equal to zero. However,
it is not free because if p and q are any two generators for 〈1 + u1, 1 + u2〉, then

qp + pq = 0. We have shown that X̂ is a rank two module with no torsion elements,
but it is not a free module. This means that the vector shift X satisfies condition 2
but not condition 3. A simple counting argument will show that this vector shift has
entropy log 2.

Example 3.3. This example is of a vector shift which nontrivially satisfies con-
dition 3. As above consider the full two-dimensional shift (F2

2)
Z
2

with the entry in
each coordinate of a point z given by z(i,j) = (z1

(i,j), z
2
(i,j)). Let Y be the vector shift

which consists of all z ∈ (F2
2)

Z
2

with

z1
(i+1,j) + z1

(i,j+1) + z2
(i,j) + z2

(i+1,j) + z2
(i,j+1) = 0

for all (i, j) ∈ Z
2. The annihilator module Y ⊥ in F2[u

±1
1 , u±1

2 ]2 is generated by the
element [

u1 + u2

1 + u1 + u2

]

which means the dual module Ŷ is isomorphic to the module

F2[u
±1
1 , u±1

2 ]2〈[
u1 + u2

1 + u1 + u2

]〉 .
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Using an argument like the one in Example 3.2 we will see that the dual module Ŷ is
a free rank one module. Define a map from F2[u

±1
1 , u±1

2 ]2 to F2[u
±1
1 , u±1

2 ] by sending
the elements [

1
0

]
and

[
0
1

]

to the polynomials 1 + u1 + u2 and u1 + u2, respectively. The kernel of the map is
generated by [

u1 + u2

1 + u1 + u2

]
,

and the image of the map is the ideal 〈u1 + u2, 1 + u1 + u2〉. However, this ideal is

clearly all of F2[u
±1
1 , u±1

2 ]. So the dual module Ŷ is isomorphic to F2[u
±1
1 , u±1

2 ] which
means Y satisfies condition 3. A simple counting argument will show that this vector
shift has entropy log 2.

Condition 1 is clearly not a good choice for the definition of a convolutional code
since there are vector shifts satisfying it with zero entropy and it is not possible to
encode any information into a zero entropy vector shift. Condition 2 is a possibility,
but there are difficulties defining encoders and decoders for vector shifts which satisfy
condition 2 but not condition 3. In one dimension algebraic finite state machines are
used to define encoders for convolutional codes, but in two or more dimensions there
does not appear to be anything except sliding block maps to take their place. For
these reasons I have chosen to concentrate on condition 3 and will investigate some
of the properties of vector shifts which satisfy this condition.

Definition 3.2. A d-dimensional [n, k] convolutional code is a vector shift X

contained in (Fn)Z
d

with entropy k log |F| whose character module X̂ is a free module.
Note. The definition adopted here for a convolutional code is essentially the

same as the definition of a free convolutional code in [15] and the definition of a basic
convolutional code in [2]. These relationships will be demonstrated by Theorem 4.1.

4. Convolutional codes.
Theorem 4.1. Let X ⊆ (Fn)Z

d

be a d-dimensional vector shift with entropy
log k. Then X is an [n, k] convolutional code if and only if any one, and hence all, of
the following conditions hold.

1. The dual module X̂ of X has rank k, and F[u±1]n is isomorphic to the direct

sum of the annihilator module X⊥ of X and the dual module X̂ of X.
2. The dual module X̂ has rank k, and there exists a parity check system for X

defined by n− k linear functionals on (Fn)Z
d

.

3. The vector shift X is algebraically conjugate to (Fk)Z
d

.
4. There are n linear functionals h1, . . . , hn ∈ F[u±1]k with 〈h1, . . . , hn〉 =

F[u±1]k and the map defined by (h1, . . . , hn) from (Fk)Z
d

into (Fn)Z
d

has
image X. The map (h1, . . . , hn) defines a convolutional encoder for X, and
we construct its decoder.

5. There are k linear functionals f1, . . . , fk ∈ F[u±1]n with (∩kerf i) ∩ X =

{0}. The map defined by (f1, . . . , fk) from (Fn)Z
n

into (Fk)Z
d

defines a
convolutional decoder for X, and we construct its encoder.

Note. In one dimension a convolutional encoder is usually defined by an algebraic
finite state automaton. An invertible algebraic map from (Fk)Z into (Fn)Z is a special
case of such a convolutional encoder. In dimensions higher than one it is not clear
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how to use something similar to a finite state automaton to define a convolutional
encoder. In this work a multidimensional convolutional encoder is considered to be
an invertible algebraic map from (Fk)Z

d

into (Fn)Z
d

. Similarly, a multidimensional

convolutional decoder is considered to be an algebraic map from (Fn)Z
d

onto (Fk)Z
d

which restricted to the convolutional code X ⊆ (Fn)Z
d

is invertible.
Before proving the theorem we state a theorem and prove a lemma. First we state

a version of the Quillen–Suslin theorem which is the solution to the Serre conjecture
[9].

Theorem 4.2. Suppose M and N are submodules of F[u±1]n and F[u±1]n =
M ⊕N ; then M and N are free modules.

Lemma 4.3. Let M ⊆ F[u±1]n be a submodule. Then F[u±1]n/M is a free module
if and only if rank M + rank F[u±1]n/M = n.

Proof. First suppose F[u±1]n/M is a free module. Then the Quillen–Suslin theo-
rem, Theorem 4.2 shows that M is a free module and that F[u±1]n is isomorphic to
the direct sum of M and F[u±1]n/M , so rank M + rank F[u±1]n/M = n.

Suppose rank M+rank F[u±1]n/M = n. Let {x1, . . . , x
} be a minimal generating
set for M and {x
+1, . . . , xn} ⊆ F[u±1]n be a set whose M -equivalence classes generate
F[u±1]n/M . Then {x1, . . . , xn} generates F[u±1]n. A generating set for F[u±1]n with
n elements is a base. If

∑n
j=
+1 αjx

j ∈M , then the sum must be zero and so every αj
is zero. This means the equivalence classes of x
+1, . . . , xn are linearly independent
in F[u±1]n/M and so form a base.

Proof of Theorem 4.1. Proof of 1. Statement 1 is equivalent to the definition of
a convolutional code by the Quillen–Suslin theorem, Theorem 4.2.

Proof of 2. Suppose X̂ has rank k and there exists a parity check system for
X defined by n − k linearly independent linear functionals on F[u±1]n. Then rank

X⊥ ≤ n − k, but we know rank X̂ + rank F[u±1]n/X⊥ ≥ n. This forces rank

X⊥ = n − k and rank X̂ + rank F[u±1]n/X⊥ = n. By Lemma 4.3 F[u±1]n/X⊥ is a
free module.

Conversely, suppose F[u±1]n/X⊥ is a free module. Then by Lemma 4.3 rank
X⊥ + rank F[u±1]n/X⊥ = n. So X⊥ is a free module with rank n− k, and a base of
n− k linear functional for X⊥ defines a parity check system for X.

Proof of 3. This follows immediately because on the one hand an algebraic con-

jugacy between X and (Fk)Z
d

induces an isomorphism between their dual modules.

Since the dual module of (Fk)Z
d

is F[u±1]k the dual module X̂ is free. On the other

hand, if the dual module X̂ of X is free and X has entropy log k, then X̂ is iso-
morphic to F[u±1]k. An isomorphism between these two dual modules induces an

algebraic conjugacy between the vector shifts X and (Fk)Z
d

. So X is a d-dimensional
convolutional code.

A more constructive proof of the second statement is to first observe that the
dual module X̂ is a free rank k module. Take any base {f1, . . . , fk} for it and

use this base to define an algebraic conjugacy f from X to (Fk)Z
d

by f(x)m =
(f1(σm(x)), . . . , fn(σm(x))) for each m ∈ Z

d. This map is clearly a continuous, shift-

commuting, algebraic map from X into (Fk)Z
d

, it is one-to-one because {f1, . . . , fk}
is a base for X̂, and it is onto because the two spaces have the same entropy.

Proof of 4. Suppose the map h = (h1, . . . , hn) defined as in the proof of statement
1 has image X. The map is continuous, shift-commuting, and algebraic. We need
only to see that it is one-to-one, and we will have proved that X is algebraically
conjugate to F[u±1]k. To do this we define an inverse. Let ei ∈ F[u±1]k be the ith
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coordinate linear functional; that is, ei(x) = xi. Then the map defined from (Fk)Z
d

to itself by e = (e1, . . . , ek) is the identity. Since 〈h1, . . . , hn〉 = F[u±1]k there exist
for each i = 1, . . . , k, elements pi1, . . . , p

i
n ∈ F[u±1] with pi1h

1 + · · · + pinh
n = ei.

Let pi = (pi1, . . . , p
i
n) ∈ F[u±1]n. Then pi ◦ h = ei ∈ F[u±1]k. Define the map

p = (p1, . . . , pk) from F[u±1]n to F[u±1]k. We compute to see that the map p is the
inverse of the map h:

(p ◦ h(x))m = p(h(σm(x)))

= (p1(h(σm(x)), . . . , pk(h(σm(x)))

= (e1(σm(x)), . . . , ek(σm)(x)))

= e(σm(x))

= xm.

This shows that X is algebraically conjugate to F[u±1]k. The map h is a convo-
lutional encoder for X, and the map p is its decoder.

Conversely, if X is an [n, k] convolutional code, then it is a vector shift in
F[u±1]n which is algebraically conjugate to F[u±1]k. Let h be an algebraic conju-
gacy from F[u±1]k to X ⊆ F[u±1]n. Then it is defined by n coordinate functions,
h = (h1, . . . , hn), and each hj is a linear functional from F[u±1]k. Since h is invertible
〈h1, . . . , hn〉 = F[u±1]k.

Proof of 5. Suppose there are k linear functionals f1, . . . , fk ∈ F[u±1]n with
(∩kerf i)∩X = {0}. Then f = (f1, . . . , fk) defines a map from F[u±1]n into F[u±1]k

as before. The map restricted to X is one-to-one since it has kernel {0}. It takes X
onto F[u±1]k by entropy considerations and so defines an algebraic conjugacy between
X and F[u±1]k. This means X is a convolutional code. Next we define the encoder
for this decoder. Since f defines an algebraic conjugacy, the X⊥-equivalence classes
of f1, . . . , fk generate F[u±1]n/X⊥. This means that for each j = 1, . . . , n there are
elements qj1, . . . , q

j
k ∈ F[u±1] with qj1f

1 + · · ·+ qjkf
k = ej when restricted to X, where

ej is the jth coordinate functional as defined in the proof of statement 4. As in the
proof of statement 4 let qj = (qj1, . . . , q

j
k) ∈ F[u±1]k. Define the map q = (q1, . . . , qn)

from F[u±1]k to F[u±1]n. Compute as in the proof of statement 4 to see that the
composition q ◦ f is the identity when restricted to X. The map q is a convolutional
encoder for X, and the map f is its decoder.

Conversely, if X is an [n, k] convolutional code, then it is a vector shift in F[u±1]n

which is algebraically conjugate to F[u±1]k. Let f be an algebraic conjugacy from X ⊆
F[u±1]n to F[u±1]k. Then it is defined by k coordinate functions, f = (f1, . . . , fk),
and each f j is a linear functional from F[u±1]n. Since f is invertible (∩kerf i) ∩ X
= {0}.

5. Examples. Here we will examine two two-dimensional convolutional codes.
We will see how each statement of Theorem 4.1 applies.

Example 5.1. This is the two-dimensional [2, 1] convolutional code of Example
3.3. As we noted in the example the annihilator module Y ⊥ in F2[u

±1
1 , u±1

2 ]2 is the
rank one free module generated by the element

[
u1 + u2

1 + u1 + u2

]
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and the dual module Ŷ is isomorphic to the free rank one module

F2[u
±1
1 , u±1

2 ]2〈[
u1 + u2

1 + u1 + u2

]〉 .

To see that F2[u
±1
1 , u±1

2 ]2 splits as stated in the first assertion of Example 3.3 let
W be the free rank one submodule of F2[u

±1
1 , u±1

2 ]2 generated by the element[
1 + u1 + u2

u1 + u2

]
.

We will see that this linear functional comes from the encoding map. Now observe
that F2[u

±1
1 , u±1

2 ]2 can be written as to Y ⊥ ⊕W since Y ⊥ ∩W = {0} and[
1
1

]
=

[
u1 + u2

1 + u1 + u2

]
+

[
1 + u1 + u2

u1 + u2

]
,

while [
0
1

]
=

[
u1 + u2

1 + u1 + u2

]
+ (u1 + u2)

[
1
1

]
.

To see assertion 2 we simply let the generator for the annihilator module[
u1 + u2

1 + u1 + u2

]

define the parity check system from (F2
2)

Z
2

to (F2)
Z
2

.

Define an algebraic conjugacy h from (F2)
Z
2

to Y by

h(x)(i,j) = (x(i,j) + x(i+1,j) + x(i,j+1), x(i+1,j) + x(i,j+1))

for all (i, j) ∈ Z
2. The map is onto and one-to-one since the inverse on Y is given by

h−1(z)(i,j) = z1
(i,j) + z2

(i,j)

for all (i, j) ∈ Z
2, where the (i, j)th coordinate of the point z is z(i,j) = (z1

(i,j), z
2
(i,j)).

This shows directly that Y is algebraically conjugate to (F2)
Z
2

and satisfies assertion
3.

The two linear functionals in F2[u
±1
1 , u±1

2 ] which satisfy assertion 4 are the ones
used to define the map h; that is,

h1 = 1 + u1 + u2 and h2 = u1 + u2.

This map produces the subspace used in statement 1.
The linear functional in F2[u

±1
1 , u±1

2 ]2 which satisfies assertion 5 is the one used
to define the map h−1, namely,

f1 =

[
1
1

]
.
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Example 5.2. Next is a two-dimensional [3, 2] convolutional code over the finite
field F2. To define the convolutional code X we use statement 4 of Theorem 4.1. Let

h1 =

[
1 + u1

1 + u2

]
, h2 =

[
u1 + u1u2 + u2

1u2

1 + u2 + u1u2 + u1u
2
2

]
,

and

h3 =

[
u1 + u2 + u2

1 + u1u2

1 + u1 + u2 + u2
2 + u1u2

]

be elements of F2[u
±1
1 , u±1

2 ]2. Then note that

(1 + u1u2)h
1 + h2 =

[
1
0

]
and (u1 + u2)h

1 + h3 =

[
0
1

]
.

So the three linear functionals generate all of F2[u
±1
1 , u±1

2 ]2. It can also be seen that
no two of them generate F2[u

±1
1 , u±1

2 ]2. We define the encoder to be the map h =

(h1, h2, h3) from (F2
2)

Z
2

into (F3
2)

Z
2

. Then let X be the image of the map h. Next we
construct the decoder for this encoder using the previous equations for[

1
0

]
and

[
0
1

]
.

Set

f1 =


 1 + u1u2

1
0


 and f2 =


 u1 + u2

0
1




which are two linear functionals in F2[u
±1
1 , u±1

2 ]3. They define a map f = (f1, f2)

from (F3
2)

Z
2

to (F2
2)

Z
2

which is the inverse of the map h when restricted to X. The
linear functionals f1 and f2 satisfy statement 5 of the theorem.

The two maps h and f show that X is algebraically conjugate to (F2
2)

Z
2

satisfying
statement 3.

Next we exhibit the parity check system. It is defined by a single linear functional
in F2[u

±1
1 , u±1

2 ]3. To find it we solve the equation

[
1 + u1 u1 + u1u2 + u2

1u2 u1 + u2 + u2
1 + u1u2

1 + u2 1 + u2 + u1u2 + u1u
2
2 1 + u1 + u2 + u2

2 + u1u2

] α
β
γ


 =

[
0 0

]
,

where α, β, and γ are elements of F2[u
±1
1 , u±1

2 ]. The matrix on the left describes the
map h. The result is the linear functional

 u2(1 + u2 + u2
1)

1 + u1

1 + u2




in F2[u
±1
1 , u±1

2 ]3, and it defines the parity check system.
The final step is to examine assertion 1. We know that X⊥ is the subspace of

F2[u
±1
1 , u±1

2 ]3 spanned by 
 u2(1 + u2 + u2

1)
1 + u1

1 + u2


 .
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Let W be the subspace

〈 1 + u1

u1 + u1u2 + u2
1u2

u1 + u2 + u2
1 + u1u2


 ,


 1 + u2

1 + u2 + u1u2 + u2
2

1 + u1 + u2 + u2
2 + u1u2


〉 .

The subspace W is determined by the map h. We see that W is isomorphic to
F2[u

±1
1 , u±1

2 ]3/X⊥ which is in turn isomorphic to F2[u
±1
1 , u±1

2 ]2. And finally we ob-
serve that F2[u

±1
1 , u±1

2 ]3 can be written as X⊥ ⊕W .
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INTERFERENCE PATTERNS IN REGULAR GRAPHS WITH
BIJECTIVE COLORINGS∗
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Abstract. Let Gd(n) be the set of d-regular simple graphs with n vertices, and for G = (V,E)
in Gd(n) let f : V → {1, 2, . . . , n} be a bijective coloring of the vertices of G. Also let α denote an
interference parameter in {0, 1, . . . , n − 1}, and define the interference number of f with respect to
G and α as the number of edges {u, v} in E for which min{|f(u)− f(v)|, n− |f(u)− f(v)|} ≤ α. We
consider two interference number problems for feasible (n, α, d). The first is to specify a G ∈ Gd(n)
and an f for which the interference number is as small as possible. The second is to determine a
G ∈ Gd(n) whose minimum interference number over all f is as large as possible. A previous paper
completely solves both problems for d = 2. The present paper solves the first problem for all d ≥ 3
and obtains partial results for the second problem for d ≥ 3 that focus on interference-minimizing
f ’s when G consists of disjoint copies of Kd+1.

Key words. bijective graph coloring, regular graphs, interference, channel assignment

AMS subject classifications. 05B99, 05C35

PII. S0895480100382342

1. Introduction. This paper is the third in a series concerned with minimizing
interference in vertex colorings of regular graphs. It and its predecessors [1, 2] are
motivated by telecommunications problems such as the design of planar regions for
cellular telephone networks and the assignment of frequencies to regions. Our graph
abstraction represents regions by vertices, contiguous regions by edges, and frequencies
or frequency classes by colors. We assume that the number of colors available equals
the number n of regions or vertices, and that colors i and j in the color set {1, 2, . . . , n}
interfere if and only if the distance between them, reckoned circularly [1, 4, 9] as

D(i, j) = min{|i− j|, n− |i− j|},

is less than or equal to an interference parameter α. Given a coloring f from the
vertex set V into {1, 2, . . . , n}, interference occurs between regions u and v if they are
neighbors, or {u, v} is in the edge set E, and D(f(u), f(v)) ≤ α.

The focus of [1] was on minimization of interference without regard to capacity
and therefore placed no restrictions on colorings. In [2] and the present paper, color-
ings are assumed to be bijections between V and {1, 2, . . . , n} so that they maximize
capacity when capacity is assessed by the number of different colors assigned to ver-
tices. Additional background on our approach as well as related coloring problems
motivated by the channel assignment problem of Hale [5] appears in [1, 2] and their
references, including [3, 6, 7, 8].

As in [2], let Gd(n) for n > d ≥ 2 be the set of d-regular simple graphs with n
vertices. It is assumed that dn is even so that Gd(n) is not empty. We refer to a
bijective coloring as an assignment and let Sn denote the set of maps f from V onto
{1, 2, . . . , n} when |V | = n. The interference number µα(G, f) of G = (V,E) in Gd(n)
for assignment f and interference threshold α ∈ {0, 1, . . . , n − 1} is the number of

∗Received by the editors December 11, 2000; accepted for publication (in revised form) March 19,
2002; published electronically May 23, 2002.

http://www.siam.org/journals/sidma/15-3/38234.html
†AT&T Labs-Research, Florham Park, NJ 07932 (fish@research.att.com).
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edges in E whose vertex colors interfere:

µα(G, f) = |{{u, v} ∈ E : D(f(u), f(v)) ≤ α}|.

We focus on two interference number minimization problems for assignments that,
given (n, α, d), are concerned with the quantities

m(n, α, d) = min
G∈Gd(n)

min
f∈Sn

µα(G, f),

M(n, α, d) = max
G∈Gd(n)

min
f∈Sn

µα(G, f).

Problem I. Determine m(n, α, d) along with graphs in Gd(n) and their assignments
f for which µα(G, f) = m(n, α, d).

Problem II. Determine M(n, α, d) along with graphs in Gd(n) and their assign-
ments f for which µα(G, f) = M(n, α, d).

In Problem I, a system designer gets to choose both the graph and its assign-
ment to minimize interference. In Problem II, the designer selects an interference-
minimizing assignment after an adversary chooses a graph that will maximize the
minimum interference number. The quantities m and M bracket the minimum inter-
ference numbers of all graphs in Gd(n) for threshold α. By the definitions,

m(n, α, d) ≤ min
f∈Sn

µα(G, f) ≤M(n, α, d)

for all G ∈ Gd(n).
Solutions for both problems are given in [2] when d = 2. Obviously, every G ∈

G2(n) is the union of disjoint cycles. We noted in [2] that m(n, α, 2) is always realized
by the cycle Cn on all n vertices with

m(n, α, 2) =




0 if α < n
2 − 1,

n
2 if α = n

2 − 1 (so n is even),

n if α ≥ ⌊n2 ⌋ .
Our first new result extends this to higher-degree regular graphs.

Theorem 1.1. Suppose d ≥ 3. Then m(n, α, d) is always realized by a connected
graph in Gd(n) with

m(n, α, d) =

{
0 if α ≤ n−d−1

2 ,

nd
2 if α ≥ ⌊n2 ⌋ .

In addition,

m(n, α, d) =
n(j + 1)

2
if α =

n− d+ j

2

for

j ∈ {1, 3, 5, . . . , d− 2} when d is odd and n is even,

j ∈ {1, 3, 5, . . . , d− 3} when d is even and n is odd,

j ∈ {0, 2, 4, . . . , d− 2} when d and n are both even.
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Theorem 1.1 is proved in the next section. Graphs in Gd(n) and assignments that
realize the m values are described there.

Theorems 2.5 and 2.6 in [2] identify M(n, α, 2) values and their realizing graphs
and assignments for d = 2. In sharp contrast to connectedness for m, M(n, α, 2) can
always be realized by a graph in Gd(n) that has as many components as possible.
The adversary can never do better than to include as many disjoint copies of C3 as
possible in G, as seen in the following examples:

(i) If n ≡ 0 (mod 3) and 
n/3� ≤ α < 
n/2� − 1, then M(n, α, 2) = n/3, and
this is realized only by the graph composed of n/3 disjoint copies of C3.

(ii) If n ≡ 2 (mod 3), then M(n, α, 2) = (n − 5)/3 if 
n/3� ≤ α < 
2n/5�, and
M(n, α, 2) = (n − 2)/3 if 
2n/5� ≤ α < 
n/2� − 1. These values of M are
realized only by a G that has (n− 5)/3 disjoint copies of C3 and one copy of
C5.

The proof of Theorems 2.5 and 2.6 in [2] requires detailed case analyses. Rather
than attempt such analyses here for d ≥ 3, we will be guided by the conjecture that
M(n, α, d) for d ≥ 3 can always be realized by a graph in Gd(n) that includes as
many copies as possible of the complete graph Kd+1 on d+1 vertices. The conjecture
is supported not only by the results for d = 2 but also by the fact that complete
subgraphs on d + 1 vertices often force interference that can be avoided in larger
d-regular components.

Our most complete M -type result for d > 2 occurs for d = 3, where n must be
even and every 3-regular component of G must have an even number of vertices. We
restrict our analysis to graphs in G3(n) with as many components as possible, i.e.,

(a) if n ≡ 0 (mod 4), then G consists of n/4 disjoint copies of K4;
(b) if n ≡ 2 (mod 4), then G consists of (n− 6)/4 disjoint copies of K4 and one

6-vertex component.

There are two graphs in G3(6), and hence two options for the 6-vertex component in
(b). We refer to these as H1 and H2; see Figure 1.1. The adversary’s choice between
H1 and H2 is immaterial in many cases but not in others. When (n, α) = (6, 1),
H1 forces at least two edges whose colors interfere, whereas H2 has an assignment
with no interference. We illustrate this in the second row of Figure 1.1. We refer to
edges with interference as bad edges and draw them thicker than the others. When
(n, α) = (14, 4), every C3 has a bad edge, so H2 in the bottom row of Figure 1.1 forces
six bad edges, whereas H1 forces only four.

For the following theorem, M∗(n, α, 3) is defined like M(n, α, 3) when G3(n) is
replaced by the special subset noted above for (a) or (b).

Theorem 1.2. Suppose d = 3 and k ≥ 1. If n = 4k, then M∗(n, α, 3) equals

0 if α ≤ k − 1,

k if k ≤ α ≤ �4k/3 − 2,

2k if �4k/3 − 1 ≤ α ≤ 2k − 2,

4k if α = 2k − 1,

6k if α ≥ 2k.
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If n = 4k + 2, then M∗(n, α, 3) equals

0 if α ≤ k − 1,

2 if (k, α) ∈ {(1, 1), (2, 2)},
k − 1 if k ≥ 3, k ≤ α ≤ �4k/3 − 1, and it is false

that both k − 1 ≡ 0 (mod 3) and α = �4k/3 − 1,

2(k − 1) if k ≥ 4, k − 1 ≡ 0 (mod 3) and α = �4k/3 − 1,

2k if �4k/3 ≤ α ≤ 2k − 1,

4k + 2 if α = 2k,

6k + 3 if α ≥ 2k + 1.

We defer the proof of Theorem 1.2 to section 4 because its first part uses a result
for d ≥ 3 that is proved in section 3. That result assumes that n is a multiple of d+1
and that G consists of disjoint copies of Kd+1. Let

kKd+1 denote the graph that consists of k copies of Kd+1,

and let

N(k, α, d) = min
f∈Sk(d+1)

µα(kKd+1, f).

Theorem 1.3. Suppose d ≥ 3 and k ∈ {1, 2, . . .} with n = k(d + 1). Then
N(k, α, d) = 0 if and only if α ≤ k − 1, and N(k, α, d) = kd(d + 1)/2 if and only if
α ≥ 
n/2� = 
k(d+ 1)/2�. Moreover, if t ∈ {1, 2, . . .}, d+ 1 ≥ 2t, and⌊

(d+ 1)(k − 1)

d+ 2− t

⌋
+ 1 ≤ α ≤

⌊
(d+ 1)(k − 1)

d+ 1− t

⌋
,

then N(k, α, d) = tk.
This is proved in section 3 where we give an explicit assignment for kKd+1 for

the part of the theorem that involves t. With respect to that part, the bounds of
Theorem 1.3 on α along with d + 1 ≥ 2t imply that the minimum number of bad
edges in a Kd+1 with the fewest bad edges equals t. This occurs, for example, when
the vertices of a particular Kd+1 are colored 1, 2, α+3, α+4, 2α+5, 2α+6, . . ., with
t instances of |f(u)− f(v)| = 1. The theorem asserts that when this is true, there is
an assignment from the k(d+1) vertices of kKd+1 onto {1, 2, . . . , k(d+1)} such that
every copy of Kd+1 has only t bad edges.

The d+1 ≥ 2t constraint in the latter part of Theorem 1.3 limits α coverage. With
t∗ = 
(d+1)/2�, the α range in the theorem goes from 0 to 
(d+1)(k−1)/(d+1−t∗)�,
or approximately 2(k − 1), and then jumps to α ≥ 
k(d + 1)/2� where all edges are
bad. When d = 3, this misses only α = 2k − 1, which is covered in the first part of
Theorem 1.2 by the line for α = 2k − 1. The gap of omitted α’s is larger for d ≥ 4,
but Theorem 1.3’s coverage up to about 2(k − 1) may well include the most likely
interference thresholds encountered in practice. Nevertheless, it would be nice to have
definitive results for the missing α range, and we encourage further work along this
line.
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Fig. 1.1. d = 3, n ≡ 2 (mod 4).

We conclude this introduction with a version of the latter part of Theorem 1.3
that may be interesting in its own right as a purely graph-theoretic result, and with
a conjecture that could motivate further research on bijective colorings of regular
graphs.

Proposition 1.4. Suppose k, d, t, and α are positive integers that satisfy k ≥ 1,
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d ≥ 2, 1 ≤ t ≤ (d+ 1)/2, and⌊
(d+ 1)(k − 1)

d+ 2− t

⌋
+ 1 ≤

⌊
(d+ 1)(k − 1)

d+ 1− t

⌋
= α.

If a simple graph G consists of k disjoint copies of Kd+1, then there is a bijection f
from G’s vertices onto {1, 2, . . . , k(d+ 1)} such that every copy of Kd+1 in G has no
more than t edges {u, v} for which D(f(u), f(v)) ≤ α.

Conjecture 1.5. Given the hypotheses of Proposition 1.4, if G is a simple d-
regular graph with k(d+1) vertices, then there is a bijection f from G’s vertices onto
{1, 2, . . . , k(d+1)} such that no more than tk edges {u, v} of G have D(f(u), f(v)) ≤
α.

2. Proof of Theorem 1.1. Assume that d ≥ 3. With |V | = n > d and nd
even, we color the vertices 1, 2, . . . , n and define edges for G ∈ Gd(n) to minimize the
number of bad edges. It will be clear that G is connected.

Suppose that either d is odd and n is even or d is even and n is odd. Let Vd(i)
be the set of d vertices j for which D(i, j), i.e., min{|i − j|, n − |i − j|}, is as large
as possible. For example, if d = 3, n = 10, and i = 1, then V3(1) = {5, 6, 7}; if
d = 4, n = 13, and i = 1, then V4(1) = {6, 7, 8, 9}. Take {i, j} ∈ E if j ∈ Vd(i) or,
equivalently, if i ∈ Vd(j) for all i and j. Regardless of α, G = (V,E) with the noted
assignment minimizes the number of bad edges. We count the number of bad edges
for the two cases of opposite parities for d and n.

Suppose d is odd and n is even. Then

Vd(1) =

{
n

2
− d− 3

2
, . . . ,

n

2
,
n

2
+ 1,

n

2
+ 2, . . . ,

n

2
+

d+ 1

2

}
,

min
j∈Vd(1)

D(1, j) =
n

2
− d− 1

2
=

n− d+ 1

2
,

max
j∈Vd(1)

D(1, j) =
n

2
.

The number of bad edges in G that include vertex 1 is

0 if α ≤ (n− d+ 1)/2− 1 = (n− d− 1)/2,
2 if α = (n− d+ 1)/2,
4 if α = (n− d+ 3)/2,
...

d− 1 if α = n/2− 1 = [n− d+ (d− 2)]/2,
d if α ≥ n/2.

By symmetry, the same thing holds for every other vertex. Because each edge involves
two vertices, we have m(n, α, d) = 0 if α ≤ (n−d−1)/2, m(n, α, d) = nd/2 if α ≥ n/2,
and

m(n, α, d) =
n(j + 1)

2
if α =

n− d+ j

2
for j = 1, 3, . . . , d− 2 .

Suppose d is even and n is odd. Then

Vd(1) =

{
n− d+ 3

2
, . . . ,

n+ 1

2
,
n+ 3

2
, . . . ,

n+ d+ 1

2

}
,
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min
j∈Vd(1)

D(1, j) =
n− d+ 1

2
,

max
j∈Vd(1)

D(1, j) =
n− 1

2
.

The number of bad edges in G that include vertex 1 is

0 if α ≤ (n− d− 1)/2,
2 if α = (n− d+ 1)/2,
4 if α = (n− d+ 3)/2,
...

d− 2 if α = (n− 3)/2 = [n− d+ (d− 3)]/2,
d if α ≥ (n− 1)/2.

It follows that m(n, α, d) = 0 if α ≤ (n − d − 1)/2, m(n, α, d) = nd/2 if α ≥ 
n/2�,
and

m(n, α, d) =
n(j + 1)

2
if α =

n− d+ j

2
for j = 1, 3, . . . , d− 3 .

Suppose henceforth that d and n are even. The proof of Lemma 3.1(a) in [1]
defines a connected G for which m(n, α, d) = 0 whenever α < (n − d)/2, or α ≤
(n−d−1)/2, so assume henceforth that α ≥ (n−d)/2. The d−1 vertices j for which
D(i, j) is as large as possible are those in Vd−1(i), so we take {i, j} ∈ E whenever
j ∈ Vd−1(i). We need one more edge for each vertex to attain d-regularity, and for
simplicity take {1, 2}, {3, 4}, . . . , {n− 1, n} in E. To see that this will not overcount
m, observe that

Vd−1(1) =

{
n

2
− d− 4

2
, . . . ,

n

2
,
n

2
+ 1,

n

2
+ 2, . . . ,

n

2
+

d

2

}
,

min
j∈Vd−1(1)

D(1, j) =
n− d

2
+ 1,

max
j∈Vd−1(1)

D(1, j) =
n

2
.

Consequently, when α ≥ (n − d)/2, the final edge for vertex 1 must be a bad edge,
so nothing is lost by taking it as {1, 2}. It follows that the number of bad edges in G
that include vertex 1 is

1 if α = (n− d)/2,
3 if α = (n− d+ 2)/2,
5 if α = (n− d+ 4)/2,
...

d− 1 if α = n/2− 1 = [n− d+ (d− 2)]/2,
d if α ≥ n/2.

Because the same thing holds for every other vertex, we have m(n, α, d) = nd/2 if
α ≥ n/2 along with

m(n, α, d) =
n(j + 1)

2
if α =

n− d+ j

2
for j = 0, 2, 4, . . . , d− 2.
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3. Copies of a complete graph. Assume for Theorem 1.3 that d ≥ 3 and
G = kKd+1 for some positive integer k with n = k(d+ 1).

If α ≥ 
n/2�, then, regardless of f , all edges are bad and N(k, α, d) = nd/2 =
kd(d+1)/2. At the other extreme, where α ≤ k−1, assign the color set {j, k+ j, 2k+
j, . . . , dk+ j} to the vertices of the jth copy of Kd+1 (j = 1, 2, . . . , k) to conclude that
N(k, αd) = 0 when α ≤ k− 1. It is easily seen that if α ≥ k, then every copy of Kd+1

has at least one bad edge regardless of f , and, if α < 
n/2�, then not all edges are
bad for some assignments. This concludes the proof of the first part of Theorem 1.3.

Assume henceforth that t ∈ {1, 2, . . .}, d+1 ≥ 2t, and that α is a positive integer
that satisfies ⌊

(d+ 1)(k − 1)

d+ 2− t

⌋
+ 1 ≤ α ≤

⌊
(d+ 1)(k − 1)

d+ 1− t

⌋
.

The lower bound with t ≥ 1 implies that α ≥ k.
Lemma 3.1. Every copy of Kd+1 in G has at least t bad edges for every as-

signment. There are assignments for which at least one Kd+1 in G has exactly t bad
edges.

Proof. Consider a coloring of the vertices of one copy of Kd+1 with the following
colors for which the first t pairs have absolute differences of 1:

1, 2, α+ 3, α+ 4, 2α+ 5, 2α+ 6, . . . , (t− 1)α+ 2t− 1, (t− 1)α+ 2t,

tα+ 2t+ 1, (t+ 1)α+ 2t+ 2, . . . , (d− t)α+ d+ 1.

The absolute difference between adjacent terms is α+1 if it is not 1. Consequently, if
(n+1)−[(d−t)α+d+1] ≥ α+1, for the first and last terms, then thisKd+1 has exactly
t bad edges. The preceding inequality can be rewritten as α(d+1−t) ≤ (d+1)(k−1),
which is tantamount to the upper bound on α stated just prior to the lemma.

Contrary to the first part of the lemma, suppose an assignment f has t − 1 or
fewer bad edges in some Kd+1. Without loss of generality, let f ’s colors for this Kd+1

be

1 = c1 < c2 < c3 < · · · < cd+1 = (n+ 1)− (α+ 1) = k(d+ 1)− α

so that cd+1 is as large as possible without interfering with c1. We then require
ci+1− ci ≥ α+1 for at least (d+1)− (t− 1)− 1 = d+1− t values of i ∈ {1, 2, . . . , d}
and ci+1 − ci ≥ 1 for the others. Therefore

k(d+ 1)− α− 1 = cd+1 − c1 =

d∑
i=1

(ci+1 − ci) ≥ (d+ 1− t)(α+ 1) + t− 1,

which simplifies to α ≤ (d + 1)(k − 1)/(d + 2 − t). This inequality contradicts the
lower bound on α stated just prior to the lemma, so we conclude that every f has at
least t bad edges in every Kd+1 in G.

To complete the proof of Theorem 1.3, we need to prove that there is an assign-
ment for which every Kd+1 in G has exactly t bad edges, so N(k, α, d) ≤ tk. We do
this for α when it equals its upper bound, i.e., for

α =

⌊
(d+ 1)(k − 1)

d+ 1− t

⌋
.
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Any assignment that achieves the desired result for this α serves also for smaller α in
the interval noted just prior to Lemma 3.1. According to the lemma, every assignment
for G = kKd+1 has at least tk bad edges, and therefore N(k, α, d) = tk.

Several new parameters are used to define an assignment that gives every Kd+1

exactly t bad edges. The first few are p, β, and γ defined by

p = d+ 1− t (so p ≥ t because d+ 1 ≥ 2t),
p = β(k − 1) + γ with 0 ≤ γ < k − 1,

so β = 
p/(k−1)� and γ = p−β(k−1). Note that the bounds on α require k−1 > 0
so that the range for α is not empty.

We begin our construction that leads to the desired assignment by defining C as
a clockwise circular arrangement of p successive copies of 12 . . . k, beginning from a
designated starting point as shown on the top left of Figure 3.1. We refer to each
12 . . . k copy as a long block and number them consecutively as 1, 2, . . . , p from the
start. The first k−1 long blocks, the next k−1 long blocks, and so forth each comprise
a superblock, so C has β superblocks. The final γ long blocks before we arrive back
at the start are the remainder long blocks or the remainder region. This is illustrated
on the top right of Figure 3.1 for p = 8, k = 4, β = 2, and γ = 2. By definition,
d− t = p−1 = 7. Because d+1 ≥ 2t, we require t ≤ 8. We also require the α interval
prior to Lemma 3.1 to be nonempty, which it is for t ∈ {3, 6, 8} but is not for other
t ≤ 8. Further illustrations for Figure 3.1 for the parameters used on the top right
assume that t = 3 with d = 10 and α = 4.

We now define short blocks for C and explain how an assignment for (k, α, d) will
be obtained from C. A short block is any contiguous sequence of k− 1 terms of C. A
short block that consists of the first k − 1 terms of C (clockwise from the start), or
the second k− 1 terms of C, and so forth is a main short block, abbreviated as MSB.
Because (k − 1)k = k(k − 1), each superblock (k − 1 long blocks of k terms each)
contains precisely k MSBs. The β superblocks therefore encompass βk MSBs. The γ
remainder long blocks from the end of the final superblock around to the start have

γk/(k− 1)� MSBs plus 0 to k− 2 final terms of C before we arrive back at the start.
The middle left diagram of Figure 3.1 pictures the MSBs and the final two terms of
C for the configuration in the top right of the figure.

The next two parameters involved in the construction are

q =

⌊
t(k − 1)

p

⌋
= α− (k − 1)

and

u = (k − 1)− q,

so q+u = k− 1. Because α ≥ k and p ≥ t, 1 ≤ q ≤ k− 1. Our objective is to identify
tk terms of C, referred to as circled terms, so that

(i) every short block has at least q circled terms,
(ii) every j ∈ {1, 2, . . . , k} is circled exactly t times.

Given (i) and (ii), an assignment for G = kKd+1 is formed as follows. Beginning at
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Fig. 3.1.
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the start and proceeding clockwise around C, assign colors 1, 2, . . . successively to the
terms of C so that every circled term is assigned two adjacent integers and every term
that is not circled is assigned a single integer. Because C has pk = (d+1− t)k terms
of which tk are circled, the largest color used is (d + 1 − t)k + tk = k(d + 1) = n.
The colors assigned to the jth copy of Kd+1 in G are those assigned to the terms of
C labeled j for j = 1, 2, . . . , k. Thus each Kd+1 receives d + 1 colors, among which,
by (ii), there are t pairs with absolute difference 1 so that Kd+1 has at least t bad
edges. However, that is all. Between consecutive occurrences of j around C there are
k − 1 other terms of C and, by (i), at least q of these k − 1 are circled, so there is an
interval of at least k − 1 + q = α assigned colors between the j terms. It follows that
the distance between j-term colors that is not 1 is at least α + 1. Hence every copy
of Kd+1 in G has exactly t bad edges.

We illustrate the assignment procedure at the bottom of Figure 3.1 for p = 8,
k = 4, t = 3, d = 10, and α = 4. The circled terms are easily seen to satisfy (i) and
(ii): every short block of three terms has at least q = 4 − 3 = 1 circled terms, and
every j is circled exactly three times. The colors assigned to the vertices of the four
copies of K11 are summarized at the lower right of the figure.

Conditions (i) and (ii) will be satisfied by a primary step and a secondary step.
The primary step defines a circled term pattern P which identifies the q of the k − 1
terms that are circled (going clockwise) in each MSB. The pattern is the same for
every MSB and is continued into the final terms between the end of the last MSB
and the start. For q = 1 and k − 1 = 3 in Figure 3.1, P specifies the first of the
three terms in each MSB as the one to be circled. This is shown on the middle right
diagram with continuation into the final two terms where the first 3 is circled.

We will define P in such a way that (i) holds and no j in C is circled more than
t times. The primary step will usually circle most j’s t times, but some may receive
fewer than t circles. The secondary step then adds circles for the latter cases so that
(ii) holds along with (i). When a circle for j is added in the secondary step, any
j terms as yet uncircled can receive the new circle. On the middle right of Figure
3.1, each j ∈ {1, 3, 4} has its full complement of t = 3 circles from the primary step,
but j = 2 has only two circles. We therefore circle one more j = 2 in the lower
left diagram. Although the particular choice of the new circle obviously affects the
assignment, it does not affect the fact that each copy of Kd+1 has exactly t bad edges.

In what follows, we suppress the secondary step because its only role is to add
circles to satisfy (ii) and therefore provide a full assignment. The important task is to
define P so that every short block has at least q circled terms (which is automatic by
an obvious shift argument unless the short block overlaps the starting position) and
no j is circled more than t times. There are cases in which any circled term pattern
suffices for the desired result, whereas other cases require great care in defining a
suitable P . The following lemma identifies one case in which the particular structure
of P is immaterial.

Lemma 3.2. With p = β(k−1)+γ, every circled term pattern P has the property
that every j ∈ {1, 2, . . . , k} is circled exactly βq times in the β superblocks of C.
If γ = 0, then, for every P , every short block has at least q circled terms and no
j ∈ {1, 2, . . . , k} is circled more than t times.

Proof. Every superblock consists of k MSBs and therefore has qk circled terms.
Each of the k MSBs in a superblock begins with a different j, and because the same
P is used in every MSB the qk circled terms in a superblock are evenly divided among
the k values of j. Hence every j is circled βq times in the β superblocks.
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Suppose γ = 0, so there is no remainder. Every MSB has precisely q circled
terms, so successive one-term shifts and the use of the same P in every MSB imply
that every short block has precisely q circled terms. Moreover,

q =

⌊
t(k − 1)

β(k − 1)

⌋
≤ t

β
,

so βq ≤ t.
Another straightforward case arises when q = k − 1 and u = 0, in which event

P must circle every term in C. An example occurs for t = 8 and d = 15 for the top
right diagram of Figure 3.1. Then the lower and upper bounds on α prior to Lemma
3.1 are both 6, so α = 6 and q = α− (k − 1) = 3 = k − 1.

Lemma 3.3. Suppose q = k−1. Then p = t, every term of C is circled, and each
j ∈ {1, 2, . . . , k} is circled exactly t times.

Proof. Suppose q = k−1. Because every term of C is circled and C has pk terms,
every j is circled exactly p times. Moreover, α = q + k − 1 = 2(k − 1), and hence

2(k − 1) =

⌊
(d+ 1)(k − 1)

d+ 1− t

⌋
.

This implies that (d + 1)/(d + 1 − t) ≥ 2, i.e., 2t ≥ d + 1. However, d + 1 ≥ 2t by
hypothesis, so d+ 1 = 2t. It follows that t = d+ 1− t = p.

It follows from Lemmas 3.2 and 3.3 along with our discussion of (i) and (ii) that
the latter part of Theorem 1.3 holds if either γ = 0 or u = 0, so assume henceforth
that q, u, and γ are positive. Then

p = β(k − 1) + γ with 0 < γ < k − 1,

and, by Lemma 3.2, every j ∈ {1, 2, . . . , k} is circled exactly βq times in the β su-
perblocks of C that precede the γ remainder long blocks. For every circled term
pattern P let r(P ) denote the maximum number of times a j ∈ {1, 2, . . . , k} is circled
in the γ remainder long blocks when P is used for the circling operation. Then every
j ∈ {1, 2, . . . , k} is circled at most t times in C if and only if

βq + r(P ) ≤ t.

Lemma 3.4. Every j ∈ {1, 2, . . . , k} is circled at most t times in C when P is
used if ⌈

qγ

k − 1

⌉
≥ r(P ).

Proof. Because q = 
t(k − 1)/[β(k − 1) + γ]�, we have
t(k − 1)

β(k − 1) + γ
≥ q

and therefore have t ≥ βq + qγ/(k − 1). Hence t ≥ βq + �qγ/(k − 1). It follows that
t ≥ βq + r(P ) if the inequality of Lemma 3.4 holds.

We proceed to define P so that the inequality of Lemma 3.4 holds and the short
blocks that overlap the starting position of C have at least q circled terms. This is
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the final step in the proof of Theorem 1.3. We begin it by assuming that q ≥ u > 0
and then consider u > q > 0.

Given q ≥ u > 0, let a and b satisfy

q = au+ b, a ≥ 1, 0 ≤ b < u.

Then k − 1 = q + u = (a+ 1)u+ b.
Suppose b = 0. Then q = au and k − 1 = (a+ 1)u. Let x = x1x2 · · ·xk−1 denote

the k − 1 successive terms of an MSB. Define P as the pattern that circles every xi
except those for which i ∈ {a+1, 2(a+1), . . . u(a+1)}. Thus, when x is divided into
u runs of a+1 terms each, P circles the first a terms in each run. As noted before, P ’s
pattern of circles is continued into the final terms of C beyond the last MSB. Thus
C either ends with a run of circled terms or concludes with an uncircled k preceded
by a circled terms. Because the first MSB after the start has pattern P , every short
block in C has at least q circled terms.

Moreover, because the γ remainder long blocks have γ instances of each j ∈
{1, 2, . . . , k} and because P begins with circled terms and the first MSB in the γ
region begins with 1, j = 1 has as many circled instances in that region as any other
j. Thus r(P ) is the number of circled 1’s in the γ region. Now observe that the γ
remainder long blocks with γk terms have exactly γ = 
γk/(k − 1)� complete MSBs,
for if 
γk/(k − 1)� ≥ γ + 1, then γk/(k − 1) ≥ γ + 1 and therefore γ ≥ k − 1,
contradicting γ < k − 1. This in turn implies that there are γ = γk − γ(k − 1) final
terms before the start, namely k− γ+1, k− γ+2, . . . , k with k− γ+1 ≥ 2. Because
the terms in the MSBs in the γ region are 12 . . . k−1 for the first, k12 . . . k−2 for the
second, and so forth, it follows that the number of circled 1’s in the γ region is the
number of circled terms in the first γ positions of an MSB, i.e., the number of circled
xi in x1x2 · · ·xγ . This number is γ − 
γ/(a+ 1)�, and therefore

r(P ) = γ − 
γ/(a+ 1)�.

Hence, with q/(k − 1) = a/(a+ 1), the inequality of Lemma 3.4 holds if and only if⌈
aγ

a+ 1

⌉
≥ γ −

⌊
γ

a+ 1

⌋
.

This is true because⌈
aγ

a+ 1

⌉
=

⌈
γ − γ

a+ 1

⌉
= γ +

⌈
− γ

a+ 1

⌉
= γ −

⌊
γ

a+ 1

⌋
.

This completes the proof for q = au.
Continuing with q = au + b, a ≥ 1, and 0 ≤ b < u, suppose that b ≥ 1. When

b = 0, P had u runs of a circled terms, each followed by an uncircled term. With
the circled-term runs numbered 1, 2, . . . , u, left to right, we use the same basic P for
b ≥ 1 except that the runs whose numbers are in{⌊

1 +
iu

b

⌋
: i = 0, 1, . . . , b− 1

}

are increased from a circled terms to a+1 circled terms. This gives q = au+ b circled
terms and, as before, u uncircled terms, for a total of k − 1 = q + u terms in the
MSB. To illustrate, suppose u = 10 and b = 3. Then the first, fourth, and seventh
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circled-term runs in P have (a + 1) terms apiece, while runs 2, 3, 5, 6, 8, 9, and 10
have a terms apiece. If u = 10 and b = 7, the (a + 1)-term runs are numbered 1, 2,
3, 5, 6, 8, and 9, and the a-term runs are numbered 4, 7, and 10. These two cases
have the following run patterns when 1 denotes an (a+1)-term run and 0 denotes an
a-term run:

(u, b) = (10, 3) : 1001001000,

(u, b) = (10, 7) : 1110110110.

Let P (u, b) denote the circled-term pattern P defined in the preceding paragraph
for 1 ≤ b ≤ u− 1, and let

ei =

⌊
1 +

(i− 1)u

b

⌋
for i = 1, . . . , b,

so the circled-term runs with a + 1 terms are numbered 1 = e1, e2, . . . , eb. We have
defined P (u, b) so that it spreads the uncircled one-term runs fairly evenly around
C, begins every MSB with a run of (a + 1) circled terms, ends every MSB with an
uncircled term, and shows a slight preference for the longer circled-term runs near
the beginning of the MSB. The following lemma notes a remarkable feature of run
patterns as defined at the end of the preceding paragraph. It is illustrated by the run
patterns for (u, b) = (10, 3) and (u, b) = (10, 7).

Lemma 3.5. The run pattern for (u, u − b) is obtained from the run pattern for
(u, b) by changing all 1’s to 0’s and all 0’s to 1’s in the (u, b) run pattern and then
reversing the entire sequence.

Remark. With a ≥ 1 and 1 ≤ b ≤ u − 1, the run pattern for (u, b) refers to
P (u, b) with q = au+ b, and the run pattern for (u, u− b) refers to P (u, u− b) with
q′ = au+ (u− b).

Proof. The 1’s in the run pattern for (u, b) are the terms in that pattern numbered
ei = 
1 + (i− 1)u/b] for i = 1, . . . , b. The 1’s in the run pattern for (u, u− b) are the
terms in that pattern numbered

fj =

⌊
1 +

(j − 1)u

u− b

⌋
for j = 1, . . . , u− b.

Let gj = u+ 1− fj so that

gj = u+ 1−
⌊
1 +

(j − 1)u

u− b

⌋
= u+ 1 +

⌈
−1− (j − 1)u

u− b

⌉

=

⌈
u− (j − 1)u

u− b

⌉
for j = 1, . . . , u− b.

The operations described in the lemma for going from the run pattern for (u, b) to
the run pattern for (u, u− b) are tantamount to the assertion that

{e1, e2, . . . , eb} ∩ {g1, g2, . . . , gu−b} = ∅.

Suppose to the contrary that ei = gj for some i and j so that⌊
1 +

(i− 1)u

b

⌋
=

⌈
u− (j − 1)u

u− b

⌉
= c
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for a positive integer c. Then

c ≤ 1 +
(i− 1)u

b
< c+ 1

and

c− 1 < u− (j − 1)u

u− b
≤ c.

The first of these double inequalities can be written as

b(c− 1)

u
≤ i− 1 <

bc

u

and, with z = j − 1− u+ b+ c, the second can be written as

bc

u
≤ z <

b(c− 1)

u
+ 1.

These imply that i − 1 < z < i, which is impossible because i and z are inte-
gers.

We now use Lemma 3.5 to prove a result that reflects the propensity of P (u, b)
to position longer circled-term runs near the beginning of its pattern. Until further
notice, run denotes circled-term run with either a or a + 1 circled terms, so P (u, b)
has b runs of length a+ 1 and u− b runs of length a. Two such runs are contiguous
if they are separated by a single uncircled term.

Lemma 3.6. With q = au + b, a ≥ 1 and 1 ≤ b ≤ u − 1, suppose 1 ≤ s ≤
u− 1. Then the number of circled terms in s successively contiguous runs of P (u, b)
is maximized by the first s runs and minimized by the final s runs.

Proof. Let w = u/b > 1, so e1 = 
1 + 0w�, e2 = 
1 + w�, . . . , eb = 
1 + (b− 1)w�
with w as the constant difference between the floor arguments of ei+1 and ei. Given
1 ≤ s ≤ u− 1, the lemma claims that [1, s] contains as many ei’s as each of [2, s+ 1],
[3, s + 2], . . . , [u − s + 1, u], and that [u − s + 1, u] contains as few ei’s as each of
[1, s], . . . , [u − s, u − 1]. The max claim for [1, s] follows immediately from the fact
that the floor argument of e1 is 1.

The min claim for [u− s+ 1, u] is implied by Lemma 3.5 and the max claim for
[1, s]. According to Lemma 3.5, a right-to-left traversal through the run pattern of
P (u, b) is the same as a left-to-right traversal through the run pattern of P (u, u− b)
with 0’s and 1’s interchanged. The min claim for [u− s+1, u] with respect to P (u, b)
is therefore identical to the max claim for [1, s] with respect to P (u, u− b), and, since
the latter is true, so is the former.

Our next lemma notes two key implications of the construction of P (u, b). Recall
that r(P ) is the maximum number of times a j ∈ {1, 2, . . . , k} is circled in the γ
remainder long blocks when pattern P is used for the circling operation.

Lemma 3.7. Suppose q = au + b, a ≥ 1, 1 ≤ b ≤ u − 1, and γ > 0. Then, with
terms of C circled according to P (u, b), every short block in C has at least q circled
terms and r(P (u, b)) is the number of times j = 1 is circled in the remainder region.

Proof. To prove the short block assertion, let AB denote a short block that
overlaps the start of C with A left of and B right of the start. To minimize the
number of circled terms in AB, we can do no better than to have A’s final term (next
to the start) uncircled. Going counterclockwise from there, it follows from the final
part of Lemma 3.6 that the number of circled terms in A will be minimized when A
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is the right end of an MSB with pattern P (u, b). When A is transposed clockwise
immediately to the right of B, BA has the structure of an MSB circled according to
P (u, b), and therefore it, and AB, has q circled terms.

To prove the assertion for r, let 2P (u, b) denote two adjacent copies of the P (u, b)
pattern with 2(k − 1) positions from start to finish. Also let h(j) be the number of
times j is circled in the remainder region. Then, for every j ∈ {1, 2, . . . , k}, h(j) is
the number of circled terms of 2P (u, b) in positions j through j + γ − 1. This follows
from the fact noted earlier for b = 0 after Lemma 3.4 that the remainder region has
exactly γ complete MSBs followed by γ final terms, namely k− γ +1 through k, just
before the start. For example, the remainder region terms for k = 7 and γ = 3 are

start
1 2 3 4 5 6 | 7 1 2 3 4 5 | 6 7 1 2 3 4 | 5 6 7 |.

By definition, h(k) = h(1). Contrary to the final conclusion of Lemma 3.7,
suppose h(j′) > h(1) for some j′ ∈ {2, . . . , k − 1}. Then the position’s interval [1, γ]
of 2P (u, b) has more uncircled terms than [j′, j′+ γ− 1]. Translate the latter interval
leftward to [j, j + γ − 1] until the term that precedes it is uncircled, i.e., so that
it begins with a run. This does not increase its uncircled terms, so [1, γ] has more
uncircled terms than [j, j + γ − 1], and both begin with runs.

Suppose j + γ − 1 < k − 1. Extend [j, j + γ − 1] rightward as far as possible
without increasing its uncircled terms. (The final term of P (u, b) is uncircled.) Also
remove the right end of [1, γ] so that it has the same number of uncircled terms as
[j, j+γ−1] and ends just before an uncircled term. The modified [1, γ] and [j, j+γ−1]
then contain the same number of runs, and the latter has more circled terms than the
former, which contradicts the max part of Lemma 3.6.

Suppose j + γ − 1 = k − 1, so the last term of [j, j + γ − 1] is uncircled and has
a run just before that term. Then [1, γ] has more runs than [j, j + γ − 1], but fewer
circled terms, again contradicting the max part of Lemma 3.6.

Finally, suppose j+γ−1 ≥ k, so [j, j+γ−1] goes into the second P (u, b). Subtract
the same-patterned initial segment of [1, γ] and the final segment of [j, j + γ − 1] so
that

[1, γ]→ [γ + j + 1− k, γ],

[j, j + γ − 1]→ [j, k − 1],

each with k − j terms. Because the removed segments have the same pattern, [γ +
j + 1 − k, γ] has more uncircled terms than [j, k − 1], so [j, k − 1] has more circled
terms. Suppose [j, k − 1] has s uncircled terms, one of which is k − 1, and therefore
has s runs. Then, even if [γ + j + 1 − k, γ] begins and ends with uncircled terms, it
contains at least s runs. However, it also has fewer circled terms than [j, k − 1], and
this contradicts the min part of Lemma 3.6.

We are now in position to complete the proof of the latter part of Theorem 1.3
when 
t(k − 1)/(d+ 1− t)� ≥ (k − 1)/2, i.e., when q ≥ u.

Lemma 3.8. The latter part of Theorem 1.3 is true if q ≥ u.
Proof. According to Lemmas 3.4 and 3.7 and supporting discussion, it suffices to

prove that ⌈
qγ

k − 1

⌉
≥ r(P (u, b))(3.1)
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when q = au+ b, a ≥ 1, 1 ≤ b ≤ u− 1, and γ > 0, where r(P (u, b)) is the number of
times j = 1 is circled in the remainder region or, equivalently, the number of circled
terms in the first γ terms of P (u, b).

The number of circled terms of P (u, b) through the final position of its sth run is

zs = as+ |{i : ei ≤ s}|,
and the number of terms of P (u, b) to the same point is zs+s−1. Because q = au+ b
and k − 1 = (a+ 1)u+ b, (3.1) holds when γ = zs + s− 1 if and only if⌈

(au+ b)(zs + s− 1)

(a+ 1)u+ b

⌉
≥ zs.(3.2)

If (3.2) is true and γ is increased by 1 to include the next uncircled term, it remains
true because the ceiling argument increases and the right side remains at zs. If we go
the other way and reduce γ by h terms while staying within the sth run, then (3.1) is
tantamount to (3.2) when zs on both sides is replaced by zs − h, and it is easily seen
that this version of (3.1) holds when (3.2) holds as stated.

Consequently, we need only show that (3.2) holds for s = 1, 2, . . . , u.
The ceiling argument of (3.2) equals

zs +
(au+ b)(s− 1)− zsu

(a+ 1)u+ b
,

and therefore (3.2) is true if and only if

(au+ b)(s− 1)− zsu

(a+ 1)u+ b
> −1.

This inequality reduces to zsu < u(as+1)+ bs which, after division by u and substi-
tution of as+ |{i : ei ≤ s}| for zs, can be rewritten as

|{i : 1 ≤ ei ≤ s}| < 1 +
bs

u
.

Now

ei ≤ s⇔
⌊
1 +

(i− 1)u

b

⌋
≤ s

⇔ 1 +
(i− 1)u

b
< s+ 1

⇔ i < 1 +
bs

u
,

so the preceding inequality is the same as∣∣∣∣
{
i : 1 ≤ i < 1 +

bs

u

}∣∣∣∣ < 1 +
bs

u
.

The left side here is bs/u if bs/u is an integer, and is 1 + 
bs/u� otherwise, so the
inequality holds for s = 1, 2, . . . , u. Consequently, (3.2) holds in all cases and the
proof is complete.

It remains to show that the latter part of Theorem 1.3 holds when u > q. The
proof for this case is dually similar to the proof for q > u, and we sketch only its main
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points. The fundamental change from the preceding proof, which is suggested by the
analysis for Lemma 3.5, is to interchange “circled” and “uncircled” and construct
P (q, b) right-to-left in the left-to-right manner of P (u, b) for q > u. With

u = aq + b, a ≥ 1, 0 ≤ b ≤ q − 1,

we now refer to a run as a sequence of a or a + 1 uncircled terms in P without
intervention of a circled term. When b = 0, P begins from the right with a run of a
terms followed by a circled term and continues this pattern q times to the left end.
When b ≥ 1, P (q, b) is like P for b = 0 except that each run whose run number
right-to-left is in {⌊

1 +
iq

b

⌋
: i = 0, 1, . . . , b− 1

}

is increased from a to a+ 1 uncircled terms.
Despite the dual construction of P (q, b), it is used in the original sense to form an

assignment, as in Figure 3.1. Going left-to-right, P (q, b) begins with a circled term,
ends with an uncircled term, and has a slight propensity to position the circled terms
near the beginning.

The analysis through the proof of Lemma 3.4 is not affected by u > q. Lemma
3.5 applies with the new meaning for “run” when q replaces u. Lemma 3.6 applies
under the same changes for the right-to-left orientation. Going left-to-right, the new
Lemma 3.6 says that the number of uncircled terms in s successively continuous runs
of P (q, b) is minimized by the first s runs and maximized by the final s runs. Lemma
3.7 applies when q and u are interchanged. In particular, r(P (q, b)), the maximum
number of times some j is circled in the remainder region, equals the number of times
j = 1 is circled in that region. As before, this is the number of circled terms in the
first γ positions left-to-right of P (q, b).

The desired inequality of Lemma 3.4 can be proved from the fact, established
dually for (3.1) in the former q > u analysis, that the number r∗(P (q, b)) of uncircled
terms in the first k − 1− γ terms of an MSB going right-to-left satisfies⌈

u(k − 1− γ)

k − 1

⌉
≥ r∗(P (q, b)).

Then the first γ left-to-right positions in an MSB have at least u−�u(k−1−γ)/(k−1)
uncircled terms and therefore have no more than γ − {u − �u(k − 1 − γ)/(k − 1)}
circled terms. We therefore have

r(P (q, b)) ≤ γ − u+

⌈
u(k − 1− γ)

k − 1

⌉
=

⌈
(k − 1− u)γ

k − 1

⌉
=

⌈
qγ

k − 1

⌉
,

which is the desired inequality of Lemma 3.4.

4. More for d = 3. To prove Theorem 1.2 for d = 3, suppose first that n = 4k
with G composed of k copies of K4. The α ranges for M∗ ∈ {0, 6k} are implied by
the first part of Theorem 1.3, and those for M∗ ∈ {k, 2k} are implied by t ∈ {1, 2} in
the latter part of Theorem 1.3. This leaves only α = 2k − 1 where there are 2k color
pairs without interference, namely {i, 2k + i} for i = 1, . . . , 2k. All such pairs can be
used as edges in the k copies of K4, so M∗(4k, 2k − 1, 3) = 6k − 2k = 4k.

Assume henceforth that d = 3, k ≥ 0, n = 4k + 6, and G consists of k copies
of K4 and either H1 or H2 as in Figure 1.1. Because Theorem 1.2 stated the results
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for n = 4k + 2 and k ≥ 1, we rewrite them for n = 4k + 6 and k ≥ 0 as follows:
M∗(4k + 6, α, 3) equals

A. 0 if α ≤ k,
B. 2 if (k, α) ∈ {(0, 1), (1, 2)},
C. k if k ≥ 2, k + 1 ≤ α ≤ ⌈ 4k+1

3

⌉
, and it is

false that k ≡ 0 (mod 3) and α =
⌈

4k+1
3

⌉
,

D. 2k if k ≥ 3, k ≡ 0 (mod 3) and α =
⌈

4k+1
3

⌉
,

E. 2k + 2 if
⌈

4k+4
3

⌉ ≤ α ≤ 2k + 1,
F. 4k + 6 if α = 2k + 2,
G. 6k + 9 if α ≥ 2k + 3.

We verify these in reverse order except that C and D are left for last.

G. If α ≥ 2k + 3, then all edges are bad, so M∗ = nd/2 = 6k + 9.

F. When α = 2k+2, there are 2k+3 pairs without interference, namely {i, 2k+
3 + i} for i = 1, . . . , 2k + 3. The k K4’s can use 2k of these as edges, and H1 or H2

can use the other three, so M∗ = 6k + 9− (2k + 3) = 4k + 6.

E. When �(4k + 4)/3 ≤ α ≤ 2k + 1, every C3 has at least one bad edge. For
example, if the colors of a C3 are 1, α + 2, and 2α + 3, then D(1, 2α + 3) ≤ α. It
follows that every K4 has at least two bad edges and H2, which contains two disjoint
C3’s, has at least two bad edges. Each K4 has exactly two bad edges when their color
sets are {i, i+ 1, 2k+ 3+ i, 2k+ 4+ i} for i = 1, 3, 5, . . . , 2k− 1. The other six colors
are 2k + 1, 2k + 2, 2k + 3, 4k + 4, 4k + 5, and 4k + 6. These six can be assigned to
the vertices of H1 or H2 to give no more than two bad edges, so M∗ = 2k + 2.

B. The adversary’s better strategy is H1 for both of (n, α) = (6, 1) and
(n, α) = (10, 2). The first of these is shown in the middle of Figure 1.1, where it
is easily seen that H1 forces at least two bad edges. Suppose (n, α) = (10, 2). Then
K4 must have at least one bad edge. If H2 is used, there is only one bad edge overall
when K4’s colors are 1, 4, 7, 10 and the colors for H2, clockwise from its top left
vertex, are 2, 6, 9, 3, 8, 5. If H1 is used and K4 has only one bad edge, H1 must
have at least one bad edge. The assignment of 4, 5, 9, 10 to K4 and 1, 6, 2, 7, 3, 8
clockwise to the vertices of H1 shows that M∗ = 2 for (n, α) = (10, 2).

A. We show that M∗ = 0 when α = k. If the adversary chooses H1, use the four
colors in each column of

1 2 k
k + 2 k + 3 2k + 1
2k + 3 2k + 4 · · · 3k + 2
3k + 4 3k + 5 4k + 3

to color the vertices of each K4, and color the vertices of H1 clockwise as k+1, 4k+4,
2k+2, 4k+5, 3k+3, 4k+6. If the adversary chooses H2 and k = 1, color K4 with 1,
3, 5, 8 and H2 with 6, 9, 2, 7, 10, 4, clockwise from its top left vertex. If the adversary
chooses H2 and k ≥ 2, use the four colors in each column of

2 4 5 k + 1
k + 2 k + 3 k + 5 k + 6 · · · 2k + 2
2k + 4 2k + 5 2k + 6 2k + 7 3k + 3
3k + 5 3k + 7 3k + 8 3k + 9 4k + 5
4k + 6
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to color the vertices of each K4, and color the vertices of H2 clockwise from its top
left vertex with 1, k + 4, 3, 3k + 6, 2k + 3, 3k + 4. None of these assignments has a
bad edge when α = k.

C and D. M∗ ≥ k for C, and M∗ ≥ 2k for D follow from the facts that (i) if
α ≥ k+1, then every K4 has at least one bad edge (consider 1, α+2, 2α+3, 3α+4)
and (ii) if k = 3t with t ≥ 1 and α = �(4(3t) + 1)/3 = 4t+ 1, then every K4 has at
least two bad edges. For (ii), if every C3 in a K4 has a bad edge, then the K4 has at
least two bad edges, and if some C3 in a K4 has no bad edges, then the color pairs in
this C3 all have D = α + 1 = 4t+ 2 (consider 1, α + 2, 2α + 3, i.e., 1, 4t + 3, 8t+5,
with 12t+ 7− (8t+ 5) = 4t+ 2 = α+ 1) and any fourth color forces two bad edges.

We show next that M∗ = 2k for D. Let k = 3t, t ≥ 1, with α = 4t + 1. If H1 is
chosen, use the colors in each column of

1 3 6t− 1
2 4 · · · 6t

6t+ 4 6t+ 6 12t+ 2
6t+ 5 6t+ 7 12t+ 3

to color the vertices of each K4, and color the vertices of H1 clockwise as 6t + 1,
12t+ 4, 6t+ 2, 12t+ 5, 6t+ 3, 12t+ 6. Then H1 has no bad edges and each K4 has
two. If H2 is chosen, use the columns of

1 2t− 1 2t+ 2 4t 4t+ 3 6t+ 1
2 · · · 2t 2t+ 3 · · · 4t+ 1 4t+ 4 · · · 6t+ 2

6t+ 4 8t+ 2 8t+ 5 10t+ 3 10t+ 6 12t+ 4
6t+ 5 8t+ 3 8t+ 6 10t+ 4 10t+ 7 12t+ 5

to color the K4’s, and color the vertices of H2 clockwise from its top left vertex as
2t+1, 8t+4, 4t+2, 12t+6, 6t+3, 10t+5. Then H2 has no bad edges and each K4

has two.
We next verify M∗ = k for C when k = 3t and α = 4t. If H2 is chosen, color the

K4’s by the columns of

3 4 5 4t− 1 4t 4t+ 1
4t+ 4 4t+ 5 6 · · · 8t 8t+ 1 8t+ 2
8t+ 5 4t+ 6 4t+ 7 12t+ 1 12t+ 3 12t+ 5
8t+ 6 8t+ 7 8t+ 8 12t+ 2 12t+ 4 12t+ 6

and color H2’s vertices clockwise from its top left vertex as 1, 4t+3, 8t+4, 2, 8t+3,
4t+ 2. Then every K4 has one bad edge and H2 has none. If H1 is chosen, color the
K4’s by the columns of

2 4 6 7 4t+ 1 4t+ 2
4t+ 3 4t+ 5 4t+ 7 8 · · · 8t+ 2 8t+ 3
4t+ 4 8t+ 7 4t+ 8 4t+ 9 12t+ 3 12t+ 5
8t+ 6 8t+ 8 8t+ 9 8t+ 10 12t+ 4 12t+ 6

and color H1’s vertices clockwise as 1, 4t+ 6, 3, 8t+ 4, 5, 8t+ 5. Then every K4 has
one bad edge and H1 has none.

The remaining cases for C with maximum α = �(4k + 1)/3 are
k = 3t+ 1, t ≥ 1, n = 12t+ 10, α = 4t+ 2;

k = 3t+ 2, t ≥ 0, n = 12t+ 14, α = 4t+ 3.
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If H1 is chosen with k = 3t+ 1, color the K4’s by the columns of

2 4 6 7 4t+ 2 4t+ 3
4t+ 5 4t+ 7 4t+ 9 8 · · · 8t+ 5 4t+ 4
4t+ 6 8t+ 10 8t+ 12 4t+ 11 8t+ 6 8t+ 7
8t+ 9 8t+ 11 8t+ 13 8t+ 14 12t+ 9 12t+ 10

and color H1’s vertices clockwise as 1, 4t + 8, 3, 4t + 10, 5, 8t + 8. If H2 is chosen
with k = 3t+ 2, color the K4’s by the columns of

2 4 6 7 4t+ 3 4t+ 5
4t+ 6 4t+ 8 4t+ 10 8 · · · 4t+ 4 8t+ 9
4t+ 7 8t+ 13 4t+ 11 4t+ 12 8t+ 8 12t+ 13
8t+ 12 8t+ 14 8t+ 15 8t+ 16 12t+ 12 12t+ 14

and color H1’s vertices clockwise as 1, 4t + 9, 3, 8t + 10, 5, 8t + 11. In both cases
every K4 has one bad edge and H1 has none.

If H2 is chosen with k = 3t+ 1, color the K4’s by the columns of

3 4 5 4t+ 3
4t+ 6 4t+ 7 6 · · · 8t+ 6
8t+ 9 4t+ 8 4t+ 9 12t+ 9
8t+ 10 8t+ 11 8t+ 12 12t+ 10

and color H2’s vertices clockwise from its top left vertex as 1, 4t+5, 2, 8t+8, 4t+4,
8t+ 7. If H2 is chosen with k = 3t+ 2, color the K4’s by the columns of

3 4 5 4t+ 4
4t+ 7 4t+ 8 6 · · · 8t+ 8
8t+ 11 4t+ 9 4t+ 10 12t+ 13
8t+ 12 8t+ 13 8t+ 14 12t+ 14

and color H2’s vertices clockwise from its top left vertex as 1, 4t+6, 2, 8t+10, 4t+5,
8t+ 9. In both cases every K4 has one bad edge and H2 has none.
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Abstract. We show that each graph not containing a bad subdivision of K4 as a subgraph
is strongly t-perfect. Here a graph G = (V,E) is strongly t-perfect if, for each weight function
w : V → Z+, the maximum weight of a stable set is equal to the minimum (total) cost of a family
of vertices, edges, and circuits covering any vertex v at least w(v) times. By definition, the cost of a
vertex or edge is 1, and the cost of a circuit C is � 1

2
|V C|�. A subdivision of K4 is called bad if each

triangle has become an odd circuit and if it is not obtained by making the edges in a 4-circuit of K4

evenly subdivided, while the other two edges are not subdivided.
The theorem generalizes earlier results of Gerards [J. Combin. Theory Ser. B, 47 (1989), pp. 330–

348] on the strong t-perfection of odd-K4-free graphs and of Gerards and Shepherd [SIAM J. Discrete
Math., 11 (1998), pp. 524–545] on the t-perfection of bad-K4-free graphs.

Key words. t-perfect, graph, stable set, polytope
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1. Introduction. A graph G = (V,E) is called t-perfect if the stable set polytope
of G (= the convex hull of the incidence vectors in R

V of stable sets) is determined
by

(i) 0 ≤ xv ≤ 1 for each v ∈ V ;
(ii) xu + xv ≤ 1 for each edge uv ∈ E;
(iii) x(V C) ≤ � 12 |V C|� for each odd circuit C.

(1.1)

Here x(U) :=
∑
v∈U xv for any U ⊆ V .., V.., and E.. denote the sets of vertices and

edges, respectively, of .. . A circuit C is odd (even) if |V C| is odd (even).
A motivation for the concept of t-perfection lies in the fact that a linear function

wTx can be maximized over (1.1) in strongly polynomial time (with the ellipsoid
method, since the separation problem over (1.1) is polynomial-time solvable). Hence
a maximum-weight stable set in a t-perfect graph can be found in strongly polynomial
time.

G is called strongly t-perfect if system (1.1) is totally dual integral—that is, if
for each weight function w : V → Z+, the linear program of maximizing wTx over
(1.1) has an integer optimum dual solution. This implies that it also has an integer
optimum primal solution. In particular, all vertices of the polytope determined by
(1.1) are integer, and hence the polytope is the stable set polytope. So strong t-
perfection implies t-perfection.

Strong t-perfection can be characterized equivalently as follows. For any w : V →
Z+, let αw(G) denote the maximum weight of a stable set in G. Define a w-cover as
a family of vertices, edges, and odd circuits such that each vertex v is covered at least
w(v) times. (In a family, repetition is allowed.) By definition, the cost of a vertex
or edge is 1, the cost of a circuit C is � 12 |V C|�, and the cost of a w-cover is the sum
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of the costs of its elements (counting multiplicities). Let ρ̃w(G) denote the minimum
cost of a w-cover. Then

a graph G is strongly t-perfect if and only if αw(G) = ρ̃w(G) for each w : V → Z+.
(1.2)

The classes of t-perfect and strongly t-perfect graphs are closed under taking
induced subgraphs. However, no characterization is known in terms of forbidden
induced subgraphs.

If we also take noninduced subgraphs, the situation is clearer (although it does
not yield a characterization). Here subdivisions of K4 come in. A K4-subdivision H
is called odd, or just an odd K4, if each triangle of K4 has become an odd circuit in
H. It was shown by Gerards [6] that

each graph without odd K4 is strongly t-perfect.(1.3)

(By “a graph without” odd K4 we mean a graph not containing an odd K4 as sub-
graph.) It extends an earlier result of Gerards and Schrijver [7] that such graphs are
t-perfect.

There exist, however, odd K4’s that are t-perfect. Following Gerards and Shep-
herd [8], we call an odd K4-subdivision a bad K4 if it does not have the following
property:

the edges of K4 that have become an even path form a 4-cycle in K4,(1.4)

while the two other edges of K4 are not subdivided.

This name is motivated by the fact, shown by Barahona and Mahjoub [1], that a
subdivision of K4 is t-perfect if and only if it is not a bad K4. Gerards and Shepherd
[8] proved that

each graph without bad K4 is t-perfect.(1.5)

(Gerards and Shepherd [8] also showed that graphs without bad K4 can be recognized
in polynomial time.)

In the present paper, we show more strongly that these graphs are strongly t-
perfect. This generalizes (1.3) and (1.5), and implies for any graph G that

each subgraph of G is t-perfect(1.6)

⇐⇒ each subgraph of G is strongly t-perfect

⇐⇒ G has no bad K4 as subgraph.

On the other hand, there exist strongly t-perfect graphs that contain a bad K4;
see Figure 1.1.

Our proof method was inspired by a method of Geelen and Guenin [5] for proving
a special case of a theorem of Seymour [12] on packing the edge sets of odd circuits
in odd-K4-free graphs.

The above results contain the strong t-perfection of series-parallel graphs, which
are, as is well known, those graphs not containing any K4-subdivision (Boulala and
Uhry [2]), and of almost bipartite graphs—graphs G having a vertex v with G − v
bipartite (Fonlupt and Uhry [4], Sbihi and Uhry [10]).
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Fig. 1.1.

A related theorem was proved by Sewell and Trotter [11]. A K4-subdivision is
called a totally odd K4 if it arises from K4 by replacing each edge by an odd path.
The theorem says that a graph G without totally odd K4 satisfies α1(G) = ρ̃1(G),
where 1 denotes the all-one weight function. This result does not follow from our
methods.

The totally odd K4’s are precisely those K4-subdivisions G with α1(G) < ρ̃1(G).
So the theorem of Sewell and Trotter and the theorem presented in this paper suggest
the question of whether, for each graph G and each w : V G → Z+ with αw(G) <
ρ̃w(G), G contains a K4-subdivision H as subgraph such that αw′(H) < ρ̃w′(H),
where w′ := w|V H. The answer is unknown.

To complete the picture, it was shown by Zang [15] and Thomassen [13] that
χ(G) ≤ 3 for any graph G without totally odd K4. This was conjectured by Toft
[14], and was proved by Hadwiger [9] for series-parallel graphs, by Catlin [3] for odd-
K4-free graphs, and by Gerards and Shepherd [8] for bad-K4-free graphs. (However,
there exist strongly t-perfect graphs G with χ(G) > 3.)

A.M.H. Gerards and P.D. Seymour proved in 1991 (personal communication)
that if G contains no odd K4, then the stable set polytope of G has the integer
decomposition property. In other words, any w : V G→ Z+ is the sum of the incidence
vectors of k stable sets, where k is the minimum integer for which 1

kw belongs to the
stable set polytope. It implies the result of Catlin mentioned above.

2. Graphs without bad K4. In this section we prove a technical lemma on
bad-K4-free graphs. Let G be graph without bad K4, and let C be an even circuit
in G. Let e1, . . . , en be chords of C such that ei has ends si and sn+i (say) (for
i = 1, . . . , n), such that s1, . . . , s2n are distinct and occur in this order clockwise along
C, and such that, for each i = 1, . . . , 2n, the clockwise si−1 − si path Ri along C has
even length. (We take indices mod 2n and set en+i := ei for i = 1, . . . , n.) Define
D := {e1, . . . , en}.

Call a path B in G a bow if B is simple, has length at least 2, and intersects C
precisely in its end vertices. We call a bow an odd bow if it forms with a subpath of
C an odd circuit and an even bow if it forms with a subpath of C an even circuit. (So
an odd (even) bow need not be an odd (even) path. To avoid confusion, we therefore
do not use the more familiar term “ear.”)

We will study in particular the occurrence of odd bows. We say that a bow B
crosses an edge e ∈ D (and conversely) if e is disjoint from the ends a, b (say) of B
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and connects distinct components of the graph C − a− b. Then

an odd bow B does not cross any edge e in D.(2.1)

Otherwise, C, B, and e form a bad K4, a contradiction.
Equation (2.1) implies that the ends of any odd bow belong to V Rj for some

j = 1, . . . , 2n. Define

J := {j ∈ {1, . . . , 2n}| there exists an odd bow with ends in V Rj}.(2.2)

We prove the following lemma.
Lemma 2.1. There exists an i ∈ {1, . . . , 2n} such that i+1, i+2, . . . , i+n−1 ∈ J .
Proof. Consider a counterexample with n as small as possible. Define L :=

{i|i+ 2, . . . , i+ n− 1 ∈ J}. Then, for each i,

i ∈ L or i+ n ∈ L.(2.3)

To see this, by symmetry it suffices to show this for i = n. Delete en. By the
minimality of n, the lemma holds for the new structure. In the new structure, the
paths Rn and Rn+1 have merged to one path, and similarly the path R2n and R1 have
merged to one path. If (2.3) does not hold for the original structure, then, for some
i ∈ {2, . . . , n−1}, there is no odd bow with ends in one of V Ri+1, . . . , V Rn−1, V Rn∪
V Rn+1, V Rn+2, . . . , V Ri+n−1 or there is no odd bow with ends in one of V Ri+n+1, . . . ,
V R2n−1, V R2n∪V R1, V R2, . . . , V Ri−1. Either case implies the lemma for the original
structure, a contradiction. So we have (2.3).

We derive from this that n = 2. As the lemma does not hold, we know that i ∈ L
or i + 1 ∈ L for each i. Hence, by (2.3), i ∈ L or i + 1 ∈ L for each i. So the indices
i are alternatingly in and out of L. If n ≥ 4, then we can assume that each even i
belongs to L, and hence, by the definition of L, J = ∅, a contradiction.

So n ≤ 3. Suppose n = 3. We may assume J = {1, 3, 5}. For j = 1, 3, 5, let Bj
be an odd bow with ends in V Rj . Then B1, B3, B5 are pairwise disjoint, for suppose
that (say) B1 and B3 have a vertex in common. Choose an end a of B1 with a = s1.
Follow B1 from a until we reach B3. We can continue along B3 so as to create an odd
bow B (as B3 is an odd bow). As B crosses e1, this contradicts (2.1).

So B1, B3, B5 are pairwise disjoint. Let R′j be obtained from Rj by replacing part
of Rj by Bj . Then R′1, R2, R

′
3, R4, R

′
5 and e1, e2, e3 form a bad K4, a contradiction.

So n = 2. As the lemma does not hold, we know J = {1, 2, 3, 4}. For j = 1, . . . , 4,
let Bj be an odd bow with ends in V Rj . If the Bj are pairwise internally vertex-
disjoint, we obtain a bad K4, a contradiction. So at least two of the Bj have an
internal vertex in common. Define S := {s1, s2, s3, s4}. To analyze this, we first
prove the following:

Let B be a bow with ends a, b and a ∈ V R1 \ S and b ∈ V R1.(2.4)

Then a and b are equal to the middle vertices of R1 and R3, respectively.

By (2.1), B is an even bow. By symmetry, we can assume that b ∈ V R2∪V R3\{s1, s3}.
Let C ′ be the (even) circuit obtained from C by replacing the a− b path P along C
that traverses s1, by B. Let e′1 be the extension of e1 with the s1−a part of R1. So e′1
is an odd bow of C ′. If b ∈ V R2, then e2 is a chord of C ′ that crosses e′1, contradicting
(2.1). So b ∈ V R3 \ S.

Let e′2 be the extension of e2 with the s2− b part of R3. Again, e′2 is an odd bow
of C ′. Then C ′, e′1, e′2 form an odd K4-subdivision H, with trivalent vertices a, b, s3,
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Fig. 2.1.

and s4. As H is not bad, and as s4 is nonadjacent (in H) to b and s3, we know that
s4 is adjacent (in H) to a. By symmetry, a is adjacent to s1, and b to s2 and to s3.
This gives (2.4).

From this we derive the following:

Let T be a tree with three end vertices a, b, c, and trivalent vertex v such that T

has only its end vertices in common with C and such that a, b, c do not all belong

to some V Ri (i = 1, . . . , 4). Then for some i, {a, b, c} = {si−1, si, si+1}, si is adjacent

to v, and the v − si−1 and v − si+1 paths along T are even.(2.5)

We first show that a, b, c ∈ S. Suppose not. Then we can assume a ∈ V R1 \ S.
Since a, b, c not all belong to V R1, we can assume that b ∈ V R1. Then by (2.4), a and
b are the middle vertices of R1 and R3, respectively. By symmetry of a and b, we can
assume that c ∈ V R1, implying similarly that c = b, a contradiction. So a, b, c ∈ S.

Next we can assume that {a, b, c} = {s1, s2, s3}. Let Pi be the v − si path in T
(for i = 1, 2, 3) (cf. Figure 2.1(a)). As P1 and P3 form a bow connecting s1 and s3,
it is an even bow and we have |EP1| ≡ |EP3| (mod 2). If, moreover, |EP1| ≡ |EP2|
(mod 2), then P1, P2, P3, R1, R4, e1, and e2 form a bad K4. So |EP1| ≡ |EP2| (mod
2). Then P1, P2, P3, R2, R3, and e1 form an odd K4. As it is not bad and as e1 has
length 1, we have |EP2| = 1, implying (2.5).

This implies that

G− V C has no component K with s1, s2, s3, s4 ∈ N(K).(2.6)

Otherwise, there is a tree T intersecting V C only in its end vertices s1, s2, s3, s4. By
(2.5), the neighbor vi of any si in T has degree at least 3 (by considering a subtree
with ends si−1, si, si+1). It also follows from (2.5) that vi = vi+1 for each i. So
v1 = v3, contradicting (2.5) (by considering a subtree with ends s1, s2, s3). This gives
(2.6).

This implies that B1 and B3 are disjoint. Otherwise, by (2.5), the ends of B1 and
B3 are s1, s2, s3, s4, contradicting (2.6). Similarly, B2 and B4 are disjoint.

So we can assume that B2 and B3 have a vertex in common, and hence, by (2.5),
that there is a vertex v ∈ V C adjacent to s2 and a v − s1 path Q2 and a v − s3 path
Q3 such that, for i = 2, 3, Bi is the concatenation of the edge s2v and Qi (cf. Figure
2.1(b)).
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By (2.6), neither B1 nor B4 has an internal vertex in common with B2 and B3. If
B1 and B4 are internally vertex-disjoint, then B1, B4, e1, e2, vs2, Q1, Q2, and parts
of R1 and R4 form a bad K4.

So B1 and B4 are not internally vertex-disjoint. Hence, by (2.5), there is a vertex
u ∈ V C adjacent to s4 and a u − s1 path Q1 and a u − s3 path Q4 such that, for
i = 1, 4, Bi is the concatenation of the edge s4u and Qi (cf. Figure 2.1(c)). Then
Q1, . . . , Q4, vs2, us4, e2, and e1 form a bad K4, a contradiction.

3. Strong t-perfection of bad-K4-free graphs. We now prove our main
theorem.

Theorem 3.1. A graph without bad K4 is strongly t-perfect.
Proof. Let G = (V,E) be a counterexample with |V | + |E| minimum. For any

weight function w : V → Z+, denote αw := αw(G) and ρ̃w := ρ̃w(G). For any subset
U of V let χU be the incidence vector of U . So for an edge e = uv, χe is the 0, 1
vector in R

V having 1’s in positions u and v.
We first show the following claim.
Claim 1. There is a w : V → Z+ and an edge f such that

ρ̃w+χf = αw + 1 = ρ̃w(3.1)

and such that

αw−χV C = ρ̃w−χV C(3.2)

for each odd circuit C.
Proof of Claim 1. Choose a vertex u. For any w : V → Z+ with αw < ρ̃w one has

w(u) < w(N(u))(3.3)

(where N(u) denotes the set of neighbors of u). Otherwise, by the minimality of G,
setting G′ := G− u−N(u) and w′ := w|V G′,

αw(G) = w(u) + αw′(G′) = w(u) + ρ̃w′(G′) ≥ ρ̃w(G),(3.4)

since G[{u} ∪ N(u)] has a w|N(u) ∪ {u}-cover of cost w(u) (as w(u) ≥ w(N(u))).
Equation (3.4) contradicts our assumption, which proves (3.3).

By (3.3), we can choose w such that αw < ρ̃w and such that w(V \ {u}) − w(u)
is as small as possible. Then

there exists a z ∈ Z
δ(u)
+ such that for w̃ := w +

∑
e∈δ(u) zeχ

e we have αw̃ = ρ̃w̃.(3.5)

To see this, it suffices to show that

there exists a z ∈ Z
δ(u) and a stable set S such that w̃ := w +

∑
e∈δ(u) zeχ

e is

nonnegative and such that w̃(S) = ρ̃w̃ and S intersects each edge incident with u.

(3.6)

This suffices, since if z′ arises from z by replacing the negative entries by 0, and

w′ := w +
∑
e∈δ(u)

z′eχ
e,(3.7)



STRONG T-PERFECTION OF BAD-K4-FREE GRAPHS 409

then w′(S) = w̃(S) −∑(ze|ze < 0) and ρ̃w′ ≤ ρ̃w̃ −
∑

(ze|ze < 0), as w′ = w̃ −∑
(zeχ

e|ze < 0). This implies (3.5).
To prove (3.6), first suppose that N(u) is a stable set. Let G′ be the graph

obtained from G by contracting the edges in δ(u). Then G′ contains no bad K4. Let
t be the new vertex. Let w′ : V G′ → Z+ be defined by w′(t) := w(N(u))− w(u) and
w′(v) := w(v) if v = t. Since G′ is smaller than G, we know αw′(G′) = ρ̃w′(G′).

Consider a w′-cover F ′ in G′ of cost ρ̃w′(G′). Let λ be the number of circuits
in F ′ that are not circuits in G. So they traverse t and can be made to circuits
in G by adding two edges incident with u. It gives, for some w̃, a w̃-cover F in
G of cost ρ̃w′(G′) + λ such that w̃ coincides with w on V \ (N(u) ∪ {u}) and such
that w̃(u) = λ and w̃(N(u)) = w′(t) + λ. Hence the cost is ρ̃w′(G′) + w̃(u) and
w̃(N(u))− w̃(u) = w(N(u))−w(u). This last implies that w̃ = w +

∑
e∈δ(u) zeχ

e for

some z ∈ Z
δ(v).

Now let S′ be a stable set in G′ with w′(S′) = αw′(G′). If t ∈ S′, define S :=
(S′ \ {t}) ∪N(u), and if t ∈ S′, define S := S′ ∪ {u}. So S is a stable set in G. Then
w(S) = w′(S′) + w(u) and S intersects each edge incident with u. So

w̃(S) = w′(S′) + w̃(u) = ρ̃w′(G′) + w̃(u) ≥ ρ̃w̃(G).(3.8)

This gives (3.6) in case N(u) is a stable set.
If N(u) is not a stable set, let G′ := G − u − N(u) and w′ := w|V G′. By the

minimality of G, αw′(G′) = ρ̃w′(G′). Let F ′ be a w′-cover in G′ of cost ρ̃w′(G′). By
adding to F ′ a number of times a triangle incident with u we obtain a w̃-cover F
in G for some w̃ : V → Z+, where w̃ coincides with w on V \ ({u} ∪ N(u)), where
w̃(N(u))− w̃(u) = w(N(u))− w(u), and where F has cost ρ̃w′(G′) + w̃(u).

Now let S′ be a stable set in G′ with w′(S′) = αw′(G′). Define S := S′ ∪ {u}.
So S is a stable set in G. Then w(S) = w′(S′) + w(u) and S intersects each edge
incident with u. Moreover, w̃(S) = w′(S′) + w̃(u) = ρ̃w′(G′) + w̃(u) ≥ ρ̃w̃(G). So we
have (3.6), and hence (3.5).

Choose z in (3.5) with z(δ(u)) as small as possible. Choose f ∈ δ(u) with zf ≥ 1.
We can assume that zf = 1 and ze = 0 for all other edges e, as we can reset w :=
w̃− χf . (This resetting does not change the value of w(V \ {u})−w(u).) Then (3.2)
follows from the minimality of w(V \ {u})− w(u).

We finally show (3.1). By the definition of z, ρ̃w+χf = αw+χf . Also we have
αw+χf ≤ αw + 1, since any stable set S satisfies (w + χf )(S) ≤ w(S) + 1. As
ρ̃w ≤ ρ̃w+χf , this implies (3.1). End of Proof of Claim 1.

As of now we assume that w and f satisfy (3.1) and (3.2). Let f connect vertices
u and u′. Since by the minimality of G, G has no isolated vertices, there exists a
minimum-cost w + χf -cover consisting only of edges and odd circuits, say, e1, . . . , et,
C1, . . . , Ck. We choose f and e1, . . . , et, C1, . . . , Ck such that

|V C1|+ · · ·+ |V Ck|(3.9)

is as small as possible. Then

at least two of the Ci traverse f .(3.10)

To see this, let G′ := G−f . If αw(G′) = αw(G), then by induction G′ has a w-cover of
cost αw. As this is a w-cover in G as well, this would imply αw = ρ̃w, a contradiction.

So αw(G′) > αw(G). That is, there exists a stable set S in G′ with w(S) > αw.
Necessarily, S contains both u and u′. Then, for any circuit C traversing f ,

|V C ∩ S| ≤ � 12 |V C|�+ 1.(3.11)
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Also, f is not among e1, . . . , et, since otherwise ρ̃w ≤ ρ̃w+χf − 1, contradicting (3.1).
Setting l to the number of Ci traversing f , we obtain

ρ̃w+χf ≤ αw + 1 ≤ w(S) = (w + χf )(S)− 2 ≤ −2 +

t∑
j=1

|ej ∩ S|+
k∑
i=1

|V Ci ∩ S|

≤ −2 + t+

k∑
i=1

� 12 |V Ci|�+ l = ρ̃w+χf + l − 2.(3.12)

So l ≥ 2, which is (3.10).
By (3.10) we can assume that C1 and C2 traverse f . It is convenient to assume

that EC1 \ {f} and EC2 \ {f} are disjoint; this can be achieved by adding parallel
edges. So EC1 ∩ EC2 = {f}.

Then,

if C is an odd circuit with EC ⊆ EC1 ∪ EC2, then f ∈ EC and EC1�EC2�EC
again is an odd circuit.(3.13)

To see this, define C ′1 := C. As EC1�EC2�EC is an odd cycle (a cycle is an
edge-disjoint union of circuits), it can be decomposed into circuits C ′2, . . . , C

′
p, with

C ′2, . . . , C
′
q odd and C ′q+1, . . . , C

′
p even (q ≥ 2). Choose for each i = q + 1, . . . , p a

perfect matching Mi in C ′i. Let e′1, . . . , e
′
r be the edges in the matchings Mi and in

{f} \ EC. Then

χV C1 + χV C2 =

q∑
i=1

χV C
′
i +

r∑
j=1

χe
′
j(3.14)

and

� 12 |V C1|�+ � 12 |V C2|� = 1
2 |EC1|+ 1

2 |EC2| − 1 = r − 1 + 1
2

q∑
i=1

|EC ′i|

≥ r +

q∑
i=1

� 12 |V C ′i|�.(3.15)

So replacing C1, C2 by C ′1, . . . , C
′
q and adding e′1, . . . , e

′
r to e1, . . . , et again gives a

w + χf -cover of cost at most ρ̃w+χf .
If f ∈ EC, then f is among e′1, . . . , e

′
r. Hence deleting f gives a w-cover of cost

at most ρ̃w+χf − 1 ≤ αw, contradicting (3.1). So f ∈ EC. As this is true for any odd
circuit in EC1 ∪ EC2 we know that f ∈ EC ′i for i = 1, . . . , q and that q = 2.

If p ≥ 3 or r ≥ 1, then |EC ′1| + |EC ′2| < |EC1| + |EC2|, contradicting the
minimality of (3.9). This proves (3.13).

First, it implies

a circuit in EC1 ∪ EC2 is odd if and only if it contains f .(3.16)

A second consequence is as follows. Let Pi be the u−u′ path Ci \{f}. Orient the
edges occurring in the path Pi := Ci \ {f} in the direction from u to u′ for i = 1, 2.
Then

the orientation is acyclic.(3.17)



STRONG T-PERFECTION OF BAD-K4-FREE GRAPHS 411

For suppose there exists a directed circuit C. Then (EC1 ∪ EC2) \ EC contains a
directed u−u′ path, and hence an odd circuit C ′. Hence, by (3.13), EC1�EC2�EC ′
is an odd circuit, however, containing the even circuit EC, a contradiction.

Let A and B be the color classes of the bipartite graph (V P1 ∪ V P2, EP1 ∪EP2)
such that u, u′ ∈ A. So

A := {v ∈ V P1 ∪ V P2|there exists an even-length directed u− v path},(3.18)

B := {v ∈ V P1 ∪ V P2|there exists an odd-length directed u− v path}.

Define

X := V P1 ∩ V P2(3.19)

and U :=


v ∈ V

∣∣∣ w(v) =
t∑

j=1

|ej ∩ {v}|+
k∑
j=1

|V Cj ∩ {v}|

 .

We next show the following technical, but straightforward to prove, claim.
Claim 2. Let z ∈ A, let Q be an even length directed u− z path, and let S be a

stable set in G. Then

(w − χV Q)(S) ≥ αw − � 12 |V Q|�+ 1(3.20)

if and only if

(i) |ej ∩ S| = 1 for each j = 1, . . . , t,
(ii) |V Cj ∩ S| = � 12 |V Cj |� for j = 3, . . . , k,
(iii) S ⊆ U ,
(iv) S contains B \ V Q and is disjoint from A \ V Q,
(v) S contains B ∩X and is disjoint from A ∩X.

(3.21)

Proof of Claim 2. We can assume that EQ ⊆ EC1. Set W := V C1 \ V Q. So |W |
is even. Consider the following sequence of (in)equalities:

(w − χV Q)(S) = w(S)− |V Q ∩ S| ≤ (w + χf )(S)− |V Q ∩ S|

≤
t∑

j=1

|ej ∩ S|+
k∑
j=1

|V Cj ∩ S| − |V Q ∩ S| =
t∑

j=1

|ej ∩ S|+
k∑
j=2

|V Cj ∩ S|+ |W ∩ S|

≤ t+

k∑
j=2

� 12 |V Cj |�+ |W ∩ S| = ρ̃w+χf − � 12 |V C1|�+ |W ∩ S|

≤ ρ̃w+χf − � 12 |V C1|�+ 1
2 |W | = αw + 1− � 12 |V Q|�.

(3.22)
Hence (3.20) holds if and only if equality holds throughout in (3.22), which is equiv-
alent to (3.21). End of Proof of Claim 2.

By (3.17), we can order the vertices in X as v0 = u, v1, . . . , vs = u′ such that both
P1 and P2 traverse them in this order. For j = 0, . . . , s, let Pj be the collection of
directed u− x paths, where x = vj if vj ∈ A and x is an in-neighbor of vj if vj ∈ B.
So x ∈ A.

Let j be the largest index for which there exists a path Q ∈ Pj with

αw−χV Q ≤ αw − � 12 |V Q|�.(3.23)
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Such a j exists, since (3.23) holds for the trivial directed u− u path, as αw−χu ≤ αw.
Also, j < s, since otherwise V Q = V C for some odd circuit C, and hence with (3.2)
we have

ρ̃w ≤ ρ̃w−χV C + � 12 |V C|� = αw−χV C + � 12 |V C|� ≤ αw,(3.24)

contradicting (3.1).
Let Q1 and Q2 be the two paths in Pj+1 that extend Q. By the maximality of j,

we know

αw−χV Qi ≥ αw − � 12 |V Qi|�+ 1.(3.25)

Hence there exist stable sets S1 and S2 with

(w − χV Qi)(Si) ≥ αw − � 12 |V Qi|�+ 1(3.26)

for i = 1, 2. So, for i = 1, 2, (3.21) holds for Qi, Si. By (3.21)(iv), S1 and S2 coincide
on V P1 ∪ V P2 except on V Q1 ∪ V Q2. In other words,

(S1�S2) ∩ (V P1 ∪ V P2) ⊆ V Q1 ∪ V Q2.(3.27)

By (3.21)(v), S1 and S2, moreover, coincide on X.
Let H be the subgraph of G induced by S1�S2. So H is a bipartite graph, with

color classes S1 \ S2 and S2 \ S1. Define

Yi := V Qi \ V Q(3.28)

for i = 1, 2. Then

H contains a path connecting Y1 and Y2.(3.29)

For suppose not. Let K be the union of the components of H that intersect Y1. So K
is disjoint from Y2. Define S := S1�K. Then S ∩ Y1 = S2 ∩ Y1 and S ∩ Y2 = S1 ∩ Y2.
This implies that Q,S satisfy (3.21). Hence (3.20) holds, contradicting (3.23). This
proves (3.29).

Let C be the (even) circuit formed by the two directed vj − vj+1 paths. So Y1

and Y2 are subsets of V C. Let R be a shortest path in H that connects Y1 and Y2;
say it connects y1 ∈ Y1 and y2 ∈ Y2.

Since y1, y2 ∈ S1�S2, we know by (3.21)(v) that y1, y2 ∈ X. By (3.21)(iv), if
y1 ∈ S1 \ S2, then y1 ∈ A and if y1 ∈ S2 \ S1, then y1 ∈ B. Similarly, if y2 ∈ S2 \ S1,
then y2 ∈ A and if y2 ∈ S1 \ S2, then y2 ∈ B.

So if R is even, then y1 and y2 belong to different sets A,B, and if R is odd, then
y1 and y2 belong to the same set among A,B. Hence R forms with part of C an odd
circuit.

By (3.27) and as (S1�S2) ∩X = ∅, there exist a directed u − vj path N ′ and a
directed vj+1 − u′ path N ′′ that are (vertex-)disjoint from S1�S2. N ′, N ′′, and f
make a vj+1− vj path N . Then N , R, and C make an odd K4, with 3-valent vertices
vj , vj+1, y1, y2.

By assumption, it is not a bad K4; that is, it satisfies (1.4). Suppose first that
R has even length. Then by (1.4) N also has even length. Hence vj and vj+1 belong
to different sets A,B. Then by (1.4) and the symmetry of y1 and y2, we may assume
that y1 is adjacent to vj and that y2 is adjacent to vj+1. Hence, as y1, y2 ∈ S1∪S2, vj
and vj+1 do not belong to S1∩S2, and so vj , vj+1 ∈ B (by (3.21)(v)), a contradiction.
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So R has length 1. Hence N has length 1 as well, and vj , vj+1, y1, y2 lie in the
same color class of the bipartition A,B of C. So we know that

vj = u, vj+1 = u′, y1, y2 ∈ A, and R has length 1.(3.30)

Let D be the set of edges of G connecting two vertices in A. So f ∈ D and y1y2 ∈ D.
Hence |D| ≥ 2. We consider the edges in D as chords of the circuit C with EC =
EP1 ∪ EP2.

Now any edge d in D can play the same role as f , since, if C ′1 and C ′2 denote the
two odd circuits in EC ∪ {d}, then

C ′1, C
′
2, C3, . . . , Ck, e1, . . . , et form a w + χd-cover of cost ρ̃w+χd = ρ̃w+χf .(3.31)

Indeed, as χC
′
1 +χC

′
2 = χd+χC1 +χC2−χf , the collection C ′1, C

′
2, C3, . . . , Ck, e1, . . . , et

is a w + χd-cover of cost ρ̃w+χf with |V C ′1| + |V C ′2| + |V C3| + · · · + |V Ck| at most
(3.9). Hence (3.31) follows from the choice of f .

So each d ∈ D has all the properties derived for f so far, and it would lead to the
same circuit C and to the same bipartition A,B of C.

This is used to prove that

any edge in D crosses any chord of C.(3.32)

Indeed, we need only to prove this for f . However, by the minimality of (3.9) all
circuits among C1, . . . , Ck are chordless, so each chord of C crosses f .

Let n := |D|, and let s1, s2, . . . , s2n be the ends of the edges in D, in cyclic order.
Let f1, . . . , f2n be the edges in D incident with s1, . . . , s2n, respectively. So fn+j = fj
for all j (taking indices mod 2n). For j = 1, . . . , 2n, let Rj be the sj−1 − sj path
along C that does not contain any other of the vertices si.

By Lemma 2.1, we can assume that 2, . . . , n ∈ J , where J is as defined in (2.2).
Let Q1 be the path of the form Q = Rj+1Rj+2 · · ·Rn with 0 ≤ j ≤ n such that

αw−χV Q ≥ αw − � 12 |V Q|�+ 1(3.33)

and such that j is maximal. This path exists, since for j = 0 we have (3.33), as
otherwise (3.24) would again yield a contradiction.

Trivially, j < n, since the empty path does not satisfy (3.33). Let Q2 :=
Rj+2Rj+3 · · ·Rj+1+n. Since Q2 also satisfies (3.33) (as, again, (3.24) would yield
a contradiction otherwise), there exist stable sets S1 and S2 with

(w − χV Qi)(Si) ≥ αw − � 12 |V Qi|�+ 1(3.34)

for i = 1, 2. So, for i = 1, 2, (3.21) holds for Qi, Si where we can take for f any edge
not incident with an internal vertex of Qi. By (3.21)(iv),

(S1�S2) ∩ V C ⊆ V Q1 ∪ V Q2.(3.35)

We (re)define H as the subgraph of G induced by S1�S2. Define

Y1 := V Rj+1 and Y2 := V Rn+1 ∪ V Rn+2 ∪ · · · ∪ V Rn+j+1.(3.36)

Then

H contains a path connecting Y1 and Y2.(3.37)
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For suppose not. Let K be the union of the components of H that intersect Y1. So K
is disjoint from Y2. Define S := S1�K. Then S ∩ Y1 = S2 ∩ Y1 and S ∩ Y2 = S1 ∩ Y2.
This implies that Q := Rj+2Rj+3 · · ·Rn and S satisfy (3.21), taking f := fn. Hence
(3.20) holds for Q, contradicting the maximality of j. This proves (3.37).

Let R be a shortest path in H that connects Y1 and Y2; say it connects y1 ∈ Y1

and y2 ∈ Y2. By (3.35), any internal vertex of R that is on C is an internal vertex
of Rj+2Rj+3 · · ·Rn. If y1 ∈ S1 \ S2, as y1 is not an internal vertex of Q2, we know
y1 ∈ A. Similarly, if y1 ∈ S2 \ S1, then y1 ∈ B. Similarly, if y2 ∈ S2 \ S1, then
y2 ∈ A, and if y2 ∈ S1 \ S2, then y2 ∈ B. So R together with the y1 − y2 part of
Rj+1Rj+2 · · ·Rn+j+1 forms an odd cycle. Hence it contains an odd circuit, and so R
contains an odd bow. By (2.1), this bow connects two vertices in some Rj+2, . . . , Rn.
This contradicts the fact that j + 2, . . . , n ∈ J .

Figure 1.1 gives a strongly t-perfect graph that contains a bad K4. So the impli-
cation in Theorem 3.1 cannot be reversed. However one has the following corollary.

Corollary 3.2. For any graph G, the following are equivalent:

(i) G contains no bad K4;
(ii) each subgraph of G is t-perfect;
(iii) each subgraph of G is strongly t-perfect.

(3.38)

Proof. The implication (i)⇒(iii) follows from Theorem 3.1, while the implication
(iii)⇒(ii) follows by the observations made in section 1.

The implication (ii)⇒(i) was proved by Barahona and Mahjoub [1]. It suffices to
show that a bad K4 is not t-perfect. Choose a smallest counterexample G. As G is
t-perfect, G = K4. If (1.4) does not hold, then G has a vertex v such that contracting
the edges in δ(v) gives an odd K4-subdivision G′ that again does not satisfy (1.4). As
G′ again is a t-perfect odd K4 (as one easily checks), this contradicts the minimality
of G.

Acknowledgment. I am very grateful to a referee for very carefully reading the
manuscript and for giving several excellent suggestions for improving the presentation.
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Abstract. A quorum system is a collection of sets (quorums) every two of which intersect.
Quorum systems have been used for many applications in the area of distributed systems, including
mutual exclusion, data replication, and dissemination of information.

When the elements may fail, a user of a distributed protocol needs to quickly find a quorum all
of whose elements are alive or evidence that no such quorum exists. This is done by probing the
system elements, one at a time, to determine if they are alive or dead.

This paper studies the probe complexity PC(S) of a quorum system S, defined as the worst case
number of probes required to find a live quorum or to show its nonexistence in S, using the best
probing strategy.

We show that for large classes of quorum systems, all n elements must be probed in the worst
case. Such systems are called evasive. However, not all quorum systems are evasive; we demonstrate
a system where O(logn) probes always suffice. Then we prove two lower bounds on the probe
complexity in terms of the minimal quorum cardinality c(S) and the number of minimal quorums
m(S). Finally, we show a universal probe strategy which never makes more than c(S)2 − c(S) + 1
probes; thus any system with c(S) ≤ √

n is nonevasive.

Key words. quorum systems, distributed computing, evasiveness, strong and simple games
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1. Introduction.

1.1. An illustrating scenario. The shareholders of the MegaBucks corpora-
tion need to vote on a decision with major implications. Due to a history of splits
and merges, the voting structure is rather complicated, with many committees and
subcommittees, often with a shareholder having a vote in many subcommittees. In
game theory, such a voting structure is called a strong and simple game.

The reporter U.R. Nosey has the task of finding out whether the collective decision
will be “yes” or “no.” He can do this by asking the voters, one by one, how they plan
to vote (assuming nobody lies or changes their mind after talking to the reporter).
Mr. Nosey can stop his snooping when he finds a collection of voters with the same
opinion that together can force the outcome, i.e., when he finds a winning coalition
all of whose members will vote the same way.

The main questions that we address in this paper are the following: How should
Mr. Nosey choose the next voter to ask each time so he can finish his task with the
smallest number of conversations? How many voters must he ask under the worst
possible configuration of answers? In particular, must he ask all the voters?
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This game-theoretic scenario is analogous to the distributed systems scenario we
have been dealing with all along. In the corresponding terminology, processors replace
voters, winning coalitions are quorums, and the voting structure is the quorum system.
The fact that the game is a strong and simple game is equivalent to the intersection
property of a quorum system.

Any quorum-based distributed protocol must access, at some stage, a quorum all
of whose processors are functioning. However, if processors may fail, then the protocol
must probe the processors to determine if they are alive or dead, prior to using them.
In the analogy with the snoopy reporter’s problem, the processors’ live/dead states
correspond to the voters’ individual decisions. Like the reporter, the protocol needs
to probe processors one by one until a live quorum is found or until it is certain that
no such quorum exists.

Clearly, it is desirable to probe as few processors as possible, since the number of
probes measures the communication complexity of the distributed protocol. There-
fore, in quorum system language, we are interested in the following questions: What
strategy should be used to probe a given quorum system efficiently? How many probes
are necessary in the worst failure configuration? In particular, is it true that all pro-
cessors must be probed in the worst case? The maximal number of probes needed to
determine if a live quorum exists is what we call the probe complexity of a quorum
system S and is denoted by PC(S).

1.2. Related work. The rest of this paper uses the terminology of quorum sys-
tems. A good reference to game theory is [25]. Simple games, and their interpretations
in reliability theory, are the subject of [29]. A discussion of the connection between
strong and simple games and quorum systems can be found in [23].

Quorum systems serve as a basic tool providing a uniform and reliable way to
achieve coordination between the processors and have been used in the study of prob-
lems such as mutual exclusion (cf. [30]), data replication protocols (cf. [6, 12, 36]),
distributed access control and signatures (cf. [21]), and secure multiparty computation
protocols (cf. [4]).

Many different quorum systems constructions appear in the literature. The sim-
plest systems use voting to define the quorums [34, 10, 9]. Alternative constructions,
which play a part in this paper, are found in [19, 7, 20, 1, 17, 13, 28].

Quorum systems, as tools for distributed protocols, were analyzed using vari-
ous performance measures. The most widely studied measure is the availability (cf.
[2, 26]). Other measures are the load [22] and load balancing [13]. A comprehensive
analysis of all the above-mentioned quorum systems and some others can be found in
[35].

The measure we call probe complexity is equivalent to the notion of the argument
complexity of a boolean function, which is the maximum number of arguments of a
boolean function f that must be tested in order to compute f . Aanderaa and Rosen-
berg conjectured that every nontrivial, monotone boolean function over n variables,
describing a graph property, requires Ω(n) arguments to be tested in the worst case
[32]. Karp conjectured that in fact every such property is evasive, i.e., requires that
all n arguments be tested. The Aanderaa–Rosenberg conjecture was proved by Rivest
and Vuillemin [31], who also showed that almost every boolean function is evasive for
large n. Karp’s stronger conjecture was later proved by [15].

To our knowledge, the probe complexity of quorum systems, or, equivalently, the
argument complexity of boolean functions characterizing a quorum system, has not
been studied before. In fact, most of the techniques of [31] and [15] are not applicable
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in our case. This is since both proofs rely on the fact that a graph property P has a
nice algebraic structure: the group of permutations of the k vertices acts transitively
on the n =

(
k
2

)
edges while preserving P . Boolean functions characterizing quorum

systems rarely have such symmetry.
Following the appearance of our preliminary results in [27], Bazzi [3] introduced

the related measure of cost-of-failures of a quorum system. This is the maximal
number of probes that are needed per failure, which is essentially our probe complexity
normalized by the number of failures that occurred.

1.3. New results. This paper addresses the question of how to quickly search
for a live quorum in a distributed system when failures may occur, in the worst case
model. Namely, we assume that an adversary, whose purpose is to force the user to
make many probes, decides which elements fail.

After formalizing our model, we start with a discussion of evasiveness. We prove
that large classes of quorum systems are evasive, including voting systems, crumbling
walls, the finite projective plane, and compositions of these. However, and some-
what surprisingly, we show that not all quorum systems are evasive. We do this by
demonstrating that the Nuc system of [7] requires only O(log n) probes in the worst
case.

Next we prove two general lower bounds on the probe complexity of a quorum
system in terms of combinatorial parameters of the system S. We show that if the
smallest quorum is of cardinality c(S), then PC(S) ≥ 2c(S) − 1, and this bound is
exactly tight for some examples. We also show that if S has m(S) minimal quorums,1
then PC(S) ≥ log2(m(S)) + 1.

After these essentially negative results, we describe a more positive result. We
give a universal probing strategy and prove an upper bound on the number of probes it
makes in the worst case. We show that if all the quorums are of the same cardinality c
(a uniform quorum system), then at most c2−c+1 probes always suffice. As a corollary
we obtain that every uniform quorum system with c(S) ≤ √n is not evasive.

The organization of this paper is as follows. In section 2 we introduce the defi-
nitions and notation of quorum systems. In section 3 we introduce the probe model
of a quorum system. In section 4 we prove that large classes of quorum systems are
evasive, and we show an example of a nonevasive system. The two lower bounds we
prove on the probe complexity appear in section 5. The universal strategy and its
analysis are in section 6. Finally, the topic of probe complexity presents a number of
significant problems which are still unresolved, and in section 7 we list several open
questions and directions for further research.

2. Preliminaries.

2.1. Basic definitions.
Definition 2.1. A set system S = {S1, . . . , Sm} is a collection of subsets Si ⊆ U

of a finite universe U . A quorum system is a set system S that has the following
intersection property: S ∩R �= ∅ for all S,R ∈ S.

Alternatively, quorum systems are known as intersecting set systems or as in-
tersecting hypergraphs. The sets of the system are called quorums. The number of
elements in the underlying universe is denoted by n = |U |. The number of sets (quo-
rums) in the set system S is denoted by m(S), and the cardinality of the smallest
quorum in S is denoted by c(S) = min{|S| : S ∈ S}.

1A quorum S (of any cardinality) is called minimal if all its proper subsets R ⊂ S are nonquorums.



THE PROBE COMPLEXITY OF QUORUM SYSTEMS 419

Definition 2.2. Let S be a quorum system. S is s-uniform if |S| = s for all
S ∈ S.

Definition 2.3. A Coterie is a quorum system S that has the minimality prop-
erty: there are no S,R ∈ S such that S ⊂ R.

Definition 2.4. Let R,S be coteries (over the same universe U). Then R
dominates S, denoted R � S, if R �= S and for each S ∈ S there is R ∈ R such that
R ⊆ S. A coterie S is called dominated if there exists a coterie R such that R � S.
If no such coterie exists, then S is nondominated (ND). Let NDC denote the class of
all ND coteries.

ND coteries are the “best” quorum systems in that they have the highest avail-
ability [26] and lowest load [22]. In what follows all the quorum systems are ND unless
otherwise noted.

Definition 2.5. A set R is a transversal of a set system S if R ∩ S �= ∅ for
every S ∈ S.

Lemma 2.6 (see [9]). Let S ∈ NDC, and let R be a transversal of S. Then there
exists a quorum S ∈ S such that S ⊆ R.

Given an ND quorum system S, we find it useful to count the transversals ac-
cording to their cardinalities and to use the following combinatorial lemma.

Definition 2.7. Let aSi denote the number of size-i transversals of S, i.e., the
number of sets of size i that hit all the quorums of S for 0 ≤ i ≤ n:

aSi =
∣∣{X ∈ U : |X| = i and ∀S ∈ S, S ∩X �= ∅}∣∣.

The vector aS = (aS0 , . . . , a
S
n) is called the availability profile of S.

Lemma 2.8 (see [26]). Let S ∈ NDC be given. Then aSi + aSn−i =
(
n
i

)
for

0 ≤ i ≤ n.
An alternative view of a quorum system is that of a boolean function.
Definition 2.9. Let S be a quorum system. Let x1, . . . , xn be boolean variables

corresponding to the elements of the universe. Then the characteristic function of S
is fS : {0, 1}n → {0, 1} defined by

fS(x1, . . . , xn) =
∨
S∈S

∧
i∈S

xi.

Clearly, fS is monotone, and fS(x) = 1 iff all the variables corresponding to some
quorum have the value 1. Properties of characteristic functions of quorum systems
are discussed extensively in [29, 14].

2.2. Examples. Let us illustrate the concept of quorum systems by giving some
examples that play an important role in the results of this paper. The following
constructions are all known to be ND coteries.

The majority system [34], denoted by Maj, is the collection of all sets of n+1
2

elements over a universe U when n = |U | is odd.
The Wheel [13] contains n−1 “spoke” quorums of the form {1, i} for i = 2, . . . , n,

and one “rim” quorum, {2, . . . , n}.
In the finite projective plane (FPP) system of [20], n = t2 + t + 1 for t which is

a power of a prime. The quorums are all of size t + 1 and correspond to the lines of
the projective plane.

The crumbling walls are a family of quorum systems due to [28]. The elements
of a wall are logically arranged in rows of varying widths. A quorum in a wall is the
union of one full row and a representative from every row below the full row. The
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Wheel is a crumbling wall with two rows of width 1 and n−1. The triangular (Triang)
system [19, 7] is another crumbling wall, in which row i has width i.

In the Tree system [1] the elements are organized in a complete rooted binary
tree. A quorum in the system is defined recursively to be either (i) the union of the
root and a quorum in one of the two subtrees or (ii) the union of two quorums, one
in each subtree.

In the HQC system [17], the elements are the leaves of a complete ternary tree.
The internal nodes are 2-of-3 majority gates.

The nucleus (Nuc) system of [7] is built in two stages. First, consider a nucleus
universe U1 of size 2r − 2 for some r > 1 and add to S all the subsets of U1 of size
r (call these “type A” quorums). Second, for each possible partition of U1 into two
disjoint sets T ′j , T

′′
j with |T ′j | = |T ′′j | = r − 1, add a new element xj to the universe

and add the sets T ′j ∪ {xj} and T ′′j ∪ {xj} to S. (These are “type B” quorums.)
3. The probe model. We assume that the elements (processors) of the system

may occasionally fail. We assume that these failures are crash failures and that
they are detectable. We also assume that the state of a processor does not change
while the system is being probed; i.e., the processors are “fail-stop” [33]. We do not
consider “lying” processors (Byzantine failures) or asynchronous communication with
unbounded message delay.

When the protocol requires a user Alice to access a quorum, we assume that the
configuration of failures is unknown to her. She can learn the configuration by probing
the elements of the system one at a time (say by sending a message and waiting a
timeout period for the reply). After probing element i, Alice knows if i is alive or
dead.

Alice’s task is to find a live quorum, or a witness that no such quorum exists,
with the minimal number of probes. Note that if no live quorum exists, then the set
R of dead elements comprise a transversal of the system S. However, by Lemma 2.6
it follows that, for an ND system S, R must contain some quorum S as a subset, all of
whose elements are dead. Therefore Alice’s stopping condition is symmetric for ND
systems: find a quorum that contains only live elements or only dead elements.

We often refer to the live/dead state of the elements as a coloring of the universe
U by calling a dead element “black” and a live element “white.” Therefore Alice’s
task for an NDC system is as follows:

“Find a monochromatic quorum with the smallest number of probes.”

We allow Alice to use an adaptive strategy to decide which element to probe
next, based on the results of all the previous probes. We do not consider probabilistic
strategies; i.e., Alice cannot flip coins. Therefore every probe strategy can be described
by a rooted binary tree, with labels on the nodes (see Figure 3.1). A tree node labeled i
represents a probe of element i ∈ U , and the first probe is to the element appearing
at the root. The two outgoing edges from a node correspond to the probe results:
the left edge is followed when i is alive, and the right edge when i is dead. The tree
leaves represent stopping states for Alice and are colored black or white according
to whether a live (white) quorum was found or a dead (black) one. Additionally, we
attach the names of the found monochromatic quorums to the leaves (the witness
quorums).

We are interested in the worst case number of probes that are necessary to guar-
antee the finding of a monochromatic quorum. Hence we have the following definition.

Definition 3.1. Let S ∈ NDC be a quorum system. Then the probe complexity
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Fig. 3.1. A possible probe strategy for the Wheel4 system: {{ab}, {ac}, {ad}, {bcd}}. Reaching
a white hexagonal leaf indicates that a live quorum was found, and reaching a shaded one indicates
a dead quorum. The names of the corresponding witness quorums appear below each leaf.

of S is

PC(S) = min
T
{depth(T )},

where the minimum is taken over all possible probe strategy trees T , and the depth is
the number of nodes on the longest path from the root to a leaf in T (not counting the
leaf itself).

For example, the depth of the strategy shown in Figure 3.1 is 4, and it turns out
that no strategy can do better, so PC(Wheel4) = 4. In fact, in what follows we show
that PC(Wheel)) = n for any universe size n. Such systems, which require all the
elements to be probed (in the worst case) before a monochromatic quorum can be
found, are especially important to us.

Definition 3.2. Let S be an ND quorum system over a universe of size n. If
PC(S) = n, then we say that S is evasive.

It is often useful to view Definition 3.1 as if Alice is playing a game against an
adversary that controls the outcomes of the probes. The adversary knows Alice’s
strategy and has an unbounded computational power. The adversary’s task is to
force Alice to make as many probes as possible. Note that, since the adversary knows
Alice’s strategy, it can search the (possibly exponential sized) tree and find the deepest
leaf and then choose a failure configuration that forces Alice to reach it. However,
sometimes we can give explicit adversary strategies that do not exhaustively search
Alice’s strategy tree.

Evasiveness can be defined analogously for any boolean function f . Then a live
element corresponds to a variable with value “1” and a dead element to a value “0.”
A function f is evasive if all n inputs need to be tested before the function can
be evaluated, in the worst case. Saying that a quorum system S is evasive (as in
Definition 3.2) is equivalent to saying that its characteristic function fS is evasive as
a boolean function (recall Definition 2.9).

4. Evasiveness. In this section we address the issue of evasiveness. Our starting
point is the algebraic approach of [31], which we show to have limited usefulness in
our case. Then in sections 4.2–4.5 we prove that large classes of quorum systems
are evasive. Finally in section 4.6 we show that, surprisingly, there exist nontrivial
quorum systems which are not evasive.
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4.1. The algebraic approach. As part of their work on the evasiveness of
graph properties, Rivest and Vuillemin [31] give in their Corollary 3.3 a sufficient
condition for the evasiveness of a general monotone boolean function. Below we
rephrase their result using our terminology to obtain a condition for quorum system
evasiveness based on the availability profile (recall Definition 2.7).

Proposition 4.1 (see [31]). Let aS be the availability profile of a quorum system
S ∈ NDC. If

∑
i even

aSi �=
∑
i odd

aSi ,

then PC(S) = n; i.e., S is evasive.

Example 4.2. The only FPP system [20] that is ND is the 7-point Fano plane [8].
For this system we have aFPP = (0, 0, 0, 7, 28, 21, 7, 1) by inspection, so the sum on
the even indices is 35 while on the odd indices it is 29. Therefore by Proposition 4.1
the FPP system with n = 7 is evasive.

In their proof that almost all n-argument boolean functions f are evasive for
large n, [31] in fact shows that the condition of Proposition 4.1 holds for all but an
exponentially small fraction of the boolean functions. However, when we consider only
the class NDC, the next proposition shows that Proposition 4.1 has limited usefulness.

Proposition 4.3. Let S ∈ NDC be over a universe of size n = 2k. Then

∑
i even

aSi =
∑
i odd

aSi .

Proof. Assume that k is odd. Note that, since n is even, if i is even, then so is
n− i. Then using Lemma 2.8 and a combinatorial identity (cf. [16]) we obtain

∑
0≤i≤n
i even

aSi =
∑

0≤i<k
i even

(
aSi + aSn−i

)
=
∑

0≤i<k
i even

(
n

i

)
=
1

2

∑
0≤i≤n
i even

(
n

i

)
= 2n−2.

However, a direct consequence of Lemma 2.8 is that
∑

aSi = 2n−1. Therefore since
the sum over the even indices is 2n−2 then so is the sum over the odd indices. The
case where k is even is handled analogously.

4.2. The adversary approach. An alternative method of proving that a quo-
rum system is evasive is by giving an explicit strategy for an oblivious adversary that
forces the user Alice to probe all n elements. An oblivious adversary is weaker than
the adversary of Definition 3.1: it does not know Alice’s strategy.

Definition 4.4. An oblivious adversary strategy is a procedure which computes
the answer to a probe of any element i ∈ U , based only on the history of probes and
answers.

Definition 4.5. A quorum system S is called obliviously evasive if there exists
an oblivious adversary strategy A which forces the user Alice to probe all n elements
for any probing strategy she uses.

An unbounded adversary, which knows Alice’s strategy, can certainly simulate
any oblivious adversary strategy. Therefore if a system S is obliviously evasive, then
it is also evasive in the regular sense.
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4.3. Composite systems. Our next goal is to prove Theorem 4.7, which allows
us to prove the evasiveness of quorum systems that have a composite structure. For
this purpose we use the characteristic function fS of a quorum system, with the
interpretation that xi = 1 for a live element i and xi = 0 otherwise. As we pointed out
before, the evasiveness of the characteristic function is equivalent to the evasiveness
of the quorum system.

Lemma 4.6. Let f be an obliviously evasive function. Then there exists an
oblivious adversary strategy A(α) which ensures that f evaluates to α ∈ {0, 1}, and
the decision between 0 and 1 is made after forcing Alice to make n− 1 probes.

Proof. By definition there exists an oblivious adversary strategy B which forces
Alice to make n probes. Note that after making n− 1 probes against B Alice cannot
stop yet. Therefore there exist two configurations x0 and x1 that differ only in the
value of the unprobed element i and that agree with the probe results on all other
elements such that f(x0) = 0 and f(x1) = 1.

The strategy A(α) is the following. For the first n− 1 probes return the answer
given by strategy B. Suppose the answer given by B to the nth probe is b, which
causes f to evaluate to β. If α = β, then return b; otherwise, return 1− b.

If β equals the desired output α, then the correctness of A is obvious. Otherwise,
flipping the bit b changes the resulting configuration from x0 to x1, say, which in turn
changes the output to α.

Theorem 4.7. If f(x1, . . . , xt) is an obliviously evasive boolean function, and
{gj(yj1, . . . , yjnj

)}1≤j≤t is a family of t obliviously evasive functions on nj variables,
respectively, then the function

f ◦ g = f(g1(y1
1 , . . . , y

1
n1
), . . . , gt(yt1, . . . , y

t
nt
))

is obliviously evasive on n =
∑

1≤j≤t nj variables.

Proof. Since f and {gj}1≤j≤t are all obliviously evasive, the adversary has strate-
gies Af and Agj that force Alice to probe all the inputs in each function separately.
The composite adversary strategy is the following. When Alice probes an input y
which belongs to some gj in f ◦ g then we have the following:

• If less than nj of g
j ’s inputs were probed so far, return the answer given by

Agj to the probe.
• If this is the njth probe of an input of gj , then first activate the strategy Af
to determine the answer α for a probe of f ’s input xj . Then activate Agj (α)
and return the value that forces gj to evaluate to α. (This can be done by
Lemma 4.6.)

Since f is obliviously evasive, the use of strategy Af ensures that the value of f ◦ g
remains undetermined until all the gj functions are evaluated. (The evaluation of a
function gj is treated as a probe of the variable xj of f .) Since the inputs sets of the
gj functions are disjoint, it is clear that all nj inputs of each function must be probed
before the value of gj can be determined.

Next we use Theorem 4.7 to prove (in Corollary 4.10) that the Tree and HQC
systems are evasive. Proposition 4.9 serves as a building block for the proof.

Definition 4.8. A threshold “k-of-n” function is a boolean function on n vari-
ables that attains the value 1 iff at least k of its inputs have the value 1.

Proposition 4.9. Every threshold “k-of-n” function is evasive.
Proof. An adversary strategy A(α) which forces the user Alice to probe all n

inputs is the following: Answer the first k − 1 probes by “1.” Answer the next n− k
probes by “0.” Answer the nth probe by α.
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Corollary 4.10. The Tree [1] and HQC [17] quorum systems are evasive.

Proof. By Proposition 4.9 the 2-of-3 majority function is evasive. The HQC sys-
tem is a complete ternary tree of 2-of-3 majorities, so by induction on the tree height
and using Theorem 4.7 at each level it follows that HQC is evasive. A description
of the Tree system as another tree of 2-of-3 majorities appears in [14], so a similar
inductive proof shows its evasiveness.

Remark. In fact, [14, 18] show that any NDC can be decomposed into a tree of 2-
of-3 majorities. The Tree and HQC systems have decompositions that are read-once;
i.e., each variable is input to a single 2-of-3 majority, so Theorem 4.7 can be used.
However, in general, the decomposition is not read-once, so Theorem 4.7 cannot be
applied.

4.4. Crumbling wall systems. Here we show another application of Theo-
rem 4.7, which proves that the class of crumbling walls consists of evasive quorum
systems.

Proposition 4.11. The Wheel quorum system is evasive.

Proof. An adversary strategy A(α) which forces the user Alice to probe all n
inputs is the following: If a rim element is probed during the first n − 2 probes
answer “0.” If probe n − 1 is to a rim element, and so were all the previous probes,
then answer “1”; otherwise, answer “0.” If the hub is probed during the first n − 1
probes answer “1.” Answer the nth probe by α.

If Alice probes the hub among her first n−1 probes, she will reach the nth probe,
since the hub has value 1 and every known rim element has 0. Otherwise, she probes
all n− 1 rim element first to discover that they do not all have 0, so she must probe
the hub as well.

Theorem 4.12. Every crumbling wall quorum system is evasive.

Proof. Informally, the adversary strategy is a variant of the following strategy:
For any row i with ni elements, answer the first ni − 1 queries with “0”; answer the
nith query with “1.” It is not hard to see that this strategy forces Alice to make
n probes. However, as stated the outcome is always “1,” and so we need to modify
strategy so that a “0” outcome is also possible. We now give a formal proof that this
modified strategy is indeed an oblivious adversary strategy.

Consider a wall W on d > 1 rows, whose bottom row contains the elements
u1, . . . , und

, and let gd be its characteristic function. Denote the characteristic function
of the crumbling subwall on the top d− 1 rows by gd−1. Let f(x0, x1, . . . , xnd

) denote
the characteristic function of the Wheel system on nd + 1 variables, with variable x0

corresponding to the hub. Then it is easy to see that the wall W can be decomposed
into a Wheel whose hub is replaced by the top d − 1 row subwall. Formally, gd =
f(gd−1, u1, . . . , und

). Thus we obtain a recursive decomposition of a crumbling wall
using building blocks which are all Wheel systems and singletons on disjoint sets of
elements. The Wheel system is evasive by Proposition 4.11, and singletons are trivially
evasive, so we can apply Theorem 4.7 inductively and we are done. For the base of
the induction, note that a crumbling wall with a single row is an n-of-n threshold
system, so it is evasive by Proposition 4.9.

4.5. Voting systems. Via the following definitions and lemmas we prove (in
Theorem 4.18) that every quorum system defined by voting, which has no dummy
elements, is evasive.

Notation. For a vector v ∈ Z
n and a set S ⊆ U , let v(S) =

∑
i∈S vi.
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Definition 4.13. Let v ∈ Z
n and an integer threshold T be given. The voting

system (v;T ) is the collection of all the minimal sets S ⊆ U such that v(S) ≥ T :

(v;T ) = {S ⊆ U : v(S) ≥ T and ∀u ∈ S, v(S \ {u}) < T}.

Remark. A voting system is a quorum system (has the intersection property)
iff the threshold T > v(U)/2. We need the more general definition for the proof of
Theorem 4.18. However, with slight abuse of terminology we still refer to the sets of
(v;T ) as “quorums.”

The voting system with weights (4, 4, 4, 1) and threshold 7 is not evasive, since
there is never any need to probe the element with weight 1. To avoid such trivialities
we add the following definition.

Definition 4.14. Let (v;T ) be a voting system v(U) = V . An element i ∈ U is
a dummy if it does not belong to any (minimal) quorum, or, formally, i �∈ ∪{S : S ∈
(v;T )}.

Definition 4.15. Let (v;T ) be a voting system with v(U) = V . A critical
partition for i is a partition W |B of U \ {i} into two sets W and B such that

(1) v(W ) < T and v(W ∪ {i}) ≥ T ,
(2) v(B) ≤ V − T and v(B ∪ {i}) > V − T .

Lemma 4.16. Let (v;T ) be a voting system with v(U) = V . An element i ∈ U is
not a dummy in (v;T ) iff there exists a critical partition for i.

Proof. (⇒) Assume that i is not a dummy. Then there exists a (minimal) quorum
S ∈ (v;T ) such that i ∈ S. For this S, take W = S \ {i} and B = U \ S. To prove
(1), note that v(W ∪ {i}) = v(S) ≥ T by definition, and v(W ) = v(S \ {i}) < T by
the minimality of S. Now (1) implies (2), since v(B) = v(U \S) = V − v(S) ≤ V − T
and v(B ∪ {i}) = v(U \W ) = V − v(W ) > V − T .

(⇐) Assume there exists a partition W |B of U \ {i} obeying (1) and (2). Take
R = W ∪ {i}. Then v(R) = v(W ∪ {i}) ≥ T by (1). Now discard elements from
R until it becomes a minimal set S for which v(S) ≥ T still holds. Then we claim
that i ∈ S: Assume that i was discarded, then v(S) ≤ v(R \ {i}) = v(W ) < T ,
in contradiction to the definition of S. Hence S ∈ (v;T ) and i ∈ S, so i is not a
dummy.

Lemma 4.17. Let j be an element with the minimal weight vj. If j is not a
dummy in the voting system (v;T ), then (v;T ) is dummy-free; i.e., no element i ∈ U
is a dummy.

Proof. Since j is not a dummy, there exists a minimal S ∈ (v;T ) such that j ∈ S.
Consider some other element i. If i ∈ S we are done, so assume otherwise. Take
the set R = S \ {j} ∪ {i}. Then v(R) = v(S) − vj + vi ≥ v(S) ≥ T , since vj is the
minimal weight. Now discard elements from R until a minimal set R′ is obtained for
which v(R′) ≥ T still holds. We claim that i ∈ R′: otherwise, v(R′) ≤ v(R \ {i}) =
v(S \ {j}) < T by the minimality of S, in contradiction to the definition of R′. Hence
i ∈ R′ ∈ (v;T ) and i is not a dummy.

Theorem 4.18. Every dummy-free voting system is evasive.

Proof. For a voting system (v;T ), and a probe of element i ∈ U , the adversary
uses the following oblivious strategy:

1. Let j be a minimal weight element in U \ {i}.
2. Find a critical partition W |B for j.
3. If the probed element i ∈W , then answer “white”; otherwise, answer “black.”
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Since (v;T ) is dummy-free, and in particular j is not a dummy, by Lemma 4.16
a critical partition W |B can be found in step 2 for this j. Therefore the adversary’s
strategy is well defined.

After answering the probe of element i we obtain a new voting system (v′;T ′) on
U \ {i}, with v′ = (v1, . . . , vi−1, vi+1, . . . , vn), and either T

′ = T − vi (if the answer
was “white”) or T ′ = T (if the answer was “black”). Let V ′ = v′(U \ {i}) = V − vi.
Alice can stop probing in one of two cases:

• T ′ ≤ 0. Then i completes a white quorum, so i must have been in W .
• T ′ > V ′. Then no white quorum can be found, so i must have been in B.

Suppose that i ∈W . However, W |B is a critical partition for j, which was not probed
yet and is outsideW . So T ′ = T−vi ≥ T−v(W ) > 0 by condition (1) of Lemma 4.16,
and hence Alice cannot stop after a “white” answer. If i ∈ B, then, by condition (2)
of Lemma 4.16, we get V ′ = V − vi ≥ V − v(B) ≥ V − (V − T ) = T ′, so Alice cannot
stop after a “black” answer either.

We still need to show that (v′;T ′) is dummy-free, and then the proof is complete
by induction on the universe size n. Assume that i ∈ W . Since W |B was critical for
j, after answering the probe on i the partition W \ {i}|B is clearly still critical for
j (in the universe U \ {i}). A similar situation occurs when i ∈ B. However, j is
a minimal weight element in (v′;T ′), so by Lemma 4.17 it follows that the resulting
voting system (v′;T ′) is also dummy-free, and we are done.

Remark. Finding the critical partition in step 2 is an NP-hard problem, but we
assumed that the adversary has unbounded power.

4.6. Nonevasive examples. All the examples we have seen so far are of evasive
quorum systems. Furthermore, in [31] it is shown that almost every boolean function
on n variables is evasive for large n. Therefore it is reasonable to expect that, in
a class of functions that has a “nice” structure, all the functions are evasive. This
indeed is the case for graph-property functions, as shown by [31, 15]. However, for
the class of ND quorum systems this is not the case. Below we show an ND uniform
quorum system that has no dummy elements (i.e., every element belongs to some
minimal quorum), which is not evasive.

Consider the Nuc system of [7] described in section 2.2. All its quorums are of
size c(Nuc) = r, and it has n = 2r− 2 + 1

2

(
2r−2
r−1

)
elements, so c(Nuc) ≈ 1

2 log2 n. The
next proposition shows that in the Nuc system, O(log n) probes always suffice.

Proposition 4.19. 2r − 1 probes are always sufficient to find a monochromatic
quorum in the Nuc system.

Proof. Consider the following strategy. First probe the 2r − 2 elements of the
nucleus. If at some stage r of these elements are found to have the same color—stop;
a monochromatic quorum (of type A) was found.

The only configurations that require more probes are those in which the nucleus
is partitioned into two sets of size r − 1, T and T ′, of black and white elements,
respectively. However, for every such partition there exists a unique element y outside
the nucleus such that both T ∪{y} and T ′ ∪{y} are type B quorums. Therefore after
probing this element y a monochromatic quorum will certainly be found.

We shall see in section 6 that every uniform quorum system with c(S) ≤ √n
is nonevasive. However, is this condition sufficient? In fact, the question “do all
nonevasive quorum systems have c(S) ≤ √n?” was left open in [27]. Here we answer
this question in the negative, by showing a family of uniform ND quorum systems,
with c(S) ranging from O(log n) up to n/2, which are all nonevasive.

These systems are modifications of the Nuc system and are parameterized by a
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number k. The Nuc(k) system has 2r − 2 nucleus elements and k satellite elements
b0, . . . , bk−1. All the sets of r nucleus elements are quorums (of type A) of Nuc(k). As
for quorums of type B, we have the following rule. Enumerate the ways to partition
the nucleus into two disjoint sets Tj ;T

′
j with |Tj | = |T ′j | = r − 1, using an index

j = 1, . . . , 1
2

(
2r−2
r−1

)
. Then, for partition number j, the two corresponding type B

quorums are Tj ∪ {bj ( mod k)} and T ′j ∪ {bj ( mod k)}. In other words, Nuc(k) is a Nuc
system in which the satellite elements may appear in more than one pair of type B
quorums.

Fact 4.20. Nuc(k) is an ND, dummy-free, r-uniform quorum system for any
1 ≤ k ≤ 1

2

(
2r−2
r−1

)
. It has n = 2r − 2 + k elements and m(Nuc(k)) = 1

2

(
2r
r

)
quorums.

Remark. When k = 1
2

(
2r−2
r−1

)
then Nuc(k) ≡ Nuc, so its minimal quorum size is

c(Nuc(k)) = r ≈ 1
2 log n as before. When k = 1 then Nuc(k) is precisely the Maj

system over n = 2r − 1 elements; i.e., c(Nuc(1)) = (n+ 1)/2.
Proposition 4.21. PC(Nuc(k)) ≤ 2r − 1 for all k ≥ 1.
Proof. The proof is identical to Proposition 4.19.

Corollary 4.22. Nuc(k) is nonevasive for all k ≥ 2.
5. Lower bounds. In this section we prove two lower bounds on the probe com-

plexity, in terms of the smallest quorum size c(S) and the number of quorums m(S).
Notation. For a set R let xR denote the configuration in which the elements of R

are white and all others are black.

Proposition 5.1. PC(S) ≥ 2c(S)− 1 for any S ∈ NDC.

Proof. First note that every correct strategy must probe at least c(S) elements
before stopping, regardless of the probe results, simply in order to probe all the
elements of at least one quorum. Therefore the top c(S) levels of any probe strategy
tree are complete (see Figure 3.1).

Consider such a tree T , and consider L, its leftmost path from the root. By
the above argument, L is at least c(S) probes long. Let W be the set of elements
labeling the top c(S) − 1 nodes in L. There must exist a quorum B ∈ S such that
B ∩W = ∅: otherwise, W is a transversal, which would imply that W contains a
quorum by Lemma 2.6, contradicting the minimality of c(S).

Now consider the configuration xW . On such a configuration, a user Alice using
strategy T first probes all c(S) − 1 elements of W and makes c(S) − 1 left turns in
her descent in the tree. At this point, no black element is encountered yet. However,
the final decision must be black, since the quorum B is all black, so Alice must probe
at least c(S) more elements before reaching a black leaf.

Remark. Equality holds in Proposition 5.1 in the following cases:

• In the Maj system, c(Maj) = n+1
2 , and by Proposition 4.9 Maj is evasive, so

PC(Maj) = n.
• In the Nuc system with a nucleus of size 2r − 2 and c(Nuc) = r, Proposi-
tion 4.19 shows that PC(Nuc) ≤ 2r−1, so Proposition 5.1 proves that in fact
PC(Nuc) = 2r − 1.

Proposition 5.2. PC(S) ≥ log2(m(S)) + 1 for any S ∈ NDC.

Proof. Consider some probe strategy tree T . For each quorum S ∈ S, let ψ(S)
be the (white) leaf in T which is reached when probing the configuration xS .

Claim 5.3. Let S,R ∈ S. If S �= R, then ψ(S) �= ψ(R).

Proof of the claim. Since S ∈ NDC it follows that S �⊆ R and R �⊆ S. Let v be the
first element in (S \R)∪ (R\S) to be probed when the configuration is xS . Clearly, v
is the first such element probed when the configuration is xR as well. Assume w.l.o.g.
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that v ∈ S. Then the path to ψ(S) makes a left turn at v, since v is white in xS , but
the path to ψ(R) turns right at v, so ψ(S) �= ψ(R).

Claim 5.3 shows that ψ is a one-to-one mapping of quorums to white leaves of
T ; thus T has at least m(S) white leaves. By swapping the roles of black and white
and repeating the argument we obtain that T has at least m(S) black leaves as well.
Hence the depth of T is ≥ log2(2m(S)), which completes the proof of Proposition
5.2.

Remarks. This lower bound is tight (up to additive constants) for the Maj and
Nuc systems and is trivially exact for the singleton system. The bound is sometimes
better than that of Proposition 5.1, as the following examples show.

• In the Tree system [1], c(Tree) ≈ log n and m(Tree) ≈ 2n/2, so Proposi-
tion 5.2 gives a linear lower bound of PC(Tree) ≥ n/2, much better than
that of Proposition 5.1 but still short of the truth which is PC(Tree) = n by
Corollary 4.10.
• The Triang system [19] is uniform with c(Triang) ≈ √2n and m(Triang) =
Ω((
√
n)!). Thus Proposition 5.2 gives PC(Triang) ≥ Ω(

√
n log n), which is

better than the bound of Proposition 5.1 by a logarithmic factor but far from
the true value PC(Triang) = n shown by Theorem 4.12 (since the Triang is a
crumbling wall).

6. A universal probing strategy. In this section we give a universal probing
strategy (see Figure 6.1) that works for any ND quorum system. We prove that
c2 − c + 1 probes always suffice for a c-uniform ND system when Alice uses this
strategy. As a corollary we prove that any c-uniform ND quorum system with c ≤ √n
is nonevasive.

Two probing strategies were described in [27] and [35], called the “alternating
color” strategy and the “white” strategy. Both of these are special cases of the
universal strategy, in which additional rules dictate some of the choices made. Thus
the unified treatment here is more general and implies the results stated in [27, 35].

Moreover, as noted by Neilsen [24], the alternating color strategy of [27] is not
well defined for dominated quorum systems. In contrast, the universal strategy we
present here is well defined for all quorum systems (dominated or not), and as such
it is a marked improvement over our earlier results.

The above-mentioned white strategy is similar to a procedure that was used in a
very different context in [5], as part of the argument for proving that if P �= NP ∩
co-NP, then P �= NP ∩ co-NP with a generic oracle. The exposition in [5] treats
infinite languages and thus does not include the combinatorial analysis of the number
of probes that we have here.

We need the following technical definition for the description of the strategy.
Definition 6.1. During the probing procedure, an element’s color is either white,

black, or unknown. A quorum S ∈ S is a white candidate (respectively, black candi-
date) if the colors of its elements are not all known and it has no black (respectively,
white) elements.

The strategy works in rounds. In every round the following steps are performed:
1. Pick candidate quorum S (either white or black) and probe all its un-
known elements.

2. If a monochromatic quorum is found, stop.

Fig. 6.1. The universal strategy.
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Remarks.

• The strategy probes all the elements of the candidate quorum S even if it
becomes clear that S cannot be the solution. For instance, if S was a white
candidate at the beginning of a round, then the strategy continues to probe
the elements of S even after black elements are encountered.

• The strategy stops if any monochromatic quorum is found. Its color may well
be different from that of the candidate picked for this round.
• A bichromatic quorum, which was discovered to have both white and black
elements in previous rounds, is not a candidate any more.

Lemma 6.2. Let S ∈ NDC be given. If the universal strategy has not stopped by
the end of round r, then both a white candidate and a black candidate still exist at the
beginning of round r + 1.

Proof. Assume to the contrary that the strategy reaches round r+1 and a white
candidate cannot be found. Then, by definition, every quorum has a (known) black
element. Hence the set of black elements B is a transversal, and by Lemma 2.6 there
exists some quorum R ∈ S for which R ⊆ B. However, this R is a monochromatic
quorum, all of whose elements were probed. Therefore the strategy should have
stopped after round r or earlier, in contradiction to the assumption that round r + 1
was reached. The case of a missing black candidate is identical.

Remark. Lemma 6.2 is incorrect for dominated systems. For example, consider
the Star system {{1, i} : i = 2, . . . , n}. If after the first round it turns out that
element 1 is white and element 2 is black, then no black candidate quorum can be
found for round 2.

Definition 6.3. Let S1, S2, . . . , Sr be the candidate quorums picked in the first
r rounds. Let Bi ⊆ Si be the set of black elements in Si (the black part), and let
Wi ⊆ Si be the white part for 1 ≤ i ≤ r.

Lemma 6.4. Assume that the strategy has not stopped by the end of round r.
Let IW and IB be the sets of indices of the white and black candidates in the first
r rounds, respectively. Then the black parts of the white candidates {Bi : i ∈ IW }
are nonempty, disjoint sets and similarly for the white parts of the black candidates
{Wj : j ∈ IB}.

Proof. If Bi = ∅ for some i ∈ IW , then Si is all white and the strategy should
have stopped in round i, in contradiction to the assumption that a monochromatic
quorum was not found up to round r.

Consider some i ∈ IW . Note that Si was a white candidate in round i, so at the
beginning of the round all its known elements were white. Therefore Sk ∩ Si ⊆ Wi

for all k < i; thus Si’s black part Bi is disjoint from every previous candidate Sk. In
particular it is disjoint from the black part of every previous white candidate. The
proof for the white parts of black candidates is analogous.

Remark. The quorum S1 picked in round 1 is a black candidate and a white can-
didate simultaneously since all its elements’ colors are unknown. All the subsequent
quorums Si are either white or black candidates, but not both, since Si ∩S1 �= ∅ and
the colors of all S1’s elements are known.

Definition 6.5. Let wr and br denote the numbers of white and black candidate
quorums picked in the first r rounds, respectively.

Lemma 6.6. Assume the strategy has not stopped by the end of round r. Then

• if Sr+1 is a white candidate, then the colors of at least br of its elements are
known (to be white);
• if Sr+1 is a black candidate, then the colors of at least wr of its elements are
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known (to be black).
Proof. Assume Sr+1 is a white candidate. This Sr+1 intersects each of the

br previous black candidates, so the intersections must be in the black candidates’
white parts. However, the white parts of the black candidates are nonempty and
disjoint by Lemma 6.4. Therefore Sr+1 has at least br elements whose color is known
(to be white) at the beginning of round r + 1. The case of a black candidate is
analogous.

Proposition 6.7. Let S ∈ NDC be c-uniform. Then the universal strategy stops
after probing at most c white candidates and at most c black candidates.

Proof. To obtain a contradiction, assume that br = c black candidates were probed
by the end of round r, but the strategy had not stopped yet. Then by Lemma 6.2
a white candidate W still exists. By Lemma 6.6, c of W ’s elements are known to
be white. However, |W | = c; thus W is already known to be monochromatic, in
contradiction to the assumption that the strategy had not stopped. The argument
for c white candidates is analogous.

A direct application of Proposition 6.7 gives an upper bound of PC(S) ≤ 2c2.
However, 2c2 is quite a rough estimate. A more careful analysis allows us to prove
the tight bound of the next theorem.

Theorem 6.8. Let S ∈ NDC be c-uniform. Then PC(S) ≤ c2 − c+ 1.
Proof. Let Pi denote the aggregate number of probed elements by the end of

round i, and let wi and bi be as in Definition 6.5. We prove that the following
invariant holds.

Claim 6.9. Pi + (c− wi)(c− bi) ≤ c2 − c+ 1 for all rounds i ≥ 1.
Proof. The proof is by induction on i. For the induction base, recall that the

quorum picked in round 1 is both a white candidate and a black candidate, so w1 =
b1 = 1, and since S is c-uniform we have P1 = c. So for i = 1 the invariant holds
(with equality).

Now we assume the invariant holds for i and prove it holds for i+1. If a monochro-
matic quorum was found in round i, then the strategy stops and we are done. Oth-
erwise, assume that the picked candidate Si+1 is white. By Lemma 6.6 we see that
Si+1 has at least bi elements whose color is known (to be white) at the beginning of
round i+ 1. Hence at most c− bi elements are probed in round i+ 1 and

Pi+1 ≤ Pi + (c− bi).

As remarked after Lemma 6.4, since Si+1 is a white candidate it cannot be a black
candidate simultaneously. So wi+1 = wi + 1 and bi+1 = bi. Using the induction
hypothesis we obtain that

Pi+1 + (c− wi+1)(c− bi+1) ≤ Pi + (c− bi) + (c− wi − 1)(c− bi)

= Pi + (c− wi)(c− bi)

≤ c2 − c+ 1,

and the invariant holds. The proof is analogous if Si+1 is a black candidate. This
concludes the proof of Claim 6.9.

By Proposition 6.7 we have that the strategy stops after some r ≤ 2c rounds, at
which time wr ≤ c and br ≤ c. For this r we have from the invariant of Claim 6.9
that

Pr ≤ c2 − c+ 1− (c− wr)(c− br) ≤ c2 − c+ 1,
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and thus PC(S) ≤ c2 − c+ 1.

Corollary 6.10. Let S ∈ NDC be c-uniform. If c ≤ √n, then S is nonevasive.

Remarks.

• Theorem 6.8 is exactly tight for the 7-element FPP system: every FPP with
quorums of size c has n = c2 − c+1, and the 7-element system (the only ND
one) is evasive by Example 4.2.
• Corollary 6.10 is a sufficient condition for nonevasiveness, but it is not nec-
essary. The Nuc(k) systems of section 4.6 are all c-uniform ND quorum
systems which are nonevasive, but some of them have c(S) > √n. In fact, for
the Nuc(k) systems Theorem 6.8 is not tight; the bound is ≈ c2, while ≈ 2c
probes suffice by Proposition 4.19.

7. Concluding remarks and open questions. To the best of our knowledge,
the question of how to search for a live quorum has not been addressed before in
the context of distributed systems. We have demonstrated that the question is not
a trivial one, especially when the system is defined by a combinatorial construction
(rather than by voting). We believe that finding a good answer, in the form of a
probing strategy and an analysis showing that it behaves “well,” is an important and
interesting goal. Here we list some of the related open problems we are interested in.

• Perhaps the most interesting problem, from a practical point of view, is the
average case analysis of probing strategies, i.e., when the configuration of fail-
ures is not determined by a malicious adversary but is chosen probabilistically.
Our initial results in this direction provided some evidence that the behavior
is qualitatively different from the worst case. For instance, the Wheel sys-
tem is evasive, but there is a trivial strategy for which the average number
of probes is ≈ 3 for any universe size n. This direction was studied further
in [11], which presented upper and lower bounds for the deterministic aver-
age case probe complexity of quorum systems in some classes of ND coteries,
including majority, crumbling walls, Tree, Wheel and hierarchical quorum
systems.
A related problem concerns the probe complexity of randomized algorithms.
This direction was also studied in [11], where it is shown that randomized
algorithms may in many cases enjoy improved probe complexity in the worst
case model compared to that achieved by deterministic ones.
• The universal strategy offers a large degree of freedom in choosing the can-
didate quorums—can this be used? An obvious rule would be to choose the
candidate with the smallest number of elements whose color is unknown—
does this (provably) help?
• Give a good probing strategy for nonuniform quorum systems. Note that
our analysis of the universal probing strategy is essentially a “competitive
analysis” with a competitive ratio of c−1+1/c for uniform systems. However,
for nonuniform systems we must replace c with cmax, the maximal quorum
cardinality, and in nonuniform systems typically cmax = Ω(n).

• Everyday intuition tells us to probe the elements according to their relative
influence. Can game-theory measures of influence such as the Shapley value
or the Banzhaf index be used to devise a provably good strategy? Recently,
Neilsen has provided anecdotal evidence supporting this intuition: In [24] he
showed that for the Wheel system over four elements, probing in an order
dictated by a dynamically decreasing Banzhaf index gives a better average
probe complexity than that of a particular fixed strategy. However, proving



432 DAVID PELEG AND AVISHAI WOOL

that this is a general phenomenon for all quorum systems, either in the worst
case or in the average case, is still an open problem.
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Abstract. We examine the bandwidth problem in circular-arc graphs, chordal graphs with a
bounded number of leaves in the clique tree, and k-polygon graphs (fixed k). We show that all of
these graph classes admit efficient approximation algorithms which are based on exact or approximate
bandwidth layouts of related interval graphs. Specifically, we obtain a bandwidth approximation
algorithm for circular-arc graphs that executes in O(n log2 n) time and has performance ratio 2, which
is the best possible performance ratio of any polynomial time bandwidth approximation algorithm
for circular-arc graphs. For chordal graphs with at most k leaves in the clique tree, we obtain a
performance ratio of 2k in O(k(n+m)) time, and our algorithm for k-polygon graphs has performance
ratio 2k2 and runs in time O(n3).
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1. Introduction. A layout of a graph G = (V,E) is an assignment of distinct
integers from {1, . . . , n} to the elements of V . Equivalently, a layout Lmay be thought
of as an ordering L(1), L(2), . . . , L(n) of V , where |V | = n. We shall use <L to denote
the ordering of the elements in a layout L. The width of a layout L, b(G,L), is the
maximum over all edges {u, v} of G of |L(u)− L(v)|. That is, it is the length of the
longest edge in the layout. The bandwidth of G, bw(G), is the minimum width over
all layouts. A bandwidth layout for graph G is a layout satisfying b(G,L) = bw(G).

The problem of finding the bandwidth of a graph has applications in sparse matrix
computations. An overview of the bandwidth problem is given in [5]. The minimum
bandwidth decision problem (Given a graph G = (V,E) and integer k, is bw(G) ≤
k?) is known to be NP-complete [27], even for trees having maximum degree 3 [15],
caterpillars with hairs of length at most 3 [26], and cobipartite graphs [22]. The
problem is polynomially solvable for caterpillars with hairs of length 1 and 2 [2],
cographs [18], graphs with few P4’s [24], and interval graphs [19, 25, 29].

To date there was not much known about the approximation hardness of the
bandwidth minimization problem for graphs in general. Recently, Feige presented
an approximation algorithm with performance ratio O(log9/2 n) [12]. Very recently,
Unger has shown in [30] that, assuming P�=NP, there is no polynomial time approx-
imation algorithm with constant performance ratio for the bandwidth minimization
problem for graphs, even when the inputs are restricted to a special class of trees
known as caterpillars of hairlength 3.
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Since the bandwidth minimization problem remains NP-complete for such simple
classes of graphs, and since no polynomial time algorithm for approximating the
bandwidth of general graphs, or even trees, to within a constant factor exists unless
P=NP, it is worthwhile to investigate approximation algorithms for this problem on
restricted classes of graphs. Some results in this direction have been presented in [22].
In this paper, we examine the bandwidth problem in circular-arc graphs, chordal

graphs with a bounded number of leaves in the clique tree, and k-polygon graphs
(fixed k). All of these graph classes admit efficient approximation algorithms which
are based on exact or approximate bandwidth layouts of related interval graphs.
Specifically, we obtain a bandwidth approximation algorithm for circular-arc

graphs that has performance ratio 2 and executes in O(n log2 n) time or performance
ratio 4 while taking O(n) time. For chordal graphs with at most k leaves in the clique
tree, we obtain a performance ratio of 2k in O(k(n+m)) time, and our algorithm for
k-polygon graphs has performance ratio 2k2 and runs in time O(n3).
Finally, it is worth mentioning that our approximation algorithm with perfor-

mance ratio 2 for circular-arc graphs has optimal performance ratio, since there is
no polynomial time bandwidth approximation algorithm for circular-arc graphs with
performance ratio 2− ε for any ε > 0 unless P=NP [30].

2. Preliminaries. For G = (V,E), we will denote |V | as n and |E| as m. We
sometimes refer to the vertex set of G as V (G) and the edge set as E(G). We let
N(v) denote the set of vertices adjacent to v. The degree of a vertex v, degree(v), is
the number of vertices adjacent to v. ∆(G) denotes the maximum degree of a vertex
in graph G. The subgraph of G = (V,E) induced by V ′ ⊆ V will be referred to as
G[V ′].
The following well-known lower bound on the bandwidth of a graph is in [6].
Lemma 1 (the degree bound [7]). For any graph G, bw(G) ≥ ∆(G)/2.
The distance in graph G = (V,E) between two vertices u, v ∈ V , dG(u, v), is the

length of a shortest path between u and v in G. For any graph G = (V,E), the dth
power of G, Gd, is the graph with vertex set V and edge set {{u, v}|dG(u, v) ≤ d}.

Lemma 2 (the distance bound [22], also attributed in part to [7] in [5]). Let G
and H be graphs with the same vertex set V , such that E(G) ⊆ E(H) ⊆ E(Gd) or
E(H) ⊆ E(G) ⊆ E(Hd) for an integer d ≥ 1, and let L be an optimal layout for H,
i.e., b(H,L) = bw(H). Then L approximates the bandwidth of G by a factor of d,
i.e., b(G,L) ≤ d · bw(G).
Many references, including [17], contain comprehensive overviews of the many

known structural and algorithmic properties of interval graphs.
Definition. A graph G = (V,E) is an interval graph if there is a one-to-one

correspondence between V and a set of intervals of the real line such that, for all
u, v ∈ V , {u, v} ∈ E if and only if the intervals corresponding to u and v have a
nonempty intersection.
A set of intervals whose intersection graph is G is termed an interval model for

G. Many algorithms exist which, given a graph G = (V,E), determine whether or
not G is an interval graph and, if so, construct an interval model for it in O(n +m)
time (see, for example, [4, 8]). We assume that an interval model is given by a left
endpoint and a right endpoint for each interval, namely, left(v) and right(v) for all
v ∈ V . Furthermore, we assume that we are also given a sorted list of the endpoints
and that the endpoints are distinct. We will sometimes blur the distinction between
an interval and its corresponding vertex, when no confusion can arise.
Polynomial time algorithms for computing the exact bandwidth of an interval
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graph have been given in [19, 25, 29]. For an interval graph with n vertices, Kleitman
and Vohra’s algorithm solves the decision problem (bw(G) ≤ k?) in O(nk) time and
can be used to produce a bandwidth layout in O(n2 log n) time, and Sprague has
shown how to implement Kleitman and Vohra’s algorithm to answer the decision
problem in O(n log n) time and thus produce a bandwidth layout in O(n log2 n) time.
The following two lemmas demonstrate that, for interval graph G, a layout L

with b(G,L) ≤ 2 · bw(G) can be obtained in time O(n), assuming the sorted interval
endpoints are given. The second proof is similar to the first and is therefore omitted.

Lemma 3. Given an interval graph G, the layout L consisting of vertices ordered
by right endpoints of corresponding intervals has b(G,L) ≤ 2 · bw(G).

Proof. Let L be the layout of vertices ordered by right interval endpoints. We first
observe that, for all u, v ∈ V such that {u, v} ∈ E and u <L v, all vertices between u
and v in L are adjacent to v. Now consider a longest edge in L, i.e., an edge {u, v}
such that |L(u) − L(v)| = b(G,L). Assume, without loss of generality, that u <L v.
From the previous observation, it must be that degree(v) ≥ L(v) − L(u) = b(G,L).
Now the degree bound (Lemma 1) implies bw(G) ≥ b(G,L)/2.

Lemma 4. Given an interval graph G, the layout L consisting of vertices ordered
by left endpoints of corresponding intervals has b(G,L) ≤ 2 · bw(G).
We will use the following lemma in subsequent sections of the paper.
Lemma 5. Let I be a set of intervals on the real line corresponding to interval

graph G = (V,E). Let p1 be a point on the line such that at least one interval
endpoint is to the left of p1 and only left endpoints are to the left of p1. Let p2 be a
point on the line such that at least one interval endpoint is to the right of p2 and only
right endpoints are to the right of p2. Let C1 be the set of all intervals that contain
p1, and let C2 be the set of all intervals that contain p2. If L is a layout for G in
which vertices are ordered by increasing left endpoints of corresponding intervals or
by increasing right endpoints, or if L is a layout produced by Kleitman and Vohra’s
bandwidth algorithm [19], then
(i) for all v ∈ C1: {v, L(1)} ∈ E, and
(ii) for all v ∈ C2: {v, L(n)} ∈ E.
Proof. Part (i) for the left endpoint ordering follows from the fact that L(1) ∈ C1

and C1 is a clique. In the other two layouts, L(1) is the interval with the smallest
right endpoint. This interval is either in C1 or is contained in all intervals of C1.
Thus, (i) holds for the three layouts.
Part (ii) follows immediately for the right endpoint layout, since L(n) ∈ C2. In

the left endpoint order, L(n) is either in C2 or contained in all intervals of C2, implying
(ii).
Finally, we prove (ii) for Kleitman–Vohra layouts. Please refer to the algorithm

of [19]. Consider the moment when the vertex of C2 with largest left endpoint, c, is
labelled. If only vertices of C2 remain to be labelled, then the last vertex will be an
element of C2, and we are done. Otherwise, there is an interval i with a smaller right
endpoint that remains to be labelled. This implies that c ∈ Sqj0 was chosen in Step 8,
and i /∈ Sqj0 . Since i /∈ Sqj0 , we have q + j0 < n. Thus, M(c) < n, and there is some
vertex already labelled that is adjacent to c but not to i; otherwise, we contradict the
current choice of c. Thus, the interval i is properly contained in c and, therefore, i
is properly contained in all intervals corresponding to vertices of C2. This completes
the proof.

3. Circular-arc graphs. Circular-arc graphs are the intersection graphs of arcs
on a circle. Thus, a graph G = (V,E) is a circular-arc graph if and only if it has a (not
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necessarily unique) circular-arc model or representation, consisting of a set of arcs on
a circle, such that, for all u, v ∈ V , {u, v} ∈ E if and only if the arcs corresponding to
u and v have a nonempty intersection. In such a model, we assume, without loss of
generality, that the arc endpoints are distinct, and we label the endpoints from 1 to
2n in clockwise order around the circle, starting at an arbitrary endpoint. Thus, each
vertex v ∈ V corresponds to an arc given by its counterclockwise endpoint, ccw(v),
and its clockwise endpoint, cw(v). We refer to any segment of the circle by its two
endpoints and the direction of traversal; i.e., [p1, p2]cw refers to the closed arc covered
by a clockwise traversal beginning at p1 and ending at p2. The arc [p1, p2]ccw is the
set of all points in a counterclockwise traversal from p1 to p2, and parentheses will
indicate that the arc is open at one or both ends. Note that, for any two points on the
circle, p1 and p2, the arcs [p1, p2]cw and [p1, p2]ccw cover the entire circle, and their
intersection is {p1, p2}.
Eschen and Spinrad [11] have given an O(n2) algorithm which determines whether

or not an n-vertex graph is a circular-arc graph. If so, the algorithm produces a
circular-arc model for the graph. Our algorithms assume that the input circular-arc
graph is given as a set of arcs on a circle. We are not aware of any previous results
on the bandwidth of circular-arc graphs.

Henceforth, we will refer to a set of 2n scanpoints on the circle, none of which
is an arc endpoint, such that exactly one of these points is between each consecutive
pair of arc endpoints. We shall label these points from 1 to 2n in clockwise order,
beginning at any one.

Our bandwidth approximation algorithm works as follows for a circular-arc graph
G. Roughly speaking, we cut the circular-arc representation in half to form two equal-
sized interval graphs, compute exact or approximate bandwidth layouts for the two
interval graphs, and then mix the two layouts to form an approximate bandwidth
layout for G.

Let G = (V,E) be a circular-arc graph with corresponding circular-arc represen-
tation. The first step is to find a scanpoint p on the circle such that |C1 ∪ C2 ∪A| =
|C1 ∪ C2 ∪ B|, where C1 is the set of arcs that contain scanpoint 1, C2 is the set of
arcs that contain scanpoint p, A is the set of arcs entirely contained in (1, p)cw, and
B is the set of arcs entirely contained in (1, p)ccw. Note that C1 ∪ C2 ∪ A ∪ B = V .
We will use scanpoints 1 and p to cut the circle and create two equal-sized interval
graphs.

Algorithm 1. Procedure FINDp.
Let C1 ← C2 ← all arcs that contain scanpoint 1; A← ∅; B ← V \ C1

a← |C1|; b← n { a = |C1 ∪ C2 ∪A|; b = |C1 ∪ C2 ∪B| }
p← 1
repeat until a = b or p = 2n

{ Invariant: a ≤ b}
{ Variant: 2n− p}

p← p+ 1
if the endpoint between p− 1 and p is a ccw endpoint (say of arc i) then

C2 ← C2 ∪ {i}
if i �∈ C1 then

B ← B \ {i}; a← a+ 1
if between p− 1 and p is a cw endpoint (of arc i) then

C2 ← C2 \ {i}
if i �∈ C1 then
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Fig. 1. A set of arcs on a circle and the corresponding circular-arc graph.

A← A ∪ {i}; b← b− 1
{ Now C2 is the set of arcs that contain point p}
{|C1 ∪ C2 ∪A| = |C1 ∪ C2 ∪B|}.
Claim 1. Procedure FINDp will terminate with a = b.

Proof. We leave it to the reader to verify the stated invariant and variant. If
the loop terminates with p = 2n, then all arc endpoints will have been examined.
For all arcs, except those of C1, a will have been incremented by 1 and b will have
been decremented by 1. Let ai and af be the initial and final values, respectively, of
variable a and bi and bf the initial and final values, respectively, of variable b. Upon
termination of the loop with p = 2n, af = ai + n − |C1| = |C1| + n − |C1| = n and
bf = bi− (n−|C1|) = n−n+ |C1| = |C1|. However, then bf < af (assuming C1 �= V ),
contradicting our invariant.

We may assume that A and B will be nonempty; otherwise, G can be partitioned
into two cliques, one of which must have size at least n/2, implying (by Lemma 1)
bw(G) ≥ n/2−1. Thus, any layout in which the first and last vertices are not adjacent
is a 2-approximation.

A set of arcs on a circle and the corresponding graph are shown in Figure 1,
along with possible choices of scanpoints 1 and p. In this example, C1 = {a, b, c},
C2 = {a, b, g, h}, A = {d, e, f}, and B = {i, j, k}.
We now describe how to construct two interval subgraphs of G by cutting the

circle at scanpoints 1 and p. We wish to cut the circle and the arcs of C1 and C2

at scanpoints 1 and p, producing two line segments, each with a set of intervals that
correspond to an interval graph. However, if any arc, say v, contains both scanpoints
1 and p, then it covers one entire part of the circle (i.e., [1, p]cw or [1, p]ccw) and
appears as two disconnected pieces in the other part. Thus, this second part of the
circle may not correspond to an interval subgraph, as vertex v is represented by two
disconnected intervals. We eliminate this problem by shrinking v’s arc on the circle
so that it no longer contains p and thus v is removed from C2. The altered set of
arcs might not represent all of the edges of G; specifically, some edges between v
and elements of A (or B) may be missing. Let E′ denote edges of G that are not
represented by the changed arcs. Note that the sets C1 ∪ C2 ∪ A and C1 ∪ C2 ∪ B
remain unchanged. These alterations, applied to the circular-arc model of Figure 1,
yield the set of arcs shown in Figure 2. After the alterations, C2 is changed to {g, h},
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Fig. 2. Altering the circular-arc model.
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Fig. 3. Cutting the circular-arc model to form two interval graphs.

C1, A, and B remain unchanged, and E′ = {{a, f}, {b, i}}.
Now we can cut the circle and the arcs of C1 and C2 at scanpoints 1 and p,

producing two line segments, [1, p]cw and [1, p]ccw. The arcs of the circular-arc model
become intervals on the two lines. Let IA (respectively, IB) be the resulting set of
intervals on the line segment [1, p]cw (respectively, [1, p]ccw). We may assume that the
intervals of C1∪C2 are altered slightly in IA and in IB without changing intersections,
so that interval endpoints are distinct.
Let GA = (VA, EA) and GB = (VB , EB) be the intersection graphs of IA and IB ,

respectively. Now GA and GB are both interval graphs and (not necessarily induced)
subgraphs of G. Furthermore, |VA| = |VB |, and EA∪EB∪E′ = E. Figure 3 illustrates
this process for the example of Figures 1 and 2.
Our method for obtaining an approximate bandwidth layout for a circular-arc

graph is to first compute exact or approximate bandwidth layouts, LA and LB , for
GA and GB , respectively, and then mix the two layouts.
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Different methods of computing LA and LB yield different approximation bounds
and time complexities for our algorithm.
Regardless of how we obtain LA and LB , the mixing is done as follows.
Let k = |C1 ∪ C2 ∪A| = |C1 ∪ C2 ∪B|. Given

LA = LA(1), LA(2), . . . , LA(k)

and

LB = LB(1), LB(2), . . . , LB(k)

we begin by producing

LM = LA(1), LB(1), LA(2), LB(2), . . . , LA(k), LB(k).

For convenience, we will refer to elements of LA as having the color red and
elements of LB as having the color blue. Notice that LM will contain two copies
of each vertex of C1 ∪ C2—one red and one blue. For each v ∈ C1 ∪ C2, we shall
distinguish between the two copies of v in LM as follows: the red copy will be referred
to as vred and the blue copy as vblue. Each vertex of A ∪B occurs only once in LM .
From LM , we produce L by deleting the leftmost copy of each vertex of C1 and

the rightmost copy of each vertex of C2. Recall that we constructed C1 and C2 so
that no vertex appears in both. Thus, L is a layout for G. We now prove a bound on
the width of L in terms of the widths of LA and LB .

Lemma 6. Let G = (V,E) be a circular-arc graph, and let IA, IB, GA, and GB
be constructed, as previously described, from a circular-arc model for G. Let LA and
LB be layouts for GA and GB, respectively, satisfying
• for all v ∈ C1: {v, LA(1)}, {v, LB(1)} ∈ E, and
• for all v ∈ C2: {v, LA(k)}, {v, LB(k)} ∈ E.

Let LM and L be obtained from LA and LB as previously described. Then

b(G,L) ≤ 2 ·max[b(GA, LA), b(GB , LB)].

Proof. We will consider an arbitrary edge of G, {u, v} ∈ E. We first observe that
if u and v have the same color, say red, then |L(u) − L(v)| ≤ |LM (u) − LM (v)| =
2 · |LA(u)−LA(v)|. Such edges, therefore, cannot contradict the claim. We shall refer
to such edges as red edges or blue edges, depending upon the color of the endpoints.
Similarly, any edge for which we can find a longer red or blue edge in LM cannot
contradict the claim.
Consider the edge {u, v} ∈ E, where u <L v. We must show that |L(u)−L(v)| ≤

2 ·max[b(GA, LA), b(GB , LB)].
Case 1. The intervals corresponding to u and v intersect in IA or IB or both.
Hence {u, v} ∈ E \ E′. Suppose, without loss of generality, that the intervals

intersect in IA. If u and v are both red, then our earlier observation applies, and we
are done.
Next, suppose that u is red and v is blue. When L was formed from LM , vred

must have been deleted. If vred is to the right of vblue in LM , then there is a longer
red edge {u, v} in LM , and this completes the proof. Suppose vred is to the left of
vblue in LM . This implies that v ∈ C1, since the leftmost copy was deleted from LM
to form L. However, then vblue is adjacent to the first blue vertex in LM , implying
that |L(v)− L(u)| ≤ |LM (vblue)− LM (2)| ≤ 2 · |LB(v)− LB(1)|.
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Now consider the case where u is blue and v is red. The red copy of u has been
deleted. If ured is to the left of ublue in LM , then there is a longer red edge in LM .
Otherwise, we have u ∈ C2. However, then ublue is adjacent to the last vertex of LM ,
giving a longer blue edge.

Finally, we consider the case where u and v are both blue. If the corresponding
intervals intersect in IB , then we are done by the previous argument. Otherwise, one
of u and v is in C1 and the other is in C2. If u ∈ C1 and v ∈ C2, then the red edge
{ured, vred} is longer in LM than {u, v} in L. If u ∈ C2 and v ∈ C1, then ublue is
adjacent to the last vertex of LM , giving a blue edge in LM longer than {u, v} in L.

Case 2. The intervals corresponding to u and v intersect neither in IA nor in IB .

Hence {u, v} ∈ E′. Then it must be that exactly one of the vertices corresponds
to an arc which, in the original circular-arc representation, covers all of one side of
the circle and extends into the other side covering both scanpoints 1 and p. Assume,
without loss of generality, that the arc covers [1, p]cw and appears as two disconnected
arcs in [1, p]ccw. In constructing IB , the part of the arc that covered p and extended
into [1, p]ccw was removed. This must be the area where the arcs corresponding to
u and v intersected in the original circular-arc representation. This implies that the
other arc is in B, and it therefore occurs as a blue vertex only in LM and in L.

Suppose that u is the arc that was altered. Then u ∈ C1 and v ∈ B. Thus, it is
the rightmost copy of u that remains in L. The red copy of u in LM is adjacent to all
other red vertices, including LM (2k − 1). Thus, if u in L is red, then there is a red
edge in LM that is longer than the {u, v} edge in L. If u in L is blue, then ured has
a longer edge in LM to LM (2k − 1).
Now consider the case where v was altered. Then v ∈ C1 and u ∈ B. The

rightmost copy of v from LM remains in L, and the red copy of v is adjacent to
all other red vertices in LM , including LM (1). If v in L is red, then the red edge
{v, LM (1)} is longer than the edge {u, v} in L. If v is blue in L, then v is adjacent
to LM (2) by Lemma 5 and the construction of LM ; thus, there is a longer blue
edge.

Theorem 7. The bandwidth of a circular-arc graph can be approximated to within
a factor of four in O(n) time and to within a factor of two in O(n log2 n) time.

Proof. We have three approximation algorithms for approximating the bandwidth
of a circular-arc graph, namely, the algorithm previously described in which

(i) LA and LB are layouts of vertices ordered by left endpoints of intervals,

(ii) LA and LB are layouts of vertices ordered by right endpoints of intervals, or

(iii) LA and LB are layouts computed by Kleitman and Vohra’s algorithm.

Algorithms (i) and (ii) have time complexity O(n), provided the sorted arc end-
points are given, and they output a layout L that satisfies b(G,L) ≤ 2·max[b(GA, LA),
b(GB , LB)] ≤ 4 · bw(G).
Algorithm (iii) requiresO(n log2 n) time but produces a layout L satisfying b(G,L) ≤

2 ·max[b(GA, LA), b(GB , LB)] ≤ 2 · bw(G).
These performance ratios follow from Lemmas 5 and 6 and the fact that any

subgraph of graph G has bandwidth not larger than bw(G).

4. Chordal graphs with clique trees having a bounded number of leaves.
A graph G is a chordal graph if every cycle of length greater than three has a chord.
Chordal graphs are exactly the intersection graphs of subtrees in a tree [16]. More
precisely, for each chordal graph G = (V,E), there exists a tree T such that

• the vertices of T correspond to the maximal cliques of G, and
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• the vertices of T corresponding to cliques of G containing any fixed vertex v ∈ V
induce a subtree Tv of T .

Note the consequence that two vertices of G are adjacent if and only if their
corresponding subtrees have nonempty intersection. For a given chordal graph G =
(V,E), such a tree, called a clique tree for G, will have at most n nodes and can be
constructed in O(n+m) time [3].

We use the idea of mixing layouts of interval graphs, as in the previous section.
While a circular-arc graph roughly consists of two interval graphs arranged in a circle,
a chordal graph may be thought of as several interval graphs arranged in a tree-like
structure. We restrict our attention to chordal graphs having a bounded number of
leaves in their clique trees. A chordal graph with k leaves in its clique tree may be
viewed as a collection of k interval graphs. For a chordal graph G = (V,E) with
at most k leaves in the corresponding clique tree, we compute a layout L such that
b(G,L) ≤ 2k · bw(G).
The method is as follows, assuming a clique tree T has been computed for a given

chordal graph G = (V,E).

1. Root T at an arbitrary vertex, r.
2. Let k be the number of leaves of T (excluding r). For each root-to-leaf path

Pi in T , the collection of subtrees Tv (for v ∈ V ), restricted to Pi, form a
set of intervals. Let Ii be this set of intervals in which the left endpoint of
each interval is taken to be the one closer to r. Let Gi = (Vi, Ei) be the
corresponding interval graph.

3. for i← 1 to k do
Li ← layout for Gi consisting of Vi ordered by increasing left endpoints

of intervals (with ties broken arbitrarily but the same way in all
the Li’s)

4. Mix the Li’s to form LM , as follows:
LM ← L1(1)L2(1)L3(1) . . . Lk(1)L1(2)L2(2) . . . Lk(2) . . . .

5. For each vertex v ∈ V that appears in more than one of the Gi’s, delete all
but the rightmost copy of v from LM . The result is a layout L for G.

The following lemmas apply in the context of the previously described method.

Lemma 8. Each Gi is an interval graph.

Proof. This follows from the construction of the Gi’s and properties of the clique
tree.

Lemma 9. E1 ∪ E2 ∪ · · · ∪Ek = E.

Proof. If {u, v} ∈ E, then u and v occur together in some clique corresponding to
a vertex of T . Thus the edge {u, v} will occur in every Gi whose corresponding path
Pi contains that vertex of T .

Lemma 10. For all {u, v} ∈ E, either

• for all 1 ≤ i ≤ k : u ∈ Vi implies (v ∈ Vi and {u, v} ∈ Ei), or

• for all 1 ≤ i ≤ k : v ∈ Vi implies (u ∈ Vi and {u, v} ∈ Ei).

Proof. Let {u, v} ∈ E. Then Tu and Tv intersect. Let cuv be the vertex of T ,
closest to r, at which Tu and Tv intersect. cuv is the closest to r vertex for at least
one of Tu and Tv; otherwise, we contradict our choice of cuv, since the path from cuv
to r in T is unique and since Tu and Tv are both connected.

Suppose cuv is the vertex of Tu closest to r in T . Then, for any Vi that contains
u, the corresponding path Pi must contain cuv, and the conclusion follows.

Similarly, if cuv is the vertex of Tv closest to r, then, for every Vi containing v,
the corresponding path Pi contains cuv.
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Lemma 11. Each Gi is an induced subgraph of G.
Proof. This follows by an argument similar to the previous proof.
Lemma 12. b(G,L) ≤ 2k · bw(G).
Proof. Let {u, v} ∈ E and consider the length of {u, v} in L, i.e., |L(u) − L(v)|.

Assume, without loss of generality, that u <L v. If the copies of u and v remaining
in L are from the same interval subgraph Gi, then

|L(u)− L(v)| ≤ |LM (u)− LM (v)|
≤ k · |Li(u)− Li(v)|
≤ 2k · bw(Gi)
≤ 2k · bw(G).

Suppose the occurrences of u and v in L are from different interval subgraphs,
Gu and Gv, respectively. Since {u, v} ∈ E, we know by Lemma 10 that
• v ∈ Gu and {u, v} ∈ Gu, or
• u ∈ Gv and {u, v} ∈ Gv.
If u ∈ Gv then the occurrence of u in Gv is to the left (in LM ) of the occurrence

of u in Gu. Thus

|L(u)− L(v)| ≤ |LM (u of Gv)− LM (v of Gv)|
≤ k · |Lv(u)− Lv(v)|
≤ 2k · bw(Gv)
≤ 2k · bw(G).

Otherwise, u /∈ Gv and v ∈ Gu, implying that the vertex of Tv closest to r is
closer to r than the vertex of Tu closest to r. That is, in Iu, left(v) < left(u), and
hence v <Lu

u.
Let fuv be the last vertex of T (i.e., farthest from the root) that is in both Gu and

Gv. The set of left endpoints from r to fuv are identical in both Iu and Iv. Suppose
there are q of them. Then, in LM , both occurrences of v appear in the first k · q
positions, and the occurrence of u from Gu is to the right. This contradicts that the
occurrences of u and v under consideration satisfy u <L v.

Theorem 13. Let G = (V,E) be a chordal graph having a clique tree with at
most k leaves. Then a layout L for G satisfying b(G,L) ≤ 2k · bw(G) can be computed
in O(k(n+m)) time.

Proof. The proof follows from the previous discussion.
Recently, Fomin [13] showed how to improve the previous bound by choosing the

root r of the clique tree T such that at most 2
3k of the resulting interval graphs can

be laid out on either side of the vertices of r. The layout L obtained after mixing the
Li’s and removing duplicate vertices has b(G,L) ≤ 4

3k · bw(G).
Since the bandwidth problem remains NP-complete for trees, a subclass of chordal

graphs, it is worth mentioning that our algorithm outputs a layout L satisfying
b(G,L) ≤ k if G is a tree with at most k leaves. Notice that Ando, Kaneko, and
Gervacio showed in [1] that every tree with k leaves has bandwidth at most �k/2�.
Furthermore, their construction can easily be transformed into an efficient algorithm
to compute a layout of width at most �k/2�.

5. k-polygon graphs for fixed k. A triangulation of a graph G is a chordal
graphH with the same vertex set asG such thatG is a subgraph ofH. A triangulation
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H of a graph G is called a minimal triangulation of G if no proper subgraph of H is
a triangulation of G.

In this section we combine results of the previous section with results on minimal
triangulations of k-polygon graphs as follows. First, we generalize a result on minimal
triangulations of AT-free graphs in [22] to show that every minimal triangulation H
of a k-polygon graph G is a spanning subgraph of Gk (Theorem 19). Second, we
use a representation theorem for minimal triangulations of a circle graph provided
in [23] to obtain a representation theorem for minimal triangulations of k-polygon
graphs (Theorem 22). Then we show how to transform any k-polygon graph G into a
minimal triangulationH of G (and thusH is a chordal graph) such thatH has a clique
tree with at most k leaves. Combining all this with Lemma 2, and the approximation
algorithm of the previous section, we obtain an O(n3) approximation algorithm for
the bandwidth of k-polygon graphs which has performance ratio 2k2 (or 4

3k
2, in light

of Fomin’s improvement).

A graph G = (V,E) is a k-polygon graph if it is the intersection graph of chords
inside a convex k-polygon, where each chord has its endpoints on two different sides
of the polygon. A k-polygon representation, or diagram, for G = (V,E) is a k-sided
convex polygon together with a set of chords such that, for all u, v ∈ V , {u, v} ∈ E if
and only if the chords corresponding to u and v cross.

Circle graphs are the intersection graphs of chords inside a circle. A circle model,
or diagram, for circle graph G = (V,E) is a set of chords in a circle such that two
vertices are adjacent in G if and only if their corresponding chords cross. Clearly,
every polygon representation of a graph G can also be seen as a circle model of G.
Thus, for each k ≥ 2 , every k-polygon graph is a circle graph. (Permutation graphs
are to be considered as 2-polygon graphs.)

There is an O(n2) algorithm [28] which determines whether or not a given graph
is a circle graph and, if so, produces a circle model for it. Given a graph G = (V,E),
it can be determined in O(|V |k) time whether or not G is a k-polygon graph and, if
so, a polygon representation can be constructed [10]. However, given a circle graph G,
the problem of determining the minimum k such that G is a k-polygon graph remains
NP-complete [10].

Our algorithm assumes that a k-polygon representation for the input graph is
provided.

All of the notation in this section is either identical to that of [22] and [23] or
inspired by those two papers. (See also [20].)

Let G = (V,E) be a graph and a, b two nonadjacent vertices of G. The set
S ⊆ V is an a, b-separator if the removal of S separates a and b in distinct connected
components. If no proper subset of S is an a, b-separator, then S is a minimal a, b-
separator. A minimal separator is a set of vertices S that is a minimal a, b-separator.

Lemma 14 (see [9]). Let S be a minimal a, b-separator of the graph G = (V,E),
and let Ca and Cb be the connected components of G[V \ S] containing a and b,
respectively. Then every vertex of S has at least one neighbor in Ca and at least one
neighbor in Cb.

We denote by Sep(H) the set of all minimal separators of a graph H. We shall
need the following properties of minimal triangulations of a graph.

Theorem 15 (see [22]). A triangulation H of a graph G is a minimal triangu-
lation of G if and only if the following three conditions are satisfied:

1. If a and b are nonadjacent vertices of H, then every minimal a, b-separator
of H is also a minimal a, b-separator of G.
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2. If S is a minimal separator of H and C a connected component of H[V \ S],
then the vertex set of C induces a connected component in G[V \ S].

3. H = GSep(H), where GSep(H) is the graph obtained from G by adding edges
between every pair of vertices contained in the same set S for any S ∈ Sep(H).

To obtain an algorithm to approximate the bandwidth of k-polygon graphs, in
a first step we generalize definitions and results of [22] to show that every minimal
triangulation H of a k-polygon graph G is a subgraph of Gk.

Definition. A minimal separator S is d-good if, for every nonadjacent pair x
and y in S, dG(x, y) ≤ d. A triangulation H of G is d-good if, for every edge {a, b}
in H, dG(a, b) ≤ d; i.e., H is a subgraph of Gd.

The following theorem is a consequence of the characterization of minimal trian-
gulations given in Theorem 15.

Theorem 16. If every minimal separator of a graph G is d-good, then every
minimal triangulation H of G is d-good.

Proof. Let {a, b} be an edge of H but not an edge of G. By Theorem 15,
H = GSep(H). Hence there is a minimal separator S of H such that {a, b} ⊆ S.
By Theorem 15, S is also a minimal separator of G. Therefore S is d-good and
dG(a, b) ≤ d.

Consequently, H is d-good.

Lemma 17. Let G be a graph without a chordless cycle of length greater than
2k + 1. Then every minimal separator of G is k-good.

Proof. Assume there is some minimal separator S containing nonadjacent vertices
x and y such that dG(x, y) > k. Now, by Lemma 14, we can find an x, y-path in Cx
and one in Cy. If we choose shortest such paths, then their union is a chordless cycle
of length at least 2(k + 1), a contradiction.

Lemma 18. Let G be a k-polygon graph. Then G has no chordless cycle of length
greater than 2k.

Proof. It is proved in [14] that chordless cycles have unique representations as
chords in a circle. SupposeG has a chordless cycle of length at least 2k+1 and consider
the unique representation as chords in a circle. The number of chord endpoints must
be at least 2(2k + 1) = 4k + 2. Each side of the k-polygon can contain at most four
chord endpoints; otherwise, the two endpoints of a chord would have to be on the
same side. Thus there must be at least � 4k+2

4 � = k + 1 sides.

Theorem 19. Every minimal triangulation H of a k-polygon graph G is k-good,
and thus H is a subgraph of Gk.

Proof. By Lemma 17 and 18, every minimal separator of a k-polygon graph G is
k-good. Thus, by Theorem 16, every minimal triangulation of G is k-good.

In a second step we use a representation theorem for the minimal triangulations
of a circle graph given in [23] to obtain a similar theorem for k-polygon graphs. We
shall need some preparations.

Assume that an n-vertex circle graph is given as a set of chords in a circle. Between
each two consecutive endpoints of chords, add a point called a scanpoint. Let Z be
the set of 2n scanpoints. A scanline is a chord of the circle connecting two scanpoints.
Let c1 and c2 be two chords of the circle model. A scanline s is between c1 and c2 if
every path from an endpoint of c1 to an endpoint of c2 along the circle passes through
a scanpoint of s. For any scanline s, we denote by S(s) the set of all vertices v of G
for which the corresponding chord intersects s.

Theorem 20 (see [21]). Let a and b be nonadjacent vertices of the circle graph
G = (V,E). For every minimal a, b-separator S of G, there exists a scanline s between
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the chords of a and b such that S = S(s).

Note that this implies that, for every minimal a, b-separator S of a k-polygon
graph G, there is a scanline s with S = S(s) such that the endpoints of s are on two
different sides of the polygon.

In [23] Kloks, Kratsch, and Wong give the following representation theorem for
all minimal triangulations of a circle graph in terms of planar triangulations of the
polygon P(Z), which is the convex polygon with vertex set Z.

Theorem 21 (see [23]). Let G = (V,E) be a circle graph given as a set of
chords in a circle, and let Z be the corresponding set of scanpoints. Then for every
minimal triangulation H of G there is a planar triangulation T of the polygon P(Z)
such that H = H(T ), where H(T ) is the graph with vertex set V , and vertices u and
v are adjacent in H(T ) if there exists a triangle in T that is intersected by the chords
corresponding to u and v.

Let G = (V,E) be a k-polygon graph and thus a circle graph. Consider a k-
polygon representation of G consisting of a set of chords C inside a k-sided polygon
PG. Let Z be the set of scanpoints on PG, and let P(Z) be the convex polygon with
vertex set Z.

Theorem 22. Let G = (V,E) be a k-polygon graph given as a set of chords in a
k-polygon, and let Z be the corresponding set of scanpoints. Then for every minimal
triangulation H of G there is a planar triangulation T of the polygon P(Z) such that

• every diagonal in T has endpoints on two different sides of the k-polygon, and

• H = H(T ), where H(T ) is the graph with vertex set V , and vertices u and v
are adjacent in H(T ) if there exists a triangle Q in T that is intersected by the chords
corresponding to u and v.

Proof. Theorem 22 is an immediate consequence of Theorem 21, except for the
property that no diagonal of the planar triangulation T of P(Z) has both its endpoints
on one side of PG. We sketch only how to construct such a planar triangulation T
following the lines of the proof of Theorem 21.

First, for each minimal separator S ofH we choose a scanline s such that S = S(s),
and this can be done such that no two scanlines cross each other. As mentioned below
Theorem 20, none of these scanlines has both endpoints on one side of PG. Now we
choose all these scanlines as diagonals of a triangulation of P(Z). If this is not yet a
triangulation T of P(Z) we add more diagonals to obtain a planar triangulation such
that we never add a diagonal with both endpoints on one side of PG.
Consequently, a minimum triangulation H of a k-polygon graph G can be com-

puted by finding a minimum weight triangulation of P(Z), in which we consider only
chords with endpoints on different sides of the polygon. The O(n3) dynamic pro-
gramming algorithm for this computation for circle graphs [23] can be adapted to the
domain of k-polygon graphs; the adapted algorithm retains its O(n3) complexity.

It remains to show how to construct a clique tree with at most k leaves for H.
This is done by using the planar triangulation T of P(Z) with H = H(T ) for the
minimum triangulation H, which is also provided by the algorithm computing H.
Now a clique tree of H is constructed as follows. Take the dual graph of the planar
triangulation T (without taking a vertex for the exterior face); i.e., each vertex of the
dual graph corresponds to a triangle of T . It is well known that this dual graph of
a planar triangulation is a tree. Two vertices of the tree are adjacent if and only if
the corresponding triangles of T share a diagonal, and we assign to each vertex of the
tree the set of all chords intersecting the corresponding triangle of T . This tree has
at most k leaves, since any leaf corresponds to a triangle containing a corner of PG.
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Finally, we remove all nonmaximal cliques by contracting suitable edges of the tree
and obtain a clique tree of H with at most k leaves.

Theorem 23. There is an O(n3) algorithm to compute for a given k-polygon
graph G a clique tree of a minimum triangulation such that this clique tree has at
most k leaves.

Thus, our approximation algorithm from the previous section applies to this tri-
angulation H of a k-polygon graph G.

Remark. One can show analogously that there is an O(n3) algorithm that
computes for a given minimal triangulation H of a k-polygon graph a clique tree with
at most k leaves.

Finally, we combine the main results of this section to obtain an algorithm to
approximate the bandwidth of k-polygon graphs.

Theorem 24. There is an O(n3) algorithm to compute for a k-polygon graph G
given with a k-polygon representation a layout L satisfying b(G,L) ≤ 2k2 · bw(G).

Proof. By Theorem 23, there is an O(n3) algorithm to compute for a k-polygon
graph G given with a k-polygon representation, a minimum triangulation H of G, and
a clique tree of H such that this clique tree has at most k leaves. By Theorem 13, a
layout L satisfying b(H,L) ≤ 2k ·bw(H) can be computed by a O(k(n+m)) algorithm.
By Lemma 2, any layout L of a d-good triangulation H of G with b(H,L) ≤ c · bw(H)
fulfills b(G,L) ≤ d · c · bw(G), where c, d ≥ 1 are constants. Consequently, b(G,L) ≤
2k2 · bw(G).

Remark. By [13], the performance ratio in the previous theorem can be improved
to b(G,L) ≤ 4

3k
2 · bw(G).
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Abstract. We present a new class of randomized approximation algorithms for unrelated parallel
machine scheduling problems with the average weighted completion time objective. The key idea is
to assign jobs randomly to machines with probabilities derived from an optimal solution to a linear
programming (LP) relaxation in time-indexed variables. Our main results are a (2+ε)-approximation
algorithm for the model with individual job release dates and a (3/2+ε)-approximation algorithm if all
jobs are released simultaneously. We obtain corresponding bounds on the quality of the LP relaxation.

It is an interesting implication for identical parallel machine scheduling that jobs are randomly
assigned to machines, in which each machine is equally likely. In addition, in this case the algorithm
has running time O(n logn) and performance guarantee 2. Moreover, the approximation result for
identical parallel machine scheduling applies to the on-line setting in which jobs arrive over time as
well, with no difference in performance guarantee.

Key words. approximation algorithm, randomized rounding, linear programming relaxation,
scheduling, on-line algorithm
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1. Introduction. It is well known that randomization can help in the design
of (approximation) algorithms; cf., e. g., [28, 29]. The use of linear programs (LPs)
is one way of guiding randomness. In this paper, we give LP-based, randomized
approximation algorithms for parallel machine scheduling problems with the average
weighted completion time objective. A randomized ρ-approximation algorithm for a
minimization problem is a polynomial-time algorithm that produces for every instance
a feasible solution whose expected objective function value is within a factor of ρ of
the optimum; ρ is also called the (expected) performance guarantee of the algorithm.
Most often, we actually compare the output of an algorithm to a lower bound given
by an optimal solution to a certain LP relaxation. Hence, at the same time we obtain
a result on the quality of the respective LP. All of our off-line algorithms can be
derandomized with no difference in performance guarantees, but at the expense of
increased yet still polynomial running times.

We consider the following scheduling model. We are given a set J of n jobs and
m unrelated parallel machines. The processing time of job j depends on the machine
on which j will be processed; it is a positive integer pij on machine i. Each job j
must be processed for the respective amount of time on one of the m machines and
may be assigned to any of them. Every machine can process at most one job at a
time. Each job j also has an integral release date rj � 0 before which it cannot be
started. We denote the completion time of job j in a schedule S by CS

j ; we also
use Cj if no confusion is possible as to which schedule we refer. The objective is to
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minimize the total weighted completion time: a weight wj � 0 is associated with
each job j, and the goal is to find a schedule S that minimizes

∑
j∈J wjC

S
j . The

classification scheme introduced by Graham et al. [19] offers a convenient way to refer
to individual scheduling problems. The problem that we just described is denoted
by R | rj |

∑
wjCj , and, if all jobs share the same release date, by R | |

∑
wjCj .

We will also consider the special case of identical parallel machines, which arises
by assuming that, for each job j, pij = pj for all machines i. In general, we are
interested only in nonpreemptive schedules, in which each job must be processed
without interruption. Yet, for the identical parallel machine case we also discuss
preemptive schedules in which jobs may repeatedly be interrupted and continued
later, possibly on a different machine. Hence, the class of problems for which we will
present approximation algorithms includes P | | ∑wjCj , P | rj , pmtn |

∑
wjCj , and

P | rj |
∑

wjCj . These problems are strongly NP-hard [24, 25].

Scheduling to minimize the total weighted completion time (or, equivalently, the
average weighted completion time) has recently received a great deal of attention,
partly because of its importance as a classic objective function in scheduling but also
because of new applications, for instance, in compiler optimization [6] or in parallel
computing [4]. There has been significant progress in the design of approximation
algorithms for this class of problems. This progress essentially results from the use of
preemptive schedules to construct nonpreemptive ones and from solving an LP relax-
ation and then constructing a schedule by list scheduling in an order dictated by the
LP solution [5, 7, 9, 16, 17, 18, 20, 26, 27, 30, 33, 37, 42].

In this paper, we propose a new technique: random assignments of jobs to ma-
chines. In fact, we first introduce an LP relaxation in time-indexed variables for
the problem R | rj |

∑
wjCj , and we then show that a certain variant of randomized

rounding leads to an algorithm with performance guarantee 2. If all jobs are released
at the same time, R | | ∑wjCj , the performance guarantee of this algorithm is 3/2.
The latter observation was independently made by Chudak [8]. The corresponding LP
is a 2-relaxation and a 3/2-relaxation, respectively. That is, the true optimum is al-
ways within this factor of the optimal value of the LP relaxation. Our algorithm
improves upon a 16/3-approximation algorithm of Hall et al. [20], which is based on
a related interval-indexed LP relaxation. In contrast to their approach, our algo-
rithm does not rely on Shmoys and Tardos’s rounding technique for the generalized
assignment problem [39]. Rather, we exploit the LP by interpreting the values of the
LP variables in an optimal solution as probabilities with which jobs are assigned to
machines. For an introduction to randomized rounding and its application to other
combinatorial optimization problems, the reader is referred to [28, 34].

Since the time-indexed LP relaxation is of exponential size, we have to resort to
an interval-indexed formulation in order to obtain polynomial running times. The
resulting algorithm is a (2 + ε)-approximation algorithm for R | rj |

∑
wjCj , and a

(3/2 + ε)-approximation algorithm for R | | ∑wjCj , for any ε > 0. The second
author subsequently developed a different approach to overcome this difficulty. Based
on compact convex quadratic programming relaxations in assignment variables, the
same rounding technique yields a 2-approximation algorithm for R | rj |

∑
wjCj and

a 3/2-approximation algorithm for R | | ∑wjCj directly; see [41].

Actually, for P | rj |
∑

wjCj , our algorithm produces in time O(n log n) a solu-
tion that is expected to be within a factor of 2 of the optimum. Since the underlying
LP relaxation is also a relaxation of the corresponding preemptive problem, this al-
gorithm is a 2-approximation algorithm for P | rj , pmtn |

∑
wjCj as well. The best
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Table 1.1
Summary of performance guarantees for the minimization of the total weighted completion

time. The “Known” columns list the best previously known performance guarantees, whereas the
“New” columns list new results from this paper; “—” indicates the absence of a relevant result; and
ε is an arbitrarily small, positive constant. While the off-line results are achieved by deterministic
algorithms, all on-line results refer to randomized algorithms.

Off-line On-line
Model

Known New Known New

P | rj |
∑

Cj 2.85 [7] 2 2.89 + ε [5] 2
P | rj |

∑
wjCj 2.89 + ε [5] 2 2.89 + ε [5] 2

P | rj , pmtn | ∑Cj 2 [33] 2 2 [33] 2
P | rj , pmtn | ∑wjCj 3 [20] 2 — 2
R | | ∑wjCj 16/3 [20] 3/2 + ε — —
R | rj |

∑
wjCj 16/3 [20] 2 + ε — —

previously known approximation algorithms had performance guarantees of (2.89+ε)
and 3, respectively [5, 20]. In addition, our result implies that the value of an optimal
nonpreemptive schedule is at most twice the value of an optimal preemptive sched-
ule. Moreover, an optimal solution to the LP used in the case of identical parallel
machines is attained by the following preemptive schedule, which can be obtained
in a greedy manner. Consider a virtual single machine, which is m times as fast
as any of the original machines. At any point in time, schedule from the jobs that
are already released, but not yet completed, one with the largest ratio of weight to
processing time. We call this schedule the LP schedule. The idea of using a preemp-
tive relaxation on a virtual single machine was employed before by Chekuri et al. [7],
among others. They showed that any preemptive schedule on such a machine can
be converted into a nonpreemptive schedule on m identical parallel machines such
that the completion time of each job j in the nonpreemptive schedule is at most
(3− 1/m) times its preemptive completion time. For the problem of minimizing the
average completion time, P | rj |

∑
Cj , they refined this to a 2.85-approximation al-

gorithm. In the single-machine context, the LP schedule is the key ingredient of the
1.6853-approximation algorithm for 1 | rj |

∑
wjCj [17] and the 4/3-approximation

algorithm for 1 | rj , pmtn |
∑

wjCj [37].

Since an optimal solution to the LP relaxation can be obtained greedily, these
single-machine algorithms as well as our algorithm for identical parallel machine
scheduling also work in the corresponding on-line setting where jobs continually arrive
to be processed, and, for each time t, one must construct the schedule until time t
without any knowledge of the jobs that will arrive afterwards; our algorithm maintains
an (expected) competitive ratio of 2 for both the nonpreemptive and the preemptive
variant of this problem. A randomized on-line algorithm for a minimization problem
is ρ-competitive if it outputs for any instance a solution of expected value within a
factor of ρ of the value of an optimal off-line solution. A summary of our results, along
with a comparison to previously known performance guarantees, is given in Table 1.1.

Recently, Skutella and Woeginger [43] developed a polynomial-time approxima-
tion scheme for the problem P | | ∑wjCj that improves upon the previously best
known (1+

√
2)/2-approximation algorithm due to Kawaguchi and Kyan [23]. Subse-

quently, Afrati et al. [1] gave polynomial-time approximation schemes for the problem
P | rj |

∑
wjCj , its preemptive variant P | rj , pmtn |

∑
wjCj , and also for the corre-

sponding problems on a constant number of unrelated machines, Rm | rj |
∑

wjCj
and Rm | rj , pmtn |

∑
wjCj . On the other hand, Hoogeveen, Schuurman, and Woeg-
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inger [22] showed that the problems R | rj |
∑

Cj and R | |
∑

wjCj are APX-hard;
hence, they do not possess a polynomial-time approximation scheme, unless P = NP.

The remainder of this paper is organized as follows. In section 2, we present our
main result: a pseudopolynomial-time algorithm with performance guarantee 2 in the
general context of unrelated parallel machine scheduling. We give a combinatorial
2-approximation algorithm for identical parallel machine scheduling in section 3 and
show how to use it in an on-line setting. Then, in section 4, we discuss the deran-
domization of the previously given randomized algorithms. Finally, in section 5, we
elaborate on the details of turning the pseudopolynomial-time algorithm of section 2
into a polynomial-time algorithm with performance guarantee 2 + ε. We conclude by
pointing out some open problems in section 6.

2. Scheduling unrelated parallel machines with release dates. In this
section, we consider the problem R | rj |

∑
wjCj . As in [20, 32, 41], we will actually

discuss a slightly more general problem, in which the release date of job j may also
depend on the machine i to which j is assigned, and is thus denoted by rij . Machine-
dependent release dates are relevant to model situations in which parallel machines
are connected by a network; each job is located at a given machine at date 0, and
cannot be started on another machine until sufficient time elapses to allow the job
to be transmitted to its new machine. This model, called network scheduling, was
introduced in [2, 10].

The problem R | rij |
∑

wjCj is strongly NP-hard; in fact, P 2 | |
∑

wjCj is NP-
hard, and 1 | rj |

∑
Cj as well as P | |

∑
wjCj are strongly NP-hard [3, 25]. Phillips,

Stein, and Wein presented the first nontrivial approximation algorithm for this prob-
lem [32]. It has performance guarantee O(log2 n). Subsequently, Hall et al. [20] gave a
16/3-approximation algorithm that relies on an interval-indexed LP relaxation whose
optimal value serves as a surrogate for the true optimum in their analysis. We use
a related LP relaxation and construct feasible schedules from LP solutions by ran-
domized rounding, whereas Hall et al. invoke the deterministic rounding technique of
Shmoys and Tardos [39].

Let T + 1 = max i,j rij +
∑
j∈J max i pij be the time horizon. We introduce for

every job j ∈ J , every machine i = 1, . . . ,m, and every point t = rij , . . . , T in time
a variable yijt that represents the amount of time job j is processed on machine i
within the time interval (t, t + 1]. Equivalently, one can say that a yijt/pij -fraction
of job j is being processed on machine i within the time interval (t, t + 1]. The
LP relaxation, which is an extension of a single-machine LP relaxation considered by
Dyer and Wolsey [11], is as follows:

min
∑
j∈J

wjC
LP
j

s.t.

m∑
i=1

T∑
t=rij

yijt
pij

= 1 for all j,(2.1)

∑
j∈J

yijt � 1 for all i and t,(2.2)

CLP
j �

m∑
i=1

T∑
t=rij

(
yijt
pij

(
t+ 1

2

)
+ 1

2 yijt

)
for all j,(2.3)
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CLP
j �

m∑
i=1

T∑
t=rij

yijt for all j,(2.4)

yijt � 0 for all i, j, and t.

We refer to this LP relaxation as (LPR). Equation (2.1) ensures that the processing
requirement of every job is satisfied. The machine capacity constraints (2.2) express
that each machine can process at most one job at a time. For (2.3), consider an
arbitrary feasible schedule S in which job j is being continuously processed between
date CS

j − phj and CS
j on machine h. Then the right-hand side of (2.3) corresponds

to the real completion time CS
j of j if we assign the values to the LP variables yijt

as defined above; i.e., yijt = 1 if i = h and t ∈ {CS
j − phj , . . . , C

S
j − 1}, and yijt = 0

otherwise. The right-hand side of (2.4) equals the processing time phj of job j in
the schedule S and is therefore a lower bound on its completion time CS

j . Hence,
(LPR) is a relaxation of the scheduling problem R | rij |

∑
wjCj . In fact, even the

corresponding mixed-integer program, where the y-variables are forced to be binary,
is only a relaxation—it allows preemptions of jobs, and a job may use the capacity of
more than one machine at a time.

Due to the exponentially large number of variables, the linear programming re-
laxation (LPR) cannot be solved in time polynomial in the input size of an instance of
the problem R | rij |

∑
wjCj . Therefore, the running time of the following algorithm,

which turns an optimal LP solution into a feasible schedule, is only pseudopolyno-
mial. In particular, the results on the quality of the computed schedule that we prove
in the remainder of this section do not directly lead to an approximation algorithm
for the considered scheduling problem. However, we can overcome this drawback by
introducing new variables that are not associated with exponentially many time in-
tervals of length 1 but rather with a polynomial number of intervals of geometrically
increasing size. We discuss the technical details of this remedy in section 5.

The following algorithm takes an optimal LP solution and then constructs a fea-
sible schedule by using a variant of randomized rounding.

Algorithm LP Rounding.
(1) Compute an optimal solution y to (LPR).
(2) For all j ∈ J , assign job j to a machine-time pair (i, t), where

the machine-time pair is chosen from the probability distribution
that assigns job j to (i, t) with probability

yijt
pij
; set tj := t.

(3) Schedule on each machine i the jobs that were assigned to it non-
preemptively as early as possible in order of nondecreasing tj ;
ties are broken independently at random.

In the analysis of the algorithm, we assume that the random decisions for different
jobs in step (2) are pairwise independent.

Lemma 2.1. The expected completion time E[Cj ] of job j in the schedule con-
structed by Algorithm LP Rounding can be bounded from above by

E[Cj ] � 2

m∑
i=1

T∑
t=rij

yijt
pij

(t+ 1
2 ) +

m∑
i=1

T∑
t=rij

yijt.

If all jobs are released at date 0 on all machines, the following stronger bound holds:

E[Cj ] �
m∑
i=1

T∑
t=0

yijt
pij

(t+ 1
2 ) +

m∑
i=1

T∑
t=0

yijt.(2.5)
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Proof. We start by analyzing the structure of a schedule produced by Algo-
rithm LP Rounding. We consider an arbitrary but fixed job j ∈ J and denote the
machine-time pair to which job j has been assigned by (i, t). Let τ � 0 be the earliest
point in time such that there is no idle time in the constructed schedule during (τ, Cj ]
on machine i. Let K be the set of jobs processed in this time interval on machine i;
hence ∑

k∈K
pik = Cj − τ.(2.6)

Since all jobs k ∈ K are started no later than j, they must have been assigned to
machine-time pairs (i, tk) with tk � t. In particular, rik � tk � t for all k ∈ K, and
therefore τ � t. Together with (2.6) we obtain

Cj � t+
∑
k∈K

pik.

To analyze the expected completion time E[Cj ] of job j, we first keep the assignment
of j to machine-time pair (i, t) fixed and prove a bound on the conditional expecta-
tion Ei,t[Cj ]:

Ei,t[Cj ] � t+ Ei,t

[∑
k∈K

pik

]
� t+ pij +

∑
k �=j

pik · Pri,t[k on i before j]

= t+ pij +
∑
k �=j

pik

(
t−1∑
�=rik

yik�
pik

+
1

2

yikt
pik

)

(Note that the factor 1
2 before the term

yikt

pik
results from breaking ties randomly.)

� t+ pij + (t+
1
2 ) � 2 (t+ 1

2 ) + pij .

The second but last inequality follows from the machine capacity constraints (2.2).
Finally, unconditioning the expectation by the formula of total expectation leads to

E[Cj ] =

m∑
i=1

T∑
t=rij

yijt
pij

Ei,t[Cj ] � 2

m∑
i=1

T∑
t=rij

yijt
pij

(t+ 1
2 ) +

m∑
i=1

T∑
t=rij

yijt.

In the absence of nontrivial release dates, we can prove a stronger bound. Observe
that τ = 0 and Cj =

∑
k∈K pik in this case. This yields Ei,t[Cj ] � pij + (t +

1
2 ) and

eventually the claimed result.
Theorem 2.2. For instances of R | rij |

∑
wjCj, the expected objective function

value of the schedule constructed by Algorithm LP Rounding is at most twice the
value of an optimal solution.

Proof. Lemma 2.1 together with constraints (2.3) implies that the expected
completion time of every job j is bounded from above by twice its LP completion
time CLP

j . Since the optimal LP value is a lower bound on the value of an opti-
mal schedule and the weights are nonnegative, the result follows from linearity of
expectations.

Note that Theorem 2.2 still holds if we use the weaker LP relaxation where con-
straints (2.4) are missing. However, this is not true for the following result.
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Theorem 2.3. For instances of R | | ∑wjCj, Algorithm LP Rounding con-
structs a schedule of expected objective function value at most 3/2 times the value of
an optimal schedule.

Proof. The claimed result follows from Lemma 2.1 and LP constraints (2.3)
and (2.4).

In the absence of nontrivial release dates, Algorithm LP Rounding can be im-
proved and simplified.

Algorithm LP Simple Rounding.
(1) Compute an optimal solution y to (LPR).
(2) For all j ∈ J , assign job j to a machine i, where machine i is

chosen from the probability distribution that assigns job j to i
with probability

∑T
t=0

yijt
pij
.

(3) Sequence on each machine i the assigned jobs in order of non-
increasing ratios wj/pij .

Again, the random decisions in step (2) are performed pairwise independently.

Corollary 2.4. For instances of R | | ∑wjCj, the approximation result of
Theorem 2.3 also holds for Algorithm LP Simple Rounding.

Proof. Notice that the random assignment of jobs to machines is identical in Algo-
rithms LP Rounding and LP Simple Rounding. Moreover, for a fixed assignment
of jobs to machines, sequencing the jobs according to Smith’s ratio rule [44] on each
machine is optimal. In particular, it improves upon the random sequence used in the
final step of Algorithm LP Rounding.

In the analysis, we have compared the value of the solution computed by Algo-
rithm LP Rounding to the optimal LP value, which is a lower bound on the value
of an optimal solution. Hence, we obtain the following result on the quality of the
LP relaxation.

Corollary 2.5. The linear program (LPR) is a 2-relaxation for R | rij |
∑

wjCj
(even without constraints (2.4)) and a 3

2 -relaxation for R | | ∑wjCj.

We show in the following section that (LPR) without constraints (2.4) is not
better than a 2-relaxation, even for instances of P | | ∑wjCj . On the other hand, the
relaxation can be strengthened by adding the constraints

m∑
i=1

yijt � 1 for j ∈ J , t = 0, . . . , T .(2.7)

These constraints ensure that no job can use the capacity of more than one machine
in each time period. We do not know whether these constraints can be used to get
provably stronger results on the quality of the LP relaxation and better performance
guarantees for Algorithm LP Rounding.

In section 5, we eventually derive from Theorems 2.2 and 2.3 a (2+ε)-approxima-
tion algorithm for the problem R | rij |

∑
wjCj and a (3/2 + ε)-approximation algo-

rithm for R | | ∑wjCj .

The techniques presented in this section (and in section 5) can be modified to
design approximation algorithms for the corresponding preemptive scheduling prob-
lems as well. Notice that, although the LP relaxation (LPR) allows preemptions of
jobs, it is not a relaxation of R | rij , pmtn |

∑
wjCj ; one can easily show (see, e. g.,

[40, Example 2.10.8.]) that the right-hand side of (2.3) can in fact overestimate the
actual completion time of a job in the preemptive schedule corresponding to a solu-
tion of (LPR). However, replacing (2.3) with the following slightly weaker constraint
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yields an LP relaxation for the preemptive scheduling problem:

CLP
j �

m∑
i=1

T∑
t=rij

yijt
pij

(
t+ 1

2

)
for all j ∈ J .

This leads to a (3 + ε)-approximation algorithm for R | rij , pmtn |
∑

wjCj and a
(2 + ε)-approximation algorithm for R |pmtn | ∑wjCj . These results can again be
slightly improved by using convex quadratic programming relaxations; see [41].

In the next section, we consider the special case of identical parallel machines and
give a different interpretation of Algorithm LP Rounding in terms of so-called α-
points. The following variant of Algorithm LP Rounding will be useful in this
context.

Remark 2.6. The following is an equivalent way of breaking ties randomly in the
last step of Algorithm LP Rounding: At the end of the second step, draw tj from
the interval (t, t+1] independently at random with uniform distribution; then, in the
last step, ties occur with probability zero and can therefore be neglected.

3. Identical parallel machine scheduling with release dates. We now con-
sider the special case of m identical parallel machines. The processing time and the
release date of job j no longer depend on the machine job j is assigned to; consequently,
they are denoted by pj and rj , respectively. As mentioned before, even P 2 | |

∑
wjCj

is NP-hard. We consider P | rj |
∑

wjCj .

In this context, we can turn Algorithm LP Rounding into a purely combinatorial
algorithm. Following earlier work (see, e.g., Eastman, Even, and Isaacs [12]), we first
reduce an identical parallel machine instance to a single-machine instance. Here, the
single machine is assumed to be m times as fast as each of the original m machines;
i.e., the processing time of job j on this virtual single machine is p′j := pj/m. (We
assume without loss of generality that pj is a multiple of m.) Its weight and its release
date remain the same. The crucial part of our algorithm is to assign jobs to machines
uniformly at random. Then, on each machine, we schedule the assigned jobs in order
of random α-points with respect to the LP schedule on the fast single machine.

For 0 < α � 1, the α-point CS
j (α) of job j with respect to a given preemptive

schedule S on the fast single machine is the first point in time when an α-fraction
of job j has been completed, i.e., when j has been processed for α · p′j time units.
In particular, CS

j (1) = CS
j , and for α = 0 we define CS

j (0) to be the starting time
of job j. Slightly varying notions of α-points were considered in [21, 33], but their
full potential was revealed when Chekuri et al. [7] as well as Goemans [16] chose the
parameter α at random. The following procedure may be seen as an extension of their
single-machine algorithms to identical parallel machines.

Algorithm Random Assignment.
(1) Construct the preemptive LP schedule S on the virtual single

machine by scheduling, at any point in time, among the already
released but not yet completed jobs the one with largest wj/p

′
j

ratio.
(2) Independently, for all j ∈ J , assign job j to a machine i ∈
{1, . . . ,m}, where machine i is chosen from the probability dis-
tribution that assigns job j to i with probability 1

m .
(3) For all j ∈ J , let αj be a realization of an independent, uniformly

distributed random variable in [0, 1].
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(4) Schedule on each machine i the assigned jobs nonpreemptively
as early as possible in order of nondecreasing CS

j (αj).
Notice that in the first step, whenever a job is released, the job being processed (if
any) will be preempted if the released job has a larger wj/p

′
j ratio; here, the p′j

values are the original processing times and not the remaining processing times. The
appendix provides an illustration of Algorithm Random Assignment. Its running
time is dominated by the computation of the preemptive LP schedule in the first step,
which can be done in O(n log n) time using a priority queue [16].

We will show in the following that Algorithm Random Assignment can be in-
terpreted as the reformulation of Algorithm LP Rounding discussed in Remark 2.6.
We notice first that the preemptive LP schedule on the virtual single machine corre-
sponds to an optimal solution to an LP relaxation which is equivalent to (LPR). We
introduce a variable yjt for every job j and every time period (t, t+1], t = rj , . . . , T ;
the variable yjt is set to 1/m if job j is being processed on one of the m machines
in this period and to 0 otherwise. In contrast to the unrelated parallel machine case,
we do not need machine-dependent variables, since it is not necessary to distinguish
between the identical parallel machines. We can express the new variables yjt with
the help of the old variables yijt by setting yjt =

1
m (y1jt + · · · + ymjt) for j ∈ J ,

t = rj , . . . , T . This leads to the following simplified LP (ignoring constraints (2.4)
of (LPR)):

min
∑
j∈J

wjC
LP
j

s.t.

T∑
t=rj

yjt = p′j for all j ∈ J ,

(LPP)
∑
j∈J

yjt � 1 for t = 0, . . . , T ,

CLP
j =

pj
2
+
1

p′j

T∑
t=rj

yjt
(
t+ 1

2

)
for all j ∈ J ,

yjt � 0 for all j ∈ J and t = rj , . . . , T .

Dyer and Wolsey noticed that this linear program can be solved in O(n log n) time
for the special case m = 1 [11]. Goemans showed (also for the case m = 1) that the
preemptive schedule that is constructed in the first step of Algorithm Random As-
signment defines an optimal solution to (LPP) [15]. This result as well as its proof
easily generalize to an arbitrary number of identical parallel machines.

Lemma 3.1. For instances of P | rj |
∑

wjCj, the preemptive LP schedule on the
fast single machine is an optimal solution to relaxation (LPP). Moreover, it can be
computed in O(n log n) time.

Theorem 3.2. Random Assignment is a randomized 2-approximation algo-
rithm for P | rj |

∑
wjCj.

Proof. We show that Algorithm Random Assignment can be interpreted as a
special case of the variant of Algorithm LP Rounding discussed in Remark 2.6. The
result then follows from its polynomial running time and Theorem 2.2.

Lemma 3.1 implies that we compute in the first step of Algorithm Random As-
signment an optimal solution to the LP relaxation (LPP), which is equivalent to
(LPR) without constraints (2.4). In particular, the corresponding solution to (LPR)
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is symmetric with regard to the m machines. Therefore, Algorithm LP Rounding
assigns each job uniformly at random to one of the machines. The symmetry also
yields that for each job j the choice of tj is not correlated with the choice of i in
Algorithm LP Rounding.

Next we observe that the probability distributions of the random variable tj
in Algorithm LP Rounding and of CS

j (αj) in Algorithm Random Assignment

are the same. In fact, the probability that CS
j (αj) ∈ (t, t + 1] for some t equals

the fraction yjt/p
′
j of job j that is being processed in this time interval. Moreover,

each point in (t, t + 1] is equally likely to be obtained by CS
j (αj). Therefore, the

random choice of CS
j (αj) in Algorithm Random Assignment is an alternate way

of choosing tj as described in Algorithm LP Rounding. Consequently, the two
algorithms coincide for the identical parallel machine case. The result eventually
follows from Theorem 2.2.

At this point, let us briefly compare the approximation results of this section for
the single-machine case (m = 1) with related results. If we work only with one α for all
jobs instead of individual and independent αj ’s, and if we draw α uniformly from [0, 1],
then Random Assignment coincides with Goemans’s randomized 2-approximation
algorithm Randomα for 1 | rj |

∑
wjCj [16]. Goemans et al. have improved this result

to performance guarantee 1.6853 by using job-dependent αj ’s (as in Algorithm Ran-
dom Assignment) together with a nonuniform choice of the αj ’s [17]. The latter idea
can also be applied in the parallel machine setting to obtain a performance guarantee
better than 2 for Algorithm Random Assignment. However, this improvement de-
pends on m. A comprehensive overview of the use of α-points for machine scheduling
problems can be found in [40, Chapter 2].

We have already argued in the previous section that (LPR), and thus (LPP), is a
2-relaxation of the scheduling problem under consideration.

Corollary 3.3. The relaxation (LPP) is a 2-relaxation of the scheduling prob-
lem P | rj |

∑
wjCj. This bound is tight, even for P | | ∑wjCj.

Proof. The positive result follows from Corollary 2.5. For the tightness of this
bound, consider an instance withmmachines and one job of lengthm and unit weight.
The optimal LP completion time is (m+ 1)/2, whereas the optimal completion time
is m. When m goes to infinity, the ratio of the two values converges to 2.

The following lemma helps to extend Theorem 3.2 and Corollary 3.3 to the cor-
responding preemptive scheduling problem.

Lemma 3.4. Linear program (LPP) is a relaxation of the preemptive scheduling
problem P | rj , pmtn | ∑wjCj.

Proof. Since all release dates and processing times are integral, there exists an
optimal preemptive schedule where preemptions only occur at integral points in time.
Take such an optimal schedule S and construct the corresponding feasible solution
to (LPP) by setting yjt = 1/m if job j is being processed on one of the m machines
within the interval (t, t+ 1], and yjt = 0 otherwise. We observe that C

LP
j � CS

j , and

equality holds if and only if job j is continuously processed in the interval (CS
j −pj , CS

j ].
Thus, the value of the constructed solution to (LPP) is a lower bound on the value of
an optimal schedule.

Corollary 3.5. For instances of P | rj , pmtn | ∑wjCj, the value of the (non-
preemptive) schedule produced by Algorithm Random Assignment is at most twice
the value of an optimal preemptive schedule. Moreover, (LPP) is a 2-relaxation of this
scheduling problem. This bound is tight.

Another consequence is the following result on the power of preemption.
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Corollary 3.6. For identical parallel machine scheduling with release dates
so as to minimize the weighted sum of completion times, the value of an optimal
nonpreemptive schedule is at most twice the value of an optimal preemptive schedule.

Moreover, for identical parallel machines, steps two and three of Algorithm LP
Rounding can be used to convert an arbitrary preemptive schedule into a nonpre-
emptive one such that the objective function value increases at most by a factor of 2:
for a given preemptive schedule, construct the corresponding solution to (LPR). The
value of this feasible solution to the LP relaxation is a lower bound on the value
of the given preemptive schedule. (As discussed at the end of section 2, this is in
general not true for unrelated parallel machines.) Using Algorithm LP Rounding,
the solution to (LPR) can be turned into a nonpreemptive schedule whose expected
value is bounded by twice the value of the LP solution and thus by twice the value of
the preemptive schedule we started with. This improves upon a bound of 7/3 due to
Phillips et al. [31].

Several different on-line paradigms have been studied in the area of scheduling;
see [38] for a survey. We consider the setting where the only on-line feature is the lack
of knowledge of jobs arriving in the future. In particular, the processing time and
the weight of a job become known at its arrival. Let us show that Algorithm Ran-
dom Assignment can easily be turned into an on-line algorithm. First, note that we
can immediately determine αj when job j is released; this drawing does not depend
on any other decision of the algorithm. The same argument holds for the random
machine assignment. Moreover, we can construct the LP schedule until time t with-
out any knowledge of jobs that are released afterwards. Finally, it follows from the
analysis in the proof of Lemma 2.1 that we obtain the same performance guarantee
if job j is not started before time tj = CS

j (αj). Thus, we modify step four in the
on-line variant of Algorithm Random Assignment: on each machine we schedule
the assigned jobs as early as possible in order of nondecreasing CS

j (αj), with the ad-

ditional constraint that no job j may start before time CS
j (αj). This technique was

introduced in a similar context in [33].
Corollary 3.7. The on-line variant of Algorithm Random Assignment has

competitive ratio 2.
One appealing aspect of Algorithm Random Assignment is that the assignment

of jobs to machines does not depend on job characteristics; a job is put with proba-
bility 1/m to any of the machines. This technique also proves useful for the problem
without release dates.

Theorem 3.8. Assigning jobs independently and uniformly at random to the ma-
chines and then applying Smith’s ratio rule on each machine is a 3/2-approximation
algorithm for P | | ∑wjCj. There exist instances for which this bound is asymptoti-
cally tight.

Proof. First, notice that the described algorithm is identical to Algorithm Ran-
dom Assignment and therefore to the variant of LP Rounding discussed in Re-
mark 2.6. Because of the negative result in Corollary 3.3, we cannot derive the bound
of 3/2 by comparing the expected value of the computed solution to the optimal value
of (LPP). Remember that we used a stronger relaxation including constraints (2.4)
in order to derive this bound in the unrelated parallel machine setting. However,
Lemma 2.1 implies that

E[Cj ] � CLP
j + 1

2pj

because the second term on the right-hand side of (2.5) is equal to pj for the case of
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identical parallel machines. Since both
∑
j wjC

LP
j and

∑
j wjpj are lower bounds on

the value of an optimal solution, the result follows.

In order to show that this performance guarantee is tight, we consider instances
with m identical parallel machines and m jobs of unit length and weight. We obtain
an optimal schedule with value m by assigning one job to each machine. On the
other hand, we can show that the expected completion time of a job in the schedule
constructed by Algorithm Random Assignment is 3

2 − 1
2m , which converges to

3
2

for increasing m. Since the ratio wj/pj equals 1 for all jobs, we can without loss of
generality schedule on each machine the jobs that were assigned to it in random order.
Consider a fixed job j and the machine i it has been assigned to. The probability that
a job k �= j was assigned to the same machine is 1/m. In this case, job k is processed
before j with probability 1/2. We therefore get E[Cj ] = 1+

∑
k �=j

1
2m = 3

2 − 1
2m .

Interestingly, the derandomized variant of the algorithm considered in Theo-
rem 3.8 coincides with the WSPT-rule: sort the jobs according to nonincreasing
ratios wj/pj and schedule the next job from this list whenever a machine becomes
available. Kawaguchi and Kyan proved that this algorithm has performance guar-
antee (1 +

√
2)/2 ≈ 1.21 [23]. While their proof is somewhat intricate, our simpler,

probabilistic analysis yields a performance guarantee of 3/2. However, this weaker
result also follows from the work of Eastman, Even, and Isaacs [12]. They gave a com-
binatorial lower bound for P | | ∑wjCj that coincides with the lower bound obtained
from (LPP). The latter observation is due to Uma and Wein [46] and Williamson [49].
Details on the derandomization are given in the next section.

4. Derandomization. The hitherto presented algorithms are randomized and
compute feasible schedules whose expected value can be bounded from above. While
this shows that our algorithms perform well on average, we cannot give firm guarantees
for the performance of a single execution. In certain situations, it may be more de-
sirable to have deterministic algorithms with bounded worst-case ratio. Fortunately,
there exists a deterministic version of every algorithm proposed in this paper that
maintains the performance guarantee of its randomized companion, as we are about
to illustrate now. We can derandomize the randomized algorithms in this paper by
using the method of conditional probabilities. The method of conditional probabil-
ities is one of the most important techniques for derandomization. This method is
implicitly contained in a paper of Erdős and Selfridge [14] and was extended to a
more general context by Spencer [45]. It considers the random decisions one after
the other and chooses the most promising alternative at every decision point. Here,
it is assumed that all remaining decisions are random. Thus, an alternative is said
to be most promising if the corresponding conditional expected objective function
value is smallest. We shall demonstrate this technique for the most general problem,
R | rij |

∑
wjCj , and Algorithm LP Rounding.

Our analysis of Algorithm LP Rounding in the proof of Lemma 2.1 does not
give a precise expression for the expected value of the computed solution but only an
upper bound. Hence, we modify Algorithm LP Rounding by replacing its last step
with the following variant:

(3’) Schedule on each machine i the assigned jobs nonpreemptively
in order of nondecreasing tj ; ties are broken by preferring jobs
with smaller indices. At the starting time of job j, the amount
of idle time on its machine has to be exactly tj .

Since rij � tj for each job j that has been assigned to machine i and tj � tk if
job k is scheduled after job j, step (3’) defines a feasible schedule. In the proof of
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Lemma 2.1, we have bounded the idle time before the start of job j from above by tj .
Thus, the analysis still works for the modified version of Algorithm LP Rounding.
The advantage of the modification is that we are now in a position to give precise
expressions for the expectations and conditional expectations of completion times.

Let y be an optimal solution to (LPR). Using the same arguments as in the proof
of Lemma 2.1, we obtain the following expression for the expected completion time
of job j in the schedule output by the modified Algorithm LP Rounding:

E[Cj ] =

m∑
i=1

T∑
t=rij

yijt
pij


pij + t+

∑
k �=j

t−1∑
�=rik

yik� +
∑
k<j

yikt


 .

Moreover, we are also interested in the conditional expectation of j’s completion time
if some of the jobs have already been assigned to a machine-time pair. Let K ⊆ J
be such a subset of jobs. For each job k ∈ K, let the 0/1-variable xikt for t � rik
indicate whether k has been assigned to the machine-time pair (i, t) (i.e., xikt = 1) or
not (xikt = 0). This enables us to give the following expressions for the conditional
expectation of j’s completion time. If j �∈ K, we have

EK,x[Cj ] =

m∑
i=1

T∑
t=rij

yijt
pij

(
pij + t+

∑
k∈K

t−1∑
�=rik

xik�pik +
∑

k∈K, k<j
xiktpik

+
∑

k∈J\(K∪{j})

t−1∑
�=rik

yik� +
∑

k∈J\K, k<j
yikt

)
,

(4.1)

and, if j ∈ K, we obtain

EK,x[Cj ] = pij + t+
∑
k∈K

t−1∑
�=rik

xik�pik +
∑

k∈K, k<j
xiktpik

+
∑

k∈J\K

t−1∑
�=rik

yik� +
∑

k∈J\K, k<j
yikt,

(4.2)

where (i, t) is the machine-time pair job j has been assigned to, i.e., xijt = 1. The
following lemma is the most important part of derandomizing Algorithm LP Round-
ing.

Lemma 4.1. Let y be an optimal solution to (LPR), K ⊆ J , and let x be a
fixed assignment of the jobs in K to machine-time pairs. Furthermore, let j ∈ J \K.
Then there exists an assignment of j to a machine-time pair (i, t) (i.e., xijt = 1)
with rij � t such that

EK∪{j},x

[∑
�

w�C�

]
� EK,x

[∑
�

w�C�

]
.(4.3)

Proof. Using the formula of total expectation, the conditional expectation on
the right-hand side of (4.3) can be written as a convex combination of conditional
expectations EK∪{j},x

[∑
� w�C�

]
over all possible assignments of job j to machine-

time pairs (i, t) with coefficients
yijt
pij
. The best one satisfies (4.3).

Lemma 4.1 leads to a derandomized version of Algorithm LP Rounding if we
replace the second step by the following variant:
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(2’) Set K := ∅; x := 0; for all j ∈ J do
(i) for all possible assignments of j to machine-time pairs (i, t)

(i.e., xijt = 1) compute EK∪{j},x
[∑

� w�C�
]
;

(ii) determine the machine-time pair (i, t) that minimizes the
conditional expectation in (i);

(iii) set K := K ∪ {j}; xijt = 1.
Notice that we have replaced step (3) of Algorithm LP Rounding by (3’) only to
give a more accessible analysis of its derandomization. Since the value of the schedule
constructed in step (3) is always at least as good as the one constructed in step (3’), the
following theorem can be formulated for Algorithm LP Rounding with the original
step (3).

Theorem 4.2. If we replace step (2) in Algorithm LP Rounding with (2’),
we obtain a deterministic algorithm with performance guarantee 2 for R | rij |

∑
wjCj

and with performance guarantee 3/2 for R | | ∑wjCj. Moreover, the running time of
this algorithm is polynomial in the number of variables of (LPR).

Proof. The result follows by an inductive use of Lemma 4.1 and from Theorems 2.2
and 2.3. The computation of (4.1) and (4.2) is polynomially bounded by the number
of variables. Therefore, the running time of each of the n iterations in step (2’) is
polynomially bounded by this number as well.

The same derandomization process also works for the polynomial-time approx-
imation algorithms in section 5 that are based on interval-indexed LP relaxations.
Since these LP relaxations contain only a polynomial number of variables, the run-
ning time of the derandomized algorithms is polynomially bounded in the input size
of the scheduling problem.

The derandomization of Algorithm Random Assignment for P | | ∑wjCj by
the method of conditional probabilities leads to an interesting result, as indicated
at the end of section 3. It essentially follows from the considerations above that
the derandomized version of this algorithm assigns each job to the machine with the
smallest load. If we consider the jobs in order of nonincreasing ratios wj/pj , the
resulting algorithm coincides with the WSPT-rule.

5. Interval-indexed LP relaxations. We pointed out earlier that the LP-
based Algorithms LP Rounding and LP Simple Rounding for unrelated parallel
machine scheduling suffer from the exponential number of variables in the corre-
sponding LP relaxation (LPR). However, we can overcome this drawback by us-
ing new variables that are not associated with exponentially many time intervals
of length 1 but with a polynomial number of intervals of geometrically increas-
ing size. This idea was earlier introduced by Hall, Shmoys, and Wein [21]. We
show that Algorithm LP Rounding can be turned into a polynomial-time algo-
rithm for R | rij |

∑
wjCj at the cost of an increased performance guarantee of 2 + ε.

The same technique can be used to modify Algorithm LP Simple Rounding to a
(3/2 + ε)-approximation algorithm for R | | ∑wjCj .

For a given η > 0, the number L is chosen to be the smallest integer such that
(1 + η)L � T + 1. Consequently, L is polynomially bounded in the input size of
the considered scheduling problem. Let I0 =

[
0, 1
]
and for 1 � � � L let I� =(

(1 + η)�−1, (1 + η)�
]
. We denote with |I�| the length of the �th interval; i.e., |I�| =

η(1+η)�−1 for 1 � � � L. To simplify notation we define (1+η)�−1 to be 1
2 for � = 0.

We introduce variables yij� for i = 1, . . . ,m, j ∈ J , and (1 + η)�−1 � rij with the
following interpretation: yij� · |I�| is the time job j is processed on machine i within
time interval I�, or, equivalently, (yij� · |I�|)/pij is the fraction of job j that is being
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processed on machine i within I�. Consider the following linear program in these
interval-indexed variables:

min
∑
j∈J

wjCj

s. t.

m∑
i=1

L∑
�=0

(1+η)�−1�rij

yij� · |I�|
pij

= 1 for all j,(5.1)

∑
j∈J

yij� � 1 for all i and �,(5.2)

Cj =

m∑
i=1

L∑
�=0

(1+η)�−1�rij

(
yij� · |I�|

pij
(1 + η)�−1 + 1

2 · yij� · |I�|
)

for all j,(5.3)

yij� � 0 for all i, j, and �.

We refer to this LP relaxation as (LPηR).

Consider a feasible schedule and assign the values to the variables yij� as defined
above. This solution is clearly feasible: constraints (5.1) are satisfied since a job j
consumes pij time units if it is processed on machine i; constraints (5.2) are satisfied
since the total processing time of jobs that are processed within the interval I� on
machine i cannot exceed its length. Finally, if job j is continuously being processed
between Cj − phj and Cj on machine h, then the right-hand side of (5.3) is a lower
bound on the real completion time. Thus, (LPηR) is a relaxation of the scheduling
problem R | rij |

∑
wjCj . Since (LPηR) is of polynomial size, an optimal solution

can be computed in polynomial time. We rewrite Algorithm LP Rounding for the
new LP:

Algorithm LP Rounding.
(1) Compute an optimal solution y to (LPηR).
(2) Independently, for all j ∈ J , assign job j to a machine-interval

pair (i, I�), where the machine-interval pair is chosen from the
probability distribution that assigns job j to (i, I�) with proba-

bility
yij�·|I�|
pij

; set tj to the left endpoint (1 + η)�−1 of the time

interval I�.
(3) Schedule on each machine i the assigned jobs in order of nonde-

creasing tj ; ties are randomly broken.

Theorem 5.1. The expected completion time of each job j in the schedule con-
structed by Algorithm LP Rounding is at most 2 · (1 + η) · CLP

j .

Proof. We argue almost exactly as in the proof of Lemma 2.1. We consider an
arbitrary but fixed job j ∈ J . We also consider a fixed assignment of j to machine i
and time interval I�. Again, the conditional expectation of j’s starting time equals
the expected idle time plus the expected processing time on machine i before j is
started.

With similar arguments as in the proof of Lemma 2.1, we can bound the sum of
the idle time plus the processing time by 2 · (1 + η) · (1 + η)�−1. This, together with

the expected processing time of job j itself, which is
∑m
i=1

∑L
�=0 yij� · |I�|, and (5.3),

yields the theorem.
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For any given ε > 0, we can choose η = ε/2. Then Algorithm LP Rounding is
a (2 + ε)-approximation algorithm for the problem R | rij |

∑
wjCj , and (LP

η
R) is a

(2 + ε)-relaxation.

6. Concluding remarks and open problems. In this paper, we have devel-
oped LP-based approximation algorithms for a variety of parallel machine scheduling
problems with the average weighted completion time objective. A by-product of our
analysis are results on the quality of the underlying LP relaxations.

Our central off-line result is the (2+ ε)-approximation algorithm for the problem
R | rij |

∑
wjCj , and there exist instances which show that the underlying LP re-

laxation ((LPR) without inequalities (2.4)) is indeed not better than a 2-relaxation.
However, it is open whether the quality of (LPR) (with (2.4) and/or (2.7)) is bet-
ter than 2 and also whether it can be used to derive an approximation algorithm
with performance guarantee strictly less than 2. On the negative side, R | rj |

∑
Cj

is APX-hard [22]. In other words, the best known approximation algorithm for
R | rij |

∑
wjCj has performance guarantee 2 (we proved 2 + ε here, and [41] gets

rid of the ε using a convex quadratic relaxation), but the only known limit to its ap-
proximation is the nonexistence of a polynomial-time approximation scheme (PTAS),
unless P = NP. The situation for R | | ∑wjCj is similar. (LPR) is a 3/2-relaxation,
the quality of (LPR) together with (2.7) is unknown, the 3/2-approximation given in
[41] (improving upon the (3/2 + ε)-approximation in section 2) is best known, and
again there cannot be a PTAS, unless P = NP [22]. For identical parallel machines,
one important property of our 2-approximation algorithm for P | rj |

∑
wjCj is that it

runs in time O(n log n). The running time of the recent PTAS is O
(
(m+1)poly(1/ε)n+

n log n
)
[1]. The other important feature of the O(n log n) algorithm is that it is ca-

pable of working in an on-line context as well, which brings us to the second set of
open problems.

If jobs arrive over time and if the performance of algorithms is measured in terms
of their competitiveness to optimal off-line algorithms, it is important to distinguish
between deterministic and randomized algorithms. For identical parallel machine
scheduling, there is a significant gap between the best known lower bound and com-
petitive ratio of a deterministic algorithm. A universal lower bound of 1.309 is proved
in [47, Chapter 3], while a (4+ ε)-competitive algorithm emerges from a more general
framework given in [20]. For randomized algorithms, the situation is only slightly
better. No relevant lower bound on the competitive ratio of any randomized on-line
algorithm is known, and the modified version of Algorithm Random Assignment
discussed in section 3 is a randomized 2-competitive algorithm.

An interesting application of the approximation results for R | rij |
∑

wjCj and
R | | ∑wjCj was subsequently proposed in [13]. In a generalization of standard
scheduling models, Engels et al. introduce the possibility to outsource a job j at a
cost ej . Since there is an approximation-preserving reduction from an instance of the
resulting scheduling with rejection problem R | (rj) |

∑
S wjCj +

∑
S ej to an instance

of R | (rij) |
∑

wjCj , the approximation results are inherited.

Finally, in a computational study of R | | ∑wjCj , Vredeveld and Hurkens [48]
compared the algorithms based on time-indexed and interval-indexed formulations
proposed herein to the algorithm based on a convex quadratic programming relaxation
in [41] and to a variant based on a time-indexed LP that uses variables xijt. Here,
xijt = 1 if and only if job j is started at time t on machine i. The latter relaxation
is tighter than (LPR) and the convex program in [41] (see, e.g., [48]), and this is
confirmed by their studies. In addition, the algorithm based on the relaxation in x-
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variables also leads to the best upper bounds on their test instances. It follows from
Theorem 2.3 that randomized rounding based on this relaxation has performance
guarantee 3/2 as well.

Appendix. An illustrating example. Consider the following instance of
P 2 | rj |

∑
wjCj , consisting of the job set {1, 2, 3, 4} together with fixed values αj :

job j rj pj wj/pj αj

1
���
���
���

���
���
��� 0 4 1 3/4

2
���
���
���
��� 1 6 2 1/3

3
��
��
��
�� 3 2 3 1/2

4
���
���
���
��� 6 4 2 1/4

Figure A.1 illustrates the action of AlgorithmRandom Assignment for the given
instance. In the first step, it computes the preemptive LP schedule S on a virtual
single machine, which is twice as fast as each of the original two machines. Then each
job is randomly assigned to one of the two machines, and the α-points are chosen.
Finally, the jobs are scheduled on their machines nonpreemptively in nondecreasing
order of CS

j (αj).
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(1) preemptive schedule:
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(4) feasible schedule:

(2) & (3) random choices:

machine 1:

machine 2:

Fig. A.1.
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Abstract. A large class of facets is constructed for the stable set polytope. This class is
a common generalization of wheel facets and of antiweb facets. The proof of their validity and
facetness exploits graph operations which transform inequalities into more complicated ones. In an
accompanying paper polynomial time separation-algorithms are presented for generalizations of these
inequalities.
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1. Introduction. Let G = (V,E) be a simple connected graph with |V | = n ≥ 2
and |E| = m. A subset of V is called a stable set if it does not contain adjacent vertices
of G. Given weights for all vertices, the stable set problem is now to find a stable set of
maximum weight. Let N ⊆ V . The incidence vector of N is χN ∈ {0, 1}V such that
χNv = 1 if and only if v ∈ N . The stable set polytope of G, denoted by STAB(G), is the
convex hull of incidence vectors of stable sets of G. Some well-known valid inequalities
for STAB(G) (that is, the inequalities are satisfied by all points in STAB(G)) include
the trivial inequalities (xv ≥ 0 for v ∈ V ), the cycle inequalities (

∑
v∈C xv ≤ k,

where C is the vertex-set of a cycle of length 2k + 1), and the clique inequalities
(
∑
v∈K xv ≤ 1, where K induces a clique). A clique inequality is called an edge

inequality if the clique has just two vertices. Another important class of inequalities
are the antiweb inequalities which generalize cycle and clique inequalities.

A valid inequality a�x ≤ α is facet-inducing for STAB(G) if {x : a�x = α} ∩
STAB(G) has dimension one less than that of STAB(G). We start our study of
facetness in section 3 by describing three operations—adding an apex, doubly subdi-
viding an edge, and applying star-subdivision—that can transform facets into facets;
furthermore, their interaction is studied in section 4. The knowledge about these
operations is applied in section 5 to introduce a large new class of valid inequalities—
the antiweb-s-wheel inequalities—and to completely characterize the facet-inducing
inequalities among all proper antiweb-s-wheel inequalities. Finally, we provide a brief
view into questions of facetness for improper antiweb-wheels.

2. Antiwebs. Let n and t be integers such that t ≥ 2, n ≥ 2t − 1, and n 
≡
0 (mod t). An (n, t)-antiweb AW is a graph with vertex-set {v1, v2, . . . , vn}; two
vertices vi and vj (i > j) are adjacent if k := min{i − j, n + j − i} ≤ t − 1; we call
{vi, vj} a cross-edge of type k, or simply k-edge. A 1-edge may also be referred to as
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Fig. 2.1. Picture of a simple (8, 3)-antiweb.

a rim-edge. We define the following distance function for the vertices of an antiweb
with i > j by

dist (vi, vj) := min(i− j, n+ j − i).

We denote this antiweb by AW(v1, v2, . . . , vn). An example of an (8, 3)-antiweb is
drawn in Figure 2.1. The class of (·, t)-antiwebs is referred to as (t)-antiwebs. Thus
(2)-antiwebs are odd cycles. Our definition of an antiweb is slightly different from
the one given by Trotter [18] because our definition includes odd cliques (for n =
2t − 1). An (n, t)-antiweb contains n different t-cliques, namely, each t-clique Ti
on the vertices {vi, vi+1, . . . , vi+t−1} for i = 1, 2, . . . , n (where indices j > n are
reduced to 1 + ((j − 1) mod n)). We refer to T1, T2, . . . , Tn as the generators of the
antiweb. The inequality

∑n
i=1 xi ≤ �n/t� is the antiweb inequality described in [18].

For n = 2t − 1 it is a clique inequality and for t = 2 it is a cycle inequality. Euler,
Jünger, and Reinelt [12] generalized inequalities of some antiwebs (the class of odd
anticycles) to independence system polytopes; Laurent [14] studied the full class of
antiweb inequalities for independence system polytopes. Schulz [16] and Müller and
Schulz [15] generalized antiwebs further to the general setting of transitive packing.

We write the union of two sets V,W as V ∪̇ W if we want to emphasize that
V ∩W = ∅.

The stable set problem for antiwebs is solvable in polynomial time, as they belong
to the class of circular arc graphs for which Golumbic and Hammer [13] proved that
the stable set problem is solvable in polynomial time. A description by inequalities is
given by Dahl [10] for the stable set polytopes of 3-antiwebs, but neither the question
of their separation is treated nor is anything said about (t)-antiweb polytopes for
t > 3. Efficient separation algorithms (that is, algorithms for the following problem:
given an x, find a violated inequality in a given class or conclude that none exists)
for generalizations of (t)-antiweb inequalities are given in [8, 6, 11]. Furthermore,
in [7, 6, 11] it is shown that separation of antiwebs is already NP-hard.

3. General applicable subdivision operations. In this section we study
three different procedures to obtain new facets of a graph from facets of a smaller, re-
lated graph. The first two procedures are known from the literature and therefore they
are reviewed quickly. The third one, although described by Barahona and Mahjoub [1],
is applied under new circumstances. For these procedures, we will consider conditions
that preserve only validity as well as conditions that preserve additionally being a
facet.

The operation of adding an apex and its polyhedral consequences are well known;
see [9]. It turns out that adding an apex is the same as substituting the graph into
one vertex of a K2.
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Definition 3.1 (apex and spokes). Given a graph G = (V,E) and a vertex v /∈
V , we define the graph Gv on the vertex set V ∪̇ {v} and edge set E∪{{u, v} : u ∈ V }.
The vertex v is called the apex of Gv. The edges of the form {v0i , v} with v ∈ V of
a graph Gv01 ,v02 ,...,v0k are called spokes. If G is an antiweb, then the edges of G in
Gv01 ,v02 ,...,v0k are again referred to as cross-edges, and their type is the type that they
had in the antiweb.

Remark 3.2. Henceforth, whenever we speak of Gv we will assume that v /∈ V (G).

Our objective is to find facet-inducing inequalities whose support are graphs that
we call “antiweb-wheels.” An example is given in Figure 4.2. Our starting point will
be the facet-inducing antiweb inequality for an antiweb. (See Figure 2.1.) The next
proposition completes the first step in obtaining a facet-inducing inequality for the
graph in Figure 4.1.

Proposition 3.3. Given a graph G and an inequality a�x ≤ α which defines a
facet of STAB(G) with α > 0, then the inequality a�x + αxv ≤ α defines a facet of
STAB(Gv).

Proof. The validity is immediate. From the facetness for STAB(G) we know that
a |V |×|V | matrix Y exists so that its column vectors belong to STAB(G) and span the
old facet. Since α > 0 the columns of Y are linearly independent, so Y is nonsingular.
Furthermore, all column vectors from Y belong also to the new facet of STAB(Gv).
Another column vector which belongs to both is the vector χv. Let

Y new =




0

Y
...
0

0 · · · 0 1


 .

Clearly, Y new has full rank.

The operation of adding an apex permits not only the transition from the graph
in Figure 2.1 to the one in Figure 4.1 but also from Figure 4.1 to the one in Figure 4.6.

As our objective is to construct facets for the graph in Figure 4.2 from facets of
the graph in Figure 2.1, we need two more graph operations. One of them is double
edge subdivision. The following result by Wolsey [19] shows how a valid inequality is
transformed by double edge subdivision into another valid inequality.

Proposition 3.4 (double edge subdivision). Let G = (V,E) be a graph and
a�x ≤ α (a ≥ 0, α > 0) be valid for STAB(G) with {p, q} ∈ E and γ = min{ap, aq}.
Let G′ be the graph obtained from G by replacing {p, q} with the path p − u − v − q,
where u, v /∈ V . Then a�x+ γxu + γxv ≤ α+ γ is valid for STAB(G′).

Proof. Consider a stable set S′ of G′ and its incidence vector χS
′
. If p, q ∈ S′, then

u, v /∈ S′. Without loss of generality, we can assume ap = γ. Notice that S = S′−p is
a stable set of G. Plugging χS into the valid inequality of STAB(G) shows a�χS ≤ α
and then a�χS

′
+γχS

′
u +γχS

′
v = a�χS+γ ≤ α+γ. If at most one of p, q is in S′, then

at most one of u, v is in S′. Again, S = S′ \ {u, v} is stable in G, and validity of the
initial inequality of STAB(G) yields a�χS

′
+ γχS

′
u + γχS

′
v ≤ a�χS + γ ≤ α+ γ.

The set of neighbors of a vertex v of G is denoted by N(v) := {w : {v, w} ∈ E}.
For the facetness version of Proposition 3.4, we use a special form of a result by

Wolsey [19]; for a proof of the forward direction, see [3, Lem. 2.3.6].

Proposition 3.5. Let G = (V,E) be a graph and a�x ≤ α (a ≥ 0, α > 0) be
facet-inducing for STAB(G) with {p, q} ∈ E and ap ≥ aq = γ.

1. There exists a stable set S in G with a�χS = α and p, q /∈ S and
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2. there exists a stable set S in G with a�χS = α, p ∈ S, q /∈ S and h /∈ S for all
h ∈ N(q) \ {p}

if and only if a�x+ γxu + γxv ≤ α+ γ is facet-inducing for STAB(G′).
Proof. For the reverse direction, assume I ′ : a�x + γxu + γxv ≤ α + γ is facet-

inducing for STAB(G′). Then there exists a stable set S of G with p, u /∈ S such that
its incidence vector satisfies I ′ with equality. Therefore, v ∈ S and q /∈ S. Hence
S′ = S \{v} is a stable set of G with p, q /∈ S′ that satisfies I : a�x ≤ α with equality.
There also must exist a stable set S of G with u, v /∈ S whose incidence vector satisfies
I ′ with equality. Hence p, q ∈ S and all the neighbors of q in G′ do not belong to S.
Thus S \ {q} satisfies condition 2.

In this paper, we often use γ = 1 when we utilize Proposition 3.5. We note that if
a�x ≤ α is not an edge inequality, then condition 1 of Proposition 3.5 is automatically
satisfied. Furthermore, if deg(q) = 2, then condition 2 in Proposition 3.5 is also
automatically satisfied. For the reverse operation of replacing a path of length 3 with
a path of length 1 we need the following result from [1, Thm. 2.5]. Part 1 gives
a condition under which validity of the inequality carries over, while part 2 gives a
condition that preserves facetness.

Proposition 3.6. Let G = (V,E) be a graph. Let a�x ≤ α be a valid inequality
of STAB(G). Suppose that G contains a path p− u− v − q such that u and v are of
degree 2 and au = av. Set β = au. Let G

′ = (V ′, E′) be the graph obtained from G
by replacing the path by the edge {p, q}. Let āu = au for u ∈ V ′ and ᾱ = α− β.

1. If β ≤ min{ap, aq}, then ā�x ≤ ᾱ is valid for STAB(G′).
2. If, furthermore, ap = β and the original inequality induces a facet, then ā�x ≤ ᾱ
is facet-inducing for STAB(G′).
We now give a new theorem for lifting valid inequalities and facets from a graph to

another graph where all edges incident with a single vertex are subdivided once. This
graph operation was already introduced by Barahona and Mahjoub [1, Thm. 2.3]. Our
result differs from theirs in that we relax one prerequisite of their theorem while we
replace their other condition by a stronger requirement. Our resulting theorem cannot
be proved with the generalizing parameter p as in [1, Thm. 2.3]. A simple calculation
demonstrates that if the incidence-structure for facetness of Theorem 3.7 has to be
maintained and the inequality should be valid, then the generalizing parameter p of
Theorem [1, Thm. 2.3] can only have value 1 for our theorem.

Theorem 3.7 (star-subdivision). Let G = (V,E) be a graph and a�x ≤ α be a
valid inequality. Let v be a vertex of G and N = {v1, . . . , vk+1} be the set of neighbors
of v, where k ≥ 1. Let G′ = (V ′, E′) be the graph obtained from G by subdividing each
edge {v, vi} with a new vertex v′i for i = 1, . . . , k + 1. Set
āu = au for u ∈ V \ {v},
āv = k,
āv′i = 1 for i = 1, 2, . . . , k + 1,
ᾱ = α+ k.

1. Suppose that av = 1. Then ā�x ≤ ᾱ is a valid inequality of STAB(G′).
2. If, additionally, a�x ≤ α defines a nontrivial facet of STAB(G) and for each

i = 1, . . . , k+1 there exists a stable set S̃i such that a
�χS̃i = α and S̃i∩N = {vi},

then ā�x ≤ ᾱ defines a facet of STAB(G′).
Proof. For the first part suppose S′ is a stable set that violates the new inequal-

ity:

1. If v ∈ S′ and the left-hand side > α+k, then v′i is not in S′ for all i. So S′ \{v} is
a stable set in G and violates the old inequality because the left-hand side would
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be > α.
2. If v /∈ S′, v′i in S′ for all i and the left-hand side > α + k, then each vi is not

in S′. So (S′ \ {v′1, v′2, . . . , v′k+1}) ∪ {v} is a stable set for the old graph. The
left-hand side is > α+ k − (k + 1) + 1 = α.

3. If v /∈ S′, not all v′i in S′ and the left-hand side > α + k. Let U be the set of v′i
in S′. Then |U | ≤ k and S′ \ U is a stable set for the old graph. The left-hand
side is > α+ k − |U | ≥ α.

The proof of the second part is the same as that given by Barahona and Mahjoub
[1], except that they require that p and k+1 are coprime to ensure that a (k+1−p)-
circulant (k + 1)× (k + 1)-matrix has full rank, whereas we utilize that a k-circulant
(k + 1)× (k + 1)-matrix has full rank.

Remark 3.8. Actually only av > 0 is necessary in Theorem 3.7, but in this case
the definition of ā is more complicated.

From now on, the terms facetly double subdivision and facetly star-subdivision will
be used if the subdivision satisfies the conditions required to transform a facet into a
facet.

So we have assembled the tools to get from the graph in Figure 4.1 to the graph
in Figure 4.2. First we apply star-subdivision at the vertices v1, v6, v8; see Figure 4.4.
Next we doubly subdivide the edges {v6, z}, {v0, v7}, {v2, v4}. For {v3, v5}, we will
doubly subdivide it to the path v3−u−v−v5 and then doubly subdivide {u, v}. The
result is shown in Figure 4.2. Additionally, if we would replace the path of length
three from v6 to v8 by the edge {v6, v8}, then we obtain the graph in Figure 4.5.

Ultimately, we want to obtain facets for graphs like the one in Figure 4.2 from
the antiweb facet of the graph in Figure 4.1. We have already seen a series of results
addressing this issue. However, in order to apply them, we need to check certain
conditions in every step. In the next section, we will show various results of the type
“if operations A and B are applicable to a graph, then we can first perform A and
afterwards B is still applicable.” These results allow us then to check applicability
only on the initial graph. Next we state and prove some results related to the star-
subdivision that will be useful in later sections.

Lemma 3.9 (incidence vectors of star subdivided faces). A stable set S whose
incidence vector satisfies with equality the valid inequality ā�x ≤ ᾱ of Theorem 3.7
(constructed from a valid inequality a�x ≤ α of the underlying graph before the star-
subdivision was performed) fulfills one of the following conditions:

1. v ∈ S,
2. v /∈ S, but all v′i ∈ S, or
3. v /∈ S, and exactly k of the v′i belong to S.

Proof. Suppose for a contradiction that we have a stable set S with v /∈ S and
at most k − 1 of the v′i belong to S. Then S \ {v′1, v′2, . . . , v′k+1} is a stable set of the
unsubdivided underlying graph, but it violates that corresponding inequality.

Lemma 3.10 (converse of Theorem 3.7). The converse of Theorem 3.7, part 2
is true. That is, if one of the sets S̃i does not exist, then the resulting face is not a
facet.

Proof. So assume that there is no set S̃ with (say) S̃ ∩N = {v1}. Then we claim
that the new face ā�x ≤ ᾱ is contained in the face xv + xv′1 ≤ 1. For this we will

show that ā�x = ᾱ implies xv + xv′1 = 1.

Considering the possible types for a stable set S′ with ā�χS
′
= α characterized

in Lemma 3.9, we notice that types 1 and 2 obviously fulfill xv +xv′1 = 1. So we need
to consider stable sets S′ of type 3. A set S′ of type 3 could contradict the equation
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xv+xv′1 = 1 only if v′1 does not belong to S′. If, additionally, v1 /∈ S′, then the stable

set S′ ∪ {v′1} would violate ā�x ≤ ᾱ (because āv′1 = 1 > 0).
So we can assume v1 ∈ S′. If S′ ∩N were equal to {v1}, then the set S′ without

the vertices of type v′i would belong to the facet a�x ≤ α and would intersect N
only in {v1}, contrary to the assumption that every stable set from the facet which
contains v1 contains another neighbor of v.

However, by Lemma 3.9 the vector χS
′
cannot lie in the facet, if v ∈ S′ and

|S′ ∩N | < k, thereby providing a contradiction.
Lemma 3.11 (necessity of condition in Theorem 3.7). If the valid inequality (with

av = 1) to start with in Theorem 3.7 is not a facet, then the resulting face is not a
facet.

Proof. So assume the face a�x ≤ α of G is contained in another face b�x ≤ β. As
av = 1 we can choose for b�x ≤ β an inequality with bv = 1, because the inequality
a�x ≤ α can then be described as the convex combination of other valid inequalities;
as av = 1 one of them has to have the nonzero coefficient for xv. Then we want to
show that the face ā�x ≤ ᾱ is contained in b̄�x ≤ β̄. For this it suffices to show for
every stable set S′ of G′ that ā�χS

′
= ᾱ implies b̄�χS

′
= β̄.

Again we use the characterization of stable sets S′ with ā�χS
′
= α by Lemma 3.9.

For these cases we obtain the following:
1. a�χS

′−v = α holds; hence follows b�χS
′−v = β and b̄�χS

′
= β̄.

2. a�χS
′+v−N ′

= α holds; hence follows b�χS
′+v−N ′

= β and b̄�χS
′
= β̄.

3. So we can assume |S′ ∩ N ′| = k. Then a�χS
′−N ′

= α; hence b�χS
′−N ′

= β;
hence b̄�χS

′
= β̄.

4. Interaction of the subdivision operations. In this section we will study
the interaction of the three subdivision operations from the preceeding section. How-
ever, first we define a class of graphs that can be generated from antiwebs by repeated
application of the three subdivision operations; then we give several examples.

Definition 4.1 (antiweb-s-wheel). Let s ≥ 0. Given an (n, t)-antiweb G1 =
(V1, E1) with n 
≡ 0 mod t and an arbitrary partition E ,O of V1 = {1, 2, . . . , n}.
Consider a subdivision G of G

v01 ,v02 ,...,v0s
1 . Let P0i,j denote the path obtained from

subdividing the edge {v0i , vj} and let Pi,j (for vi, vj adjacent in G1) denote the path
obtained from subdividing the edge {vi, vj}. This graph G is a simple antiweb-s-wheel
if the following four conditions are fulfilled:
1. For all 1 ≤ i ≤ s is the length of P0i,j even for j ∈ E and odd for j ∈ O.
2. The length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and i ∈ O.
3. The length of the path Pi,j is odd for i, j ∈ O.
4. The length of the path Pi,j is odd for i, j ∈ E.
A simple antiweb-s-wheel is called proper if Pi,j is of length at least 2 for all paths

with at least one end in E . A proper antiweb-s-wheel is called basic with respect to
a given partition E ,O if all involved paths have minimal length. See Figure 4.1 for
a simple basic antiweb-1-wheel. Figure 4.2 depicts a simple proper antiweb-1-wheel
with nontrivial partition E ∪O obtained from Figure 4.1 via subdivisions (Figures 4.3
and 4.4) and finally double edge subdivisions. Figure 4.5 depicts a simple nonproper
antiweb-1-wheel with nontrivial partition E ∪O. Finally, Figure 4.6 displays a simple
(8, 3)-antiweb-2-wheel. For t = 2, antiweb-wheels are the 1-wheel defined in [5].

Next we want to study the interaction of the different operations with respect to
facetness. Our goal is to establish new facets for antiweb-s-wheels.

Lemma 4.2 (iterative application of Theorem 3.7). Assume that each of two
vertices v, w of a graph G fulfill the conditions of Theorem 3.7 with respect to G and
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v4
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v7

v8

Fig. 4.1. Picture of a simple basic (8, 3)-antiweb-1-wheel, where no edge is subdivided and all
vertices (on the rim) belong to O.

v6 v4

v8

v5

v0 v3

v2

v7

v1

Fig. 4.2. Picture of a simple proper (8, 3)-antiweb-1-wheel with E = {v1, v6, v8} and O =
{v2, v3, v4, v5, v7}.

v1

v5

v3
v0v7

v8

v6 v4

v2

Fig. 4.3. Picture of a simple proper (8, 3)-antiweb-1-wheel with E = {v1} and O =
{v2, v3, v4, v5, v6, v7, v8}.

the facet-inducing inequality a�x ≤ α. Let G′ be the graph constructed from v as in
Theorem 3.7. Then w fulfills the conditions of Theorem 3.7 with respect to G′ and
ā�x ≤ ᾱ.

Proof. Let the neighbors of v in G be {v1, v2, . . . , vk+1} and the neighbors of w
in G be {w1, w2, . . . , wl+1}. Let S̃1, S̃2, . . . , S̃k+1 and Ũ1, Ũ2, . . . , Ũl+1 be the stable
sets in the facet with S̃i ∩ {v1, v2, . . . , vk+1} = vi and Ũi ∩ {w1, w2, . . . , wl+1} = wi.

There are two cases, depending on the adjacency of v and w.
1. v and w are nonadjacent in G. Let N = {v1, v2, . . . , vk+1} be the set of neigh-

bors of v in G and M = {w1, w2, . . . , wl+1} be the set of neighbors of w in G.
Notice that M ′ = M is, additionally, the set of neighbors of w in G′, as v, w are
nonadjacent.
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v8 v2

z

v0 v3v7

v5

v1

Fig. 4.4. Picture of a simple proper (8, 3)-antiweb-1-wheel with E = {v1, v6, v8} and O =
{v2, v3, v4, v5, v7} without facetly edge subdivision performed.

v6 v4

v8

v5

v3
v0v7

v2

v1

Fig. 4.5. Picture of a simple, nonproper (8, 3)-antiweb-1-wheel with E = {v1, v6, v8} and
O = {v2, v3, v4, v5, v7}.
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v3
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v8

v6

v7

Fig. 4.6. A simple (8, 3)-antiweb-2-wheel, where no edge is subdivided and all vertices on the
rim belong to O.

For i = 1, 2, . . . , l + 1 let

Ũ ′i =
{

Ũi \ {v} ∪̇ {v′1, v′2, . . . , v′k+1} if v ∈ Ũi,

Ũi ∪̇ {v} if v /∈ Ũi.

Notice that a�χŨi = α implies ā�χŨ
′
i = ᾱ. Now we want to show that Ũ ′i fulfills

the conditions of Theorem 3.7 with respect to ā�x ≤ ᾱ and G′. Notice first that
āw = aw and aw = 1 by assumption. Then consider Ũ ′i ∩M ′; by construction
wi ∈ Ũi and by assumption of this case wi 
= v, hence wi ∈ Ũ ′i and wi ∈ Ũ ′i ∩M ′

follows. Now assume that wj ∈ Ũ ′i . If wj ∈ Ũi, then j = i; otherwise, either
wj = v which is impossible or wj ∈ {v′1, v′2, . . . , v′k+1} which is also impossible.

Hence we succeeded in proving Ũ ′i∩M ′ = {wi}, and all conditions of Theorem 3.7
are satisfied.
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2. v and w are adjacent in G. Without loss of generality, assume that v1 = w
and w1 = v. Let N = {v1, v2, . . . , vk+1} be the set of neighbors of v in G
and M = {w1, w2, . . . , wl+1} be the set of neighbors of w in G. Notice that
M ′ = {v′1, w2, w3, . . . , wl+1}, the set of neighbors of w in G′, is different from M .
For i = 1, 2, . . . , l + 1 let

Ũ ′i =
{

Ũi \ {v} ∪̇ {v′1, v′2, . . . , v′k+1} if v ∈ Ũi,

Ũi ∪̇ {v} if v /∈ Ũi.

Notice that a�χŨi = α implies ā�χŨ
′
i = ᾱ. Now we want to show that Ũ ′i fulfills

the conditions of Theorem 3.7 with respect to ā�x ≤ ᾱ and G′. Notice first that
āw = aw and aw = 1 by assumption. As Ũ ′i = Ũi ∪̇ {v} for i = 2, 3, . . . , l + 1
it follows that Ũ ′i ∩ M ′ = {wi} for i = 2, 3, . . . , l + 1. For i = 1 holds Ũ ′i =
Ũi \ {v} ∪̇ {v′1, v′2, . . . , v′k+1} and thereby Ũ ′1 ∩M ′ = {v′1} and all conditions of
Theorem 3.7 are satisfied.
Lemma 4.3. Let G be a graph. Suppose G′ is obtained from G by replacing an

edge {p, q} by p−u−v−q. Suppose a�x ≤ α is not an edge inequality. If a�x ≤ α is
facet-inducing for STAB(G) with a ≥ 0, ap ≥ aq = γ, and α > 0, and {p, q} satisfies
condition 2 of Proposition 3.5 with respect to I : a�x ≤ α, then I ′ : a�x+γxu+γxv ≤
α + γ is facet-inducing for STAB(G′). Moreover, {p, u}, {u, v}, and {v, q} satisfy
condition 2 of Proposition 3.5 with respect to I ′; if {p1, q1} ∈ E(G) ∩ E(G′) satisfies
condition 2 of Proposition 3.5 with respect to I, then {p1, q1} satisfies condition 2
of Proposition 3.5 with respect to I ′. In addition, if {p1, q1} ∈ E(G)∩E(G′) satisfies
condition 2 of Proposition 3.5 with respect to I ′, then {p1, q1} satisfies condition 2
of Proposition 3.5 with respect to I unless ap > aq and q = p1.

Proof. First we prove the forward implication. It follows from Proposition 3.5
that I ′ is facet-inducing for STAB(G′). Clearly, any edge of the path p − u − v − q
satisfies the hypotheses in Proposition 3.5 because deg(u) = deg(v) = 2. Now suppose
{p1, q1} ∈ E(G)∩E(G′). As {p1, q1} (with respect to G) satisfies the hypotheses, there
is a stable set of U whose incidence vector χU satisfies a�x ≤ α with equality and
p1 ∈ U , q1 /∈ U , and f /∈ U for all f ∈ N(q1)\{p1}. If q1 /∈ {p, q}, then we can extend
U to U ′ by setting U ′ = U ∪ {u} if p /∈ U , or by setting U ′ = U ∪ {v} if q /∈ U . Now
U ′ does the job. If q1 = p, then we can extend U to U ′ by setting U ′ = U ∪ {v} (as
q /∈ U); therefore U ′ does the job. If q1 = q, then we can extend U to U ′ by setting
U ′ = U ∪ {u} (as p /∈ U); therefore U ′ does the job.

Now we do the reverse implication. Suppose (p1, q1) satisfy condition 2 of Propo-
sition 3.5 with respect to I ′. Let S be a stable set that fulfills the condition. Assume
ap1 ≥ aq1 = β. We consider several cases:
p = q1: Then q 
= p1, p1 ∈ S, and q1, u /∈ S. Because the incidence vector of S satisfies

I ′ with equality, we may assume v ∈ S. Hence S \ {v} satisfies condition 2 of
Proposition 3.5 with respect to I.

q = q1: Then p 
= p1, p1 ∈ S, and q1, v /∈ S. Because the incidence vector of S satisfies
I ′ with equality, we may assume u ∈ S. Hence S \ {u} satisfies condition 2
of Proposition 3.5 with respect to I.

q1 
= p and q1 
= q: (However, one of p, q may be p1.) We have to consider several
subcases, namely, (a) p, q ∈ S and u, v /∈ S, (b) p, v ∈ S and u, q /∈ S and
(c) q, u ∈ S and p, v /∈ S. It is easy to see that in each of these cases a
feasible set for condition 2 is at hand. As S satisfies I ′ with equality, the only
remaining cases are (a) u ∈ S and p, q, v /∈ S and (b) v ∈ S and p, q, u /∈ S.
Then S \ {u} and S \ {v} fulfill condition 2 in their respective cases.
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Lemma 4.4 (Theorem 3.7 and Proposition 3.5 commute). Assume that the ver-
tex v of a graph G fulfills the conditions of Theorem 3.7 with respect to G and the
facet-inducing inequality a�x ≤ α. Furthermore, assume that the edge {u,w} fulfills
the requirements of Proposition 3.5 with the particular set S and au ≥ aw and that
a�x ≤ α is not the edge inequality xu + xw ≤ 1.

1. Let G′ be the graph constructed from v as in Theorem 3.7. Then G′ fulfills the
conditions of Proposition 3.5 for {u,w} if u,w are adjacent in G′ or otherwise
for one of the edges {u,w′} or {u′, w} with respect to ā�x ≤ ᾱ. Here u′ and w′

denote the new vertices created on the edges {v, u} and {v, w} of G.
2. Let G′′ be the graph constructed from {u,w} as in Proposition 3.5 and ā�x ≤ ᾱ
the corresponding inequality. Then G′′ fulfills the conditions of Theorem 3.7 for v
with respect to ā�x ≤ ᾱ.

Proof. For the first part we have to distinguish three cases:

1. u,w 
= v. First notice that āu = au ≥ aw = āw. If w ∈ N , then v /∈ S and
thereby S ∪ {v} does the job. If w /∈ N , then depending on v ∈ S or v /∈ S
either (S \ {v}) ∪ {v′1, v′2, . . . , v′k+1} or S ∪ {v} does the job (as nothing in the
neighborhood of w is changed).

2. w = v (and u ∈ N). Say u = vi. Let wnew = v′i. Now notice that deg(wnew) = 2.
With the remark after Proposition 3.5 this shows that the conditions of Propo-
sition 3.5 are satisfied.

3. u = v (and w ∈ N). Say w = vi. Let unew = v′i. Notice that 1 = āunew = au ≥
aw = āw. Because of u = v it follows that v ∈ S. Now (S\{v})∪{v′1, v′2, . . . , v′k+1}
does the job.

For the second part, notice first that the subdivision of {u,w} with y, z (thereby
creating the path u− y− z−w) cannot change the coefficient of v from 1 to anything
wrong. So validity is already guaranteed. If u,w are not adjacent to v, then the
sets S̃i need to be augmented only with y or z to make them incident with the facet
of ā�x ≤ ᾱ. If u and/or w are adjacent to v, then still every set can be augmented
with either y or z to keep it in the face ā�x ≤ ᾱ. If finally u or w is v (say u = v),
then the sets S̃i that do not contain w can be augmented with z without disturbing
the neighborhood of v while maintaining incidence with ā�x ≤ ᾱ. For sets S̃i that do
contain w we can augment with y, and the new set intersects the neighborhood of v
only in y.

Next we show that a subdivision procedure is (facetly) applicable to Gv if it is
(facetly) applicable to G.

Lemma 4.5 (lifting of Theorem 3.7). Let G = (V,E) be a graph and a�x ≤ α
be a nontrivial valid inequality. Let v be a vertex of G and N = {v1, . . . , vk+1} be
the neighbor set of v, where k ≥ 1. Let G′ = Gvk+2 . Extend a to G′ according to
Proposition 3.3 by a′u = au for all u ∈ V and a′vk+2

= α.

1. If (G, v, a�x ≤ α) fulfills the conditions of Theorem 3.7, part 1, then (G′, v, a′�x
≤ α) fulfills these conditions again.

2. If (G, v, a�x ≤ α) additionally fulfills the conditions of Theorem 3.7, part 2,

then (G′, v, a′�x ≤ α) fulfills these conditions again.

Furthermore, if (Gvk+2 , v, a′�x ≤ α) with a′vk+2
= α fulfills the conditions of The-

orem 3.7, part 1 and/or part 2 and a′�x ≤ α is not a 3-cycle inequality, then
(G, v, a�x ≤ α) fulfills them again.

Proof. Validity and facetness of a′�x ≤ α follow directly from Proposition 3.3.
For part 1 there is nothing to show. For part 2 we know that for i = 1, . . . , k + 1,
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there exists a stable set S̃i such that a�χS̃i = α and S̃i ∩N = {vi}. We set S̃′i = S̃i
for i = 1, . . . , k+1 and S̃′k+2 = {vk+2}. Obviously, the conditions of part 2 are fulfilled
for i = 1, . . . , k + 1. For i = k + 2 the facts a′�χS̃

′
k+2 = α and S̃′k+2 ∩ N = {vk+2}

are clear.

For the other direction, note that part 1 is easy, while for part 2 it suffices that
all the S̃′i carry over from G′ to G (except the one corresponding to vk+2).

Lemma 4.6 (lifting of Proposition 3.5). Let G = (V,E) be a graph, a�x ≤ α be
a nontrivial facet-inducing inequality, and {p, q} be an edge of G. If condition 2 of
Proposition 3.5 is fulfilled for (G, a�x ≤ α, p, q), then conditions 1 and 2 of Proposi-

tion 3.5 are also fulfilled for the graph G′ = Gw, the inequality a�x = a′�x+αxw ≤ α,
and the vertices p, q. Furthermore, if (Gw, p, q, a′�x ≤ α) with aw = α fulfills the

conditions 1 and 2 of Proposition 3.5 and if a′�x ≤ α is not a 3-cycle inequality,
then (G, p, q, a�x ≤ α) fulfills them.

Proof. Validity and facetness of a′�x ≤ α follow by Proposition 3.3 from these
properties for a�x ≤ α. Consider the stable set S′ = {w}. Notice a′�χS

′
= α and

χS
′

p = χS
′

q = 0. So condition 1 of Proposition 3.5 is satisfied. Condition 2 is verified
for G′ with the same set which fulfills it for G.

For the converse direction notice that the two required sets directly carry over
from G′ to G.

Lemma 4.7 (subdivision of the spokes). Let G = (V,E) be a graph, a�x ≤ α be a
facet-inducing inequality, and q be a vertex of G so that a�x ≤ α is not the inequality
xq ≤ 1. Then conditions 1 and 2 of Proposition 3.5 are fulfilled for the graph Gq

together with the inequality a′�x = ax+ αxp ≤ α and the edge {p, q}.
Proof. Validity and facetness are easy again. As a′p ≥ a′q the stable set S = {p}

does the job. Furthermore, the new inequality is not an edge inequality, because the
old inequality was not the constraint xq ≤ 1.

5. Facet-inducing antiweb-wheels. In section 3, we considered three opera-
tions that turn an antiweb into an antiweb-s-wheel. However, to ensure that each
operation on the inequalities preserves facetness rather than only validity, we need
to check various conditions. This could be cumbersome. To ease this, we proved in
section 4 commutative and successive properties of these facetly operations. With
these properties, we need only to check the various conditions on the initial graph.
We start this section by checking these conditions for antiwebs.

Lemma 5.1. Let A be an (n, t)-antiweb and IA the inequality
∑n
i=1 xi ≤ �n/t�

for A. Then all edges of type not greater than n mod t fulfill condition 2 of Proposi-
tion 3.5. All other edges (those of type greater than n mod t) violate condition 2.

Proof. Consider a rim-edge of type d ≤ (n mod t), say {v1, vd+1}, and let f =
�n/t�. Obviously, ft+ d ≤ n. We claim that the set S = {v1} ∪ {vd+1+t, vd+1+2t, . . . ,
vd+1+(f−1)t} is stable and fulfills condition 2 with respect to I. Regarding the stability
it is easy to see that the second part of S is stable; it remains to verify that there
is no edge between that part and v1. However, the latter is easy, as v1 is adjacent
only to its t − 1 successors (and they are not in S) and the t − 1 predecessors; for
this notice that the last element vd+1+(f−1)t of S could only be in conflict with v1,
but the neighbor of vd+1+(f−1)t being closest to v1 is the vertex vd+ft which is, as
a consequence of ft + d ≤ n, distinct from v1. Therefore S is stable. Regarding
condition 2 notice that the neighbors of vd+1 which are not permitted to be in S
are ({vd+1−(t−1), vd+1−(t−2), . . . , vd} \ {v1})∪{vd+2, vd+3, . . . , vd+t}. The second part
of the set is definitely not in S. For the vertices in the first part notice that if
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d+1− (t− 1) ≤ 0, then it corresponds to d+1− (t− 1)+n ≥ (f − 1)t+2d+2 which
is greater than d+1+(f−1)t. However, on the other hand, if d+1− (t−1) > 0 (that
is, d > t−2), then it follows together with t > d that d = t−1 and d+1− (t−1) = 1,
but we do not have to care about v1.

Finally, consider a rim-edge of type d > (n mod t) and set f = �n/t�, and
hence ft + d > n. Without loss of generality, assume that the rim-edge is the
edge {v1, vd+1}. We want to construct a stable set S � v1 which fulfills addition-
ally condition 2. Hence some vertices cannot be in S, and the only choices be-
sides v1 for S belong to {vd+1+t, vd+1+t+1, . . . , vn+1−t}. (The number of the last
element is determined by the minimum distance of t from v1 = vn+1.) We need
to choose f − 1 vertices; if there is a solution, then the remaining elements can be
{vd+1+t, vd+1+2t, . . . , vd+1+(f−1)t}. However, the vertex vd+1+(f−1)t does not belong
to the set of candidates, as d + 1 + (f − 1)t > n + 1 − t. So this rim-edge of type
d > (n mod t) can never fulfill condition 2.

Corollary 5.2. Let A be an (n, t)-antiweb with inequality
∑n
i=1 xi ≤ �n/t�, k

be a nonnegative integer, and IAv01
,v02

,...,v0k be the corresponding inequality for G =
Av01 ,v02 ,...,v0k . Then all edges of A of type not greater than n mod t fulfill condition 2
of Proposition 3.5 with respect to G. All other edges of A (those of type greater than
n mod t) violate condition 2 for G.

Proof. The proof is done by induction on k. Lemma 5.1 establishes the base-
case of k = 0. So assume that the claim is proved for (Av01 ,v02 ,...,v0k , IAv01

,v02
,...,v0k ).

Lemma 4.6 establishes the claim then for (Av01 ,v02 ,...,v0k+1 , I
A

v01
,v02

,...,v0k+1 ).

We note that the corresponding inequality IAv01
,v02

,...,v0k for Av01 ,v02 ,...,v0k is

�n/t�∑k
i=1 x0i +

∑n
i=1 xi ≤ �n/t�.

Lemma 5.3. Let G be an (n, t)-antiweb with n 
≡ 0 mod t and let v be a vertex
of G. For the facet

∑n
i=1 xi ≤ �n/t� the following two statements are equivalent:

1. n ≡ t− 1 mod t.
2. v fulfills assumptions 1 and 2 of Theorem 3.7.

Proof. Let k = �n/t�. For the first implication (hence n = kt + t − 1) we can
assume, without loss of generality (by symmetry), that v = t. Now we will construct
the stable sets S̃i for all neighbors {1, 2, . . . , t − 1, t + 1, t + 2, . . . , 2t − 1} of i. Let
S′ = {3t− 1, 4t− 1, . . . , n}. Notice that a�χS = k− 1 and S contains no neighbor of
t, t+ 1, . . . , 2t− 1. Finally, for i with t < i < 2t the sets S̃i = S′ ∪ {i} are stable and
fulfill a�χSi = k. For the second half of necessary sets consider S′′ = {2t, 3t, . . . , kt}
and use for i with 0 < i < t the sets S̃i = S′′ ∪ {i}.

For the other direction we consider the vertex v = t. As the assumptions are

fulfilled, there is a stable set S̃ with S ∩ {1, 2, . . . , 2t− 1} = {2t− 1} and a�χS̃ = k.
So S̃ contains k elements. Choosing vertices of as small number as possible, S̃ must
be {2t − 1, 3t − 1, . . . , (k + 1)t − 1}. This requires that n ≥ (k + 1)t − 1, and finally
n ≡ t− 1 mod t.

Together, Lemmas 5.3 and 4.5 imply the following corollary.

Corollary 5.4. Let A be an (n, t)-antiweb with n 
≡ 0 mod t, let k be a non-
negative integer, and let v be a vertex of A. Consider Av01 ,v02 ,...,v0k . For the facet
IAv01

,v02
,...,v0k : �n/t�∑k

i=1 x0i
+
∑n
i=1 xi ≤ �n/t� of STAB(Av01 ,v02 ,...,v0k ) the follow-

ing two statements are equivalent:

1. n ≡ t− 1 mod t.
2. v fulfills the assumptions 1 and 2 of Theorem 3.7.

Theorem 5.5. Let A be an (n, t)-antiweb with n 
≡ 0 mod t and let k be a
nonnegative integer. Let G = Av01 ,v02 ,...,v0k , and the corresponding inequality is
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IAv01
,v02

,...,v0k : �n/t�∑k
i=1 x0i

+
∑n
i=1 xi ≤ �n/t�. Then the following holds:

1. Every spoke can be facetly doubly subdivided.
2. Facetly star-subdivision at a vertex v ∈ A is possible in G if and only if n ≡

t− 1 mod t.
3. An edge e of A can be facetly doubly subdivided in G if and only if its type is at
most n mod t.
Proof. The first statement follows from successive application of Lemmas 4.7

and 4.6. The second statement is Corollary 5.4. The third statement is Corol-
lary 5.2.

The next theorem gives a class of valid inequalities whose support graphs are the
already introduced antiweb-wheels. For s = 1, t = 2, it reduces to IE given in [5].
The proof utilizes the three subdivision operations from the preceeding two sections.

Theorem 5.6 (validity of the (n, t)-antiweb-s-wheel inequality). For s ≥ 0 and
an (n, t)-antiweb-s-wheel G the inequality

(5.1)
⌊n
t

⌋ s∑
i=1

x0i +
∑
i∈O

xi + (2t− 3 + s)
∑
i∈E

xi +
∑

v∈S∪R
xv

≤
⌊n
t

⌋
+ (2t− 3 + s)|E|+ |S|+ |R| − (2t− 2 + s)|E|

2

is valid for STAB(G), where S denotes the set of internal vertices of the spoke-paths
and R denotes the set of internal vertices of the subdivided antiweb edges.

Proof. As a starting point, we utilize the validity of

⌊n
t

⌋ k∑
i=1

x0i
+

n∑
i=1

xi ≤
⌊n
t

⌋
(IAv01

,v02
,...,v0k )

for Av01 ,v02 ,...,v0k from Theorem 5.5. Then we do star-subdivision at all vertices of E ;
here Theorem 3.7, part 1 guarantees that validity is maintained. The degree of every
vertex in E is (2t − 2) + s, where the first term accounts for the neighbors in the
antiweb and the second term for the adjacent hub vertices. So if star-subdivision is
applied at a vertex v ∈ E , then (2t − 2) new rim vertices and s spoke-vertices are
added of weight 1. The weight of v is changed to 2t − 3 + s (= deg v − 1), and the
right-hand side is incremented by 2t− 3 + s. This is accomplished in inequality (5.1)
by the coefficient 2t− s+ 3 of

∑
i∈E xi, the term

∑
v∈S∪R xv, and for the right-hand

side the term (2t − 3 + s)|E|. Actually this operation subdivides also the spokes
and cross-edges incident with v; thereby the term |S|+ |R| on the right-hand side is
increased by (2t− 2 + s)|E|, so we need to subtract the same amount to balance this
effect.

If in the antiweb-wheel that we want to reach there are paths of length 1 between
members of E , then the paths of length 3 between them can be doubly contracted
by Proposition 3.6, part 1. Every contraction step changes the inequality in that the
two terms xu and xw corresponding to vertices contracted away are dropped on the
left-hand side of the inequality (as u,w are removed from S or R), and at the same
time the right-hand side decreases by one.

If, finally, between some spoke-ends longer paths are necessary, they can be pro-
duced by applying edge-subdivision, which maintains validity according to Proposi-
tion 3.4. Again, the new inequality is of type (5.1).

As the question of validity is now settled for antiweb-s-wheels, we turn next to
the question of facetness.
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The proof of facetness is essentially the same as the preceding proof of validity,
except that we require the facet version of each operation given in the preceding proof.
Of course some of them have no corresponding counterparts.

Theorem 5.7 (proper antiweb-s-wheel facets, n ≡ t− 1 mod t). Given a proper
antiweb-s-wheel G with n ≡ t−1 mod t the inequality (5.1) induces a facet of STAB(G).

We begin by giving an example to illustrate the proof of Theorem 5.7. We start
with the inequality 2x0 +

∑8
i=1 xi ≤ 2 which is facet-inducing for the graph in Fig-

ure 4.1. (Here n = 8 and t = 3). We want E = {v1, v6, v8}. By Theorem 5.5,
part 2, each of v1, v2, . . . , v8 can be facetly star subdivided, in particular v1, v6, v8. By
Theorem 5.5, part 1, the spoke-edges

{v0, v1}, {v0, v2}, {v0, v3}, {v0, v4}, {v0, v5}, {v0, v6}, {v0, v7}, {v0, v8}

can be facetly doubly subdivided. By Theorem 5.5, part 3, the cross-edges

{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}, {v3, v5}, {v4, v5}, {v4, v6},
{v5, v6}, {v5, v7}, {v6, v7}, {v6, v8}, {v7, v8}, {v7, v1}, {v8, v1}, {v8, v2}

can be facetly doubly subdivided. So apply Theorem 5.5, part 2 and facetly star
subdivide v1. Hence the resulting inequality 2x0 + 4x1 +

∑8
i=2 xi +

∑5
i=1 yi ≤ 6 (we

used yi as variables for the vertices ui, i = 1, 2, 3, 4, 5) is facet-inducing for the graph
in Figure 4.3. Now, by Lemma 4.2, v6 and v8 can still be facetly star subdivided.
Moreover, any original spoke-edges

{v0, v2}, {v0, v3}, {v0, v4}, {v0, v5}, {v0, v6}, {v0, v7}, {v0, v8}

and any original cross-edges

{v2, v3}, {v2, v4}, {v3, v4}, {v3, v5}, {v4, v5}, {v4, v6},
{v5, v6}, {v5, v7}, {v6, v7}, {v6, v8}, {v7, v8}, {v8, v2}

can still be facetly doubly subdivided by Lemma 4.4. We can now repeatedly apply
Lemma 4.2 and facetly star subdivide at v6 and v8 successively. Hence the resulting in-
equality 2x0+4x1+x2+x3+x4+x5+4x6+x7+4x8+

∑
v∈S∪R xv ≤ 14 is facet-inducing

for the graph in Figure 4.4. Now, by repeatedly applying Lemma 4.4, any original
spoke-edges {v0, v2}, {v0, v3}, {v0, v4}, {v0, v5}, {v0, v7} and any original cross-edges
{v2, v3}, {v2, v4}, {v3, v4}, {v3, v5}, {v4, v5}, {v5, v7} can still be facetly doubly subdi-
vided. We now facetly doubly subdivide the remaining edges as necessary; that is, we
want to replace each of {v0, v7}, {v2, v4}, {z, v6} (z is the vertex between v0 and v6)
by a path of length 3 and to replace {v3, v5} by a path of length 5. We first facetly
doubly subdivide {v0, v7}. By Lemma 4.3, {v2, v4}, {v3, v5}, and {z, v6} can still be
facetly doubly subdivided. We then facetly doubly subdivide {v2, v4}, so {v3, v5} and
{z, v6} can still be facetly doubly subdivided by Lemma 4.3. Now facetly doubly
subdivide {v3, v5} into a path v3 − h− k− v5. By Lemma 4.3, {h, k} and {z, v6} can
be facetly doubly subdivided, and we apply it to {h, k}. Now, since xz has coeffi-
cient 1 and x6 has coefficient 4 and xz is of degree 2, we can facetly doubly subdivide
{h, k} by the remark after Proposition 3.5. Hence we have a facet-inducing inequality
2x0 + 4x1 + 4x6 + 4x8 + x2 + x3 + x5 + x7 +

∑
v∈S∪R xv ≤ 19 for Figure 4.2.

Proof of Theorem 5.7. The above example contains all the ingredients of the proof.
Let G be the (n, t)-antiweb. We obtain the (n, t)-antiweb-s-wheel Gv01 ,v02 ,...,v0s with
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its facet-inducing inequality

⌊n
t

⌋ s∑
i=1

x0i +
∑
i∈G

xi ≤
⌊n
t

⌋
.

Consider an arbitrary wheel with prescribed set E . By Theorem 5.5, part 2, every
vertex G, in particular vertices in E , can be facetly star subdivided. By Theorem 5.5,
part 1, every spoke-edge can be facetly doubly subdivided. By Theorem 5.5, part 3,
every cross-edge can be facetly doubly subdivided. So apply Theorem 5.5, part 2 and
facetly star subdivide a vertex in E (if such vertex exists). The resulting inequality
is facet-inducing for the resulting graph. Now, by Lemma 4.2, each of the remaining
vertices in E can still be facetly star subdivided. Moreover, by Lemma 4.4 every
original spoke-edge and every original cross-edge can still be facetly doubly subdivided
as well as at least one of the two edges being created by a star-subdivision from one
edge. We can now repeatedly apply Lemma 4.2 and facetly star subdivide each of the
remaining vertices in E successively. Hence the resulting inequality is facet-inducing
for the resulting graph. Lemma 4.4 guarantees that on each spoke- and cross-path at
least one edge can be facetly doubly subdivided. We now facetly doubly subdivide
the remaining edges as necessary, which is possible by Lemmas 4.3 and 4.4.

Theorem 5.8 (proper antiweb-s-wheel facets (1 ≤ (n mod t) ≤ t − 2)). Given
a proper antiweb-s-wheel G with n ≡ r mod t, 1 ≤ a ≤ t − 2. Then inequality (5.1)
induces a facet of the corresponding stable set polytope if and only if
1. E = ∅ and
2. all paths Pi,j with {i, j} of type > r and i, j ∈ O have length 1.
Proof. The proof that 1 and 2 imply facetness is the same as that in Theorem 5.7,

except that no star-subdivision is done, and only edges of type ≤ r are doubly subdi-
vided (as necessary), while edges of type > r are not doubly subdivided (as they do
not fulfill the prerequisites of double edge subdivision).

For the other direction consider an arbitrary but proper (n, t)-antiweb-s-wheel G′

with partition E ∪̇ O that is facet-inducing for STAB(G′). First we want to ap-
ply Proposition 3.6, part 2 to shorten paths of length 3 to edges while maintaining
facetness in the following way:

• Paths Pi,j of type > r and of length > 3 are shortened until their length is 2
or 3.
• Paths Pi,j of type < r with both ends in E are shortened down to length 3.
• Paths Pi,j of type < r with at most one end in E are shortened down to length
1 or 2.
• Spoke-paths are shortened down to length 1 or 2.

Denote with G the resulting graph. Now if G′ violates 1 or 2, then G does, as we did
not change E at all, and even though we shortened the subdivided paths, we took care
that paths violating 2 were not changed in any way. The resulting inequality induces
a facet for STAB(G).

Now consider a sequence of undoing star-subdivisions and shortening paths of
length 3 to edges to reduce G to an unsubdivided (n, t)-antiweb-wheel H. Notice
that by Lemma 3.11 the inequality after undoing a single star-subdivision is again
facet-inducing. By Proposition 3.6, part 2, it follows similarly that the inequality
after shortening a path is again facet-inducing.

Now consider the last intermediate graph H ′ in this sequence. By Theorem 5.5 we
know that neither star-subdivision nor double edge subdivision are applicable to H.
If the last operation is a star-subdivision, then by Lemma 3.10 it follows that going
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from H to H ′ by star-subdivision destroys facetness; that is, the inequality for H ′ is
not facet-inducing, contrary to assumption. If, on the other hand, the last operation
is doubly subdividing an edge of type > r, then by Proposition 3.5 and the fact that
we have a facet for H ′ we obtain that edge does not violate condition 2, giving again
a contradiction.

So we obtained a complete characterization of the facet-inducing proper antiweb-
s-wheels.

One might wonder how much more difficult a direct proof of the preceding theorem
might be. We do believe that a direct proof would probably be shorter, though
technically more involved. However, a direct proof of the “characterization” part
would very likely be more difficult and substantially longer. Moreover, our algebraic
approach to the interactions of the operations in section 3 and section 4 may be
applicable to other problems.

6. Improper antiweb-wheels. The next natural question is the following:
“How about the improper antiweb-wheels?” We do not know the complete answer to
this, but we offer two preliminary results in this section.

The only difference between proper and improper antiweb-wheels is the require-
ment that for proper ones every path emanating from a vertex of E must have length
at least two. So every improper antiweb-wheel has a path between two members of E
of length 1 (instead of 3 for proper ones). We have never observed any improper
antiweb-1-wheel facet. So we believe that they are indeed never facet-inducing.

As a stepping-stone for this puzzle we give the next lemma.
Lemma 6.1 (the induced C5). Consider the stable set problem on a graph G =

(V,E) and a facet-inducing inequality a�x ≤ α. Let G′ = (V ′, E′) be the support
graph of a�x ≤ α in G. If G′ contains an induced 5-cycle C = {v1, v2, v3, v4, v5},
where vertices v2, v4 have degree 2 in G, then for the vertex v1 holds that its weight
(with respect to a) is higher than the sum of the weights of its neighbors not in C.

Proof. We prove the theorem by showing that if G contains such a 5-cycle and the
weight condition is violated, then the face a�x ≤ α is contained in the face induced
by the 5-cycle inequality. So consider a stable set S with a�χS = α. Denote with b
the characteristic vector of the odd 5-cycle C. We want to prove that b�χS = 2 for
all stable sets with a�χS = α. Suppose a�χS = α and b�χS = 0; then it is easy
to see that the set S′ = S ∪ {v2, v4} fulfills a�χS > α, contradicting the validity of
a�x ≤ α for all stable sets.

Suppose next that a�χS = α and b�χS = 1. This requires |C ∩ S| = 1. Without
loss of generality, we can assume C ∩ S ⊂ {v1, v2, v3}. If C ∩ S ⊂ {v1, v2}, then
S′ = S ∪ {v4} violates a�x ≤ α. So it remains to study C ∩ S = {v3}. Either
S ∪ {v1} or S ∪ {v5} is stable (and then violates a�x ≤ α) or both are not stable,
because S contains neighbors of v1 and v5 outside of C. Now consider the set S′ =
(S \ N(v1)) ∪ {v1}. Again, S′ is stable. However, as the sum of the weights of the
neighbors of v1 outside of C is smaller than av1 we learn that a�χS

′
> a�χS = α,

contradicting the validity of a�x ≤ α.
This lemma helps to weed out many of the antiweb-wheels that are not facet-

inducing, as demonstrated by the following corollary.
Corollary 6.2. Let G be an improper antiweb-s-wheel (s ≥ 1) with parti-

tion E ,O and corresponding antiweb-1-wheel inequality IG. Let H = G[E ]. If H
contains a vertex of degree 1, then IG is not facet-inducing.

Proof. Consider a vertex u ∈ E of degree 1 and its unique neighbor w ∈ E and
assume that the inequality IG nevertheless induces a facet. Without loss of generality,
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we can assume that the spoke-paths from u,w to the hub have length two (otherwise
we could shorten them with Proposition 3.6, part 2). Consider the C5 induced by
u,w, the edge between them and their two spoke paths. Now notice that u has weight
2t − 3 + s and it has only (2t − 2 + s) − 2 neighbors outside of this C5; all of these
(2t−2+s)−2 neighbors have weight 1. So we might conclude that by the Lemma 6.1
the valid inequality does not define a facet, contrary to assumption.

7. Concluding remarks. Using well-known transformations, one gets the valid
inequalities corresponding to the new inequalities of this study for the cut polytope, as
performed for the wheel inequalities, for example, by Cheng [4]; from the cut polytope
they carry over to the boolean quadric polytope as demonstrated by De Simone [17].
Similarly, they could be utilized for the multiwaycut problem [2].

In an accompanying paper [8] we give efficient separation algorithms for gener-
alizations of t-antiweb-s-wheel inequalities for fixed t and s. These generalizations
(nonsimple antiweb-wheels) permit the identification of nonadjacent vertices outside
the hub. They were introduced only to facilitate the design of our algorithms.

Acknowledgment. We would like to thank the anonymous referees for their
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Abstract. In this paper, we sketch common properties of a class of so-called subgraph opti-
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nation problem, and the independent domination problem can be sequentially solved in O(|V |+ |E|)
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1. Introduction. A graph is distance-hereditary [2, 18] if the distance stays the
same between any of two vertices in every connected induced subgraph containing both
(where the distance between two vertices is the length of a shortest path connecting
them). Distance-hereditary graphs form a subclass of perfect graphs [11, 15, 18]
that are graphs G in which the maximum clique size equals the chromatic number
for every induced subgraph of G [3, 13]. Two well-known classes of graphs, trees
and cographs, both belong to distance-hereditary graphs. There were sequential or
parallel algorithms to solve quite a few interesting graph-theoretical problems on this
special class of graphs. The interested readers may consult [2, 5, 6, 11, 12, 15, 16, 18,
19, 20, 25, 27, 28, 29] for details.
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Several characterizations of distance-hereditary graphs were also explored for al-
gorithmic applications. In [2], Bandelt and Mulder showed that the house, holes,
domino, and gem are neither induced subgraphs nor isometric subgraphs of a distance-
hereditary graph. In [15], Hammer and Maffray utilized the hanging structure to
show that a graph is distance-hereditary if and only if it has a one-vertex-extension
ordering. Using this ordering, they proposed a linear O(|V | + |E|)-sequential-time
recognition algorithm, where V and E are the vertex and edge sets of the given
graph. The vertex-coloring problem and the maximum weighted stable set problem
were also solved in linear time in [15]. In [6], Chang, Hsieh, and Chen generalized the
concept of the one-vertex-extension ordering to define the one-vertex-extension tree.
They further obtained a new recursive definition of distance-hereditary graphs and
showed that this new characterization can be utilized to solve the weighted vertex
cover problem, the weighted independent domination problem, the minimum fill-in
problem, and the tree-width problem. The former (respectively, latter) two problems
need O(|V | + |E|) (respectively, O(|V |2)) sequential time. Quite recently, Golumbic
and Rotics [14] showed that distance-hereditary graphs are those graphs of clique-
width at most three for which a corresponding 3-expression can be built in linear
sequential time. Moreover, Courcelle, Makowsky, and Rotics [9] showed an elegant
result that given a k-expression of a graph G with the bounded clique-width k, all
graph problems expressible in monadic second order logic with quantification over
vertex sets only can be solved in linear time on G. Therefore, a wide class of graph
problems are linear-time solvable on distance-hereditary graphs.

Most known polynomial time algorithms on distance-hereditary graphs utilize
techniques discovered from the properties of the problems and graphs, which we feel
are inherently sequential. In this paper, we propose a new approach based on the one-
vertex-extension tree proposed in [6] to come out a general problem-solving paradigm,
and thus a good structure for representing distance-hereditary graphs, for designing
parallel algorithms for a class of problems on distance-hereditary graphs. Note that
we also obtain linear-time algorithms that are different from the previous studies of
other researchers for all these problems by sequentially simulating our parallel algo-
rithms. Given a graph problem, we say it belongs to the class of subgraph optimization
problem if the object of this problem is to find a subgraph of the input graph to sat-
isfy the given properties which include an optimization constraint. For example, the
problem of finding a maximum independent set is a subgraph optimization problem.
By discovering recursive properties of distance-hereditary graphs, we define a general
problem-solving paradigm for subgraph optimization problems. The paradigm con-
sists of the two main phases. The first phase is to construct a binary tree structure,
called a decomposition tree, for representing a distance-hereditary graph. The sec-
ond phase is to reduce the given subgraph optimization problem to another problem
which can be solved on a decomposition tree. Problems that fit in our paradigm in-
clude the following: (a) the maximum clique problem, (b) the maximum independent
set problem, (c) the vertex connectivity problem, (d) the domination problem, and
(e) the independent domination problem. All the above problems but problem (c)
were shown to be linear-time solvable [6, 9, 14, 15].

Let Td(|V |, |E|) and Pd(|V |, |E|) denote the time complexity and processor com-
plexity required to construct a decomposition tree of a distance-hereditary graph
G = (V, E) on a PRAM model Md. We show that problems (a)–(e) can be sequen-
tially solved in O(|V | + |E|) time, and solved in parallel in O(Td(|V |, |E|) + log |V |)
time using O(Pd(|V |, |E|) + |V |/ log |V |) processors on Md. If a decomposition tree
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is given to be the input instance, problems (a)–(e) can be solved in O(log |V |) time
using O(|V |/ log |V |) processors on an EREW PRAM. To our knowledge, the se-
quential complexity of problem (c) and the parallel complexities of problems (b)–(e)
remains unknown in the literatures. Note that previous known parallel complexities
for problem (a) on distance-hereditary graphs were O(log2 |V |) time using O(|V |+|E|)
processors on a CREW PRAM [19]. For the rest, we match the current best algo-
rithms [6, 15, 19]. By constructing a decomposition tree in parallel, we also show that
Td(|V |, |E|) = O(log2 |V |), Pd(|V |, |E|) = O(|V |+ |E|) under a CREW PRAM.

The computation model used here is the deterministic parallel random access
machine (PRAM) which permits concurrent read and exclusive write (CREW), or
exclusive read and write (EREW) in its shared memory [22]. The rest of this paper
is organized as follows. In section 2, we review some properties of distance-hereditary
graphs and give basic definitions. In section 3, we define a general problem-solving
paradigm and develop its sequential and parallel implementation. In section 4, we
show that problems (a)–(e) are examples that fit into our paradigm. In section 5, we
present a parallel algorithm to construct a decomposition tree for a distance-hereditary
graph. Finally, some concluding remarks are given in section 6.

2. Preliminaries. This paper considers finite, simple, and undirected graphs
G = (V, E), where V and E are the vertex and edge sets of G, respectively. Let
n = |V | and m = |E|. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union
of G1 and G2, denoted by G1 ∪ G2, is the graph (V1 ∪ V2, E1 ∪ E2). Let G[X]
denote the subgraph of G induced by X ⊆ V . For graph-theoretic terminologies and
notations not mentioned here, see [13]. For a vertex v ∈ V of a graph G = (V, E),
the neighborhood of v is NG(v) = {u ∈ V | (u, v) ∈ E} and the closed neighborhood of
v is NG[v] = NG(v)∪ {v}. We use N(v) for NG(v), and N [v] for NG[v], if there is no
ambiguity.

For a graph G = (V, E), the degree of a vertex v ∈ V is deg(v) = |N(v)|. We
say that vertex u is a pendant vertex attached to vertex v if deg(u) = 1 and v is the
vertex adjacent to u. Two vertices u and v are called true (respectively, false) twins
if N [u] = N [v] (respectively, N(u) = N(v)).

Given a graph G = (V, E), an ordering δ = (v1, v2, . . . , vn) of V is said to be a
one-vertex-extension ordering of G if vi is a pendant vertex attached to some vertex
in G[Vi] or is a twin of some vertex in G[Vi] for 1 ≤ i ≤ n, where Vi = {v1, v2, . . . , vi}.

Lemma 2.1 (see [2, 15]). A graph is distance-hereditary if and only if it has a
one-vertex-extension ordering.

Let G = (V, E) be a distance-hereditary graph with a one-vertex-extension-
ordering δ = (v1, v2, . . . , vn). In [6], Chang, Hsieh, and Chen constructed a one-
vertex-extension tree, denoted by EG, with respect to δ as follows. Tree EG is a rooted
ordered tree rooted at v1 with the node set V . For j = 2, 3, . . . , n, we let vj be the
rightmost child of vi, i < j, in the current tree if either vj is a pendant vertex at-
tached to vi or vj and vi are twins in G[Vj ]. We use (vj , vi) to denote an edge of EG.
Moreover, (vj , vi) is labelled with P if vj is a pendant vertex attached to vi in G[Vj ],
and it is labelled with T (respectively, F) if vi and vj are true twins (respectively,
false twins) in G[Vj ].

Lemma 2.2 (see [6]). A one-vertex-extension tree of a distance-hereditary graph
can be constructed in O(n+m) time.

Figure 2.1(a) shows a distance-hereditary graph whose vertex set is associated
with a one-vertex-extension ordering. Figure 2.1(b) shows a one-vertex-extension tree
with respect to the ordering.
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Fig. 2.1. A distance-hereditary graph and its one-vertex-extension tree. The numbers (1)–(12)
associated with the vertices of the graph shown in (a) correspond to a one-vertex-extension ordering.

The twin set of v ∈ V (EG), denoted by S(v), consists of v and the descendants
of v such that v can be reached through only T or F edges. The twin set of EG (or
twin set of G) is the twin set of the root of EG. In Figure 2.1(b), the twin set of G is
{a, b, c, d, e}.

Suppose nodes vi1 < vi2 < · · · < vij−1
< vij < vij+1

< · · · < vik are children

of vi in EG. For an edge (vij , vi) in EG, let Sr(vij , vi) = S(vi) \ (∪jl=1S(vil)). Let
EG(vij , vi) denote the subtree of EG induced by vi, vij , vij+1

, . . . , vik and all descen-
dants of vij , vij+1

, . . . , vik . Recall that EG(v) is used to denote the subtree rooted at
v in EG.

We say that two disjoint vertex subsetsX and Y form a join in a graphG = (V, E)
if every vertex of X is connected to every vertex of Y .

Lemma 2.3 (see [6]). Suppose that vj is a child of vi in EG. Then the following
two statements hold.

1. If (vj , vi) is labelled with P or T, then S(vj) and Sr(vj , vi) form a join in G.
Moreover, for every vertex v ∈ V (EG(vj)) \ S(vj), N [v] ⊆ V (EG(vj)).

2. If (vj , vi) is labelled with F, then every vertex of V (EG(vj)) is not adjacent to
any vertex of V (EG(vj , vi)) \ V (EG(vj)) in G.

Given a distance-hereditary graph G = (V, E), there exists a one-vertex-extension
ordering (v1, v2, . . . , vn). This ordering corresponds to a one-vertex-extension tree EG.
Note that the twin set of G is S(v1). The vertex set V can be partitioned into four
disjoint sets: V (EG(v2)) \ S(v2), S(v2), (V \ V (EG(v2))) \ Sr(v2, v1), and Sr(v2, v1).
By Lemma 2.3, G can be regarded as to be formed from G1 = G[V \ V (EG(v2))] and
G2 = G[V (EG(v2))] by the three operations according to the type (v2, v1) in EG as
follows. If (v2, v1) is labelled T or P, then G is formed from G1 and G2 by connecting
every vertex of Sr(v2, v1) to all vertices of S(v2). If (v2, v1) is labelled F, then G is
the union of G1 and G2. If (v2, v1) is labelled P, then the twin set of G is the twin
set of G1. If [v1, v2] is labelled T or F, then the twin set of G is the union of the twin
set of G1 and G2. Based upon the above observations, we provide a characterization
for distance-hereditary graphs below.
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A graph consisting of a single vertex v is clearly a distance-hereditary graph. It
is said to be a primitive distance-hereditary graph with the twin set {v} [6]. A graph
G with |V (G)| ≥ 2 is distance-hereditary if and only if it can be obtained by three
operations described in the following lemma. Let G1 and G2 be distance-hereditary
graphs with the twin sets S1 and S2, respectively.

Lemma 2.4 (see [6]). 1. The graph obtained from G1 and G2 by connecting
every vertex of S1 to all vertices of S2 is a distance-hereditary graph with the twin set
S1 ∪ S2.

2. The graph obtained from G1 and G2 by connecting every vertex of S1 to all
vertices of S2 is a distance-hereditary graph with the twin set S1.

3. The union of G1 and G2 is a distance-hereditary graph with the twin set
S1 ∪ S2.

Note that the difference between operations 1 and 2 of Lemma 2.4 is the twin set
construction.

A distance-hereditary graph G is said to be formed from G1 with the twin set S1

and G2 with the twin set S2 by the true twin (respectively, attachment) operation if
G is obtained through operation 1 (respectively, 2) of Lemma 2.4, and by the false
twin operation if G is obtained through operation 3 of Lemma 2.4.

A distance-hereditary graph can be represented by a binary tree form, called a
decomposition tree, which is defined as follows.

Definition 2.5 (see [6]). 1. The tree consisting of a single vertex v is a decom-
position tree of the primitive distance-hereditary graph G = ({v}, ∅).

2. Let D1 and D2 be the decomposition trees of distance-hereditary graphs G1 and
G2, respectively.

(a) If G is formed from G1 and G2 by the true twin operation, then a tree D with
the root r represented by ⊗ and with the roots of D1 and D2 being the two
children of r is a decomposition tree of G.

(b) If G is formed from G1 and G2 by the attachment operation, then a tree D
with the root r represented by ⊕ and with the roots of D1 and D2 being the
left child and the right child of r, respectively, is a decomposition tree of G.

(c) If G is formed from G1 and G2 by the false twin operation, then a tree D with
the root r represented by � and with the roots of D1 and D2 being the two
children of r is a decomposition tree of G.

Figure 2.2 shows a distance-hereditary graph and its decomposition tree. Note
that the twin set of the given graph is {a, b, c, d}.

Lemma 2.6. A decomposition tree of a distance-hereditary graph can be con-
structed in O(n+m) sequential time.

Proof. It follows from the fact that a one-vertex-extension tree can be generated
in O(n+m) time [6].

3. A general problem-solving paradigm.

3.1. The subgraphs generating problem. Suppose that G = (V, E) is a
graph and let U be the set consisting of all subsets of V . Given a set Q = {Q1, Q2, . . . ,
Ql}, where Qi ∈ U , we define Minv to be an operator on Q that returns a set Qj ,
for some 1 ≤ j ≤ l, such that |Qj | is the smallest. The operator Maxv is defined
similarly. Given Q = {Q1, Q2, . . . , Ql} and R = {R1, R2, . . . , Rt}, where Q,R ⊂ U ,
Q and R are disjoint if Qi ∩ Rj = ∅, 1 ≤ i ≤ l, and 1 ≤ j ≤ t. For two lists
L1 = 〈l1, l2, . . . , lk〉 and L1

′ = 〈l1′, l2′, . . . , lj ′〉, we define the concatenation of L1 and
L1
′, denoted by L1 • L1

′, to be the list 〈l1, l2, . . . , lk, l1
′, l2′, . . . , lj ′〉.
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Fig. 2.2. A distance-hereditary graph with its decomposition tree.

Consider a rooted tree T . Let root(T ) be the root of T . For a node x in T , any
node y on the unique path from x to root(T ) is called an ancestor of x. If y is an
ancestor of x, then x is a descendant of y. Further, x is a proper descendant of y when
x �= y. Note that every node is both an ancestor and a descendant of itself. Two
nodes in T are irrelative if one is not an ancestor of the other. The least common
ancestor of two nodes x and y in T is the node that is an ancestor to both x and y,
and is farthest from root(T ).

Definition 3.1. Let G = (V, E) be a graph and let T be a binary tree. Also let
U be the set consisting of all subsets of V . Given two nonnegative integers k and r,
and an operator Θ ∈ {Minv,Maxv}, T is an (r, k,Θ)-subgraph generating tree of G
if the following conditions hold. Let v be a node of T and let Ni be the set of integers
from 1 to i.

1. Node v is associated with a list of r subgraphs Av = 〈Av,1, Av,2, . . . , Av,r〉
selected from U such that |Av,i| = O(1) and Av and Aw are disjoint if v and w are
irrelative. These subgraphs are called the auxiliary subgraphs1 of v.

2. If v is an internal node, then it is associated with k integers av,1, av,2, . . . , av,k
from Nr+k, and the following 2k linear unary functions fv,i : Nav,i �→ Nr+k and
gv,i : Nav,i �→ Nr+k, 1 ≤ i ≤ k.

3. Node v is also associated with a list of k subgraphs Rv = 〈Rv,1, Rv,2, . . . , Rv,k〉,
called the target subgraphs of v, which are defined as follows.

(a) If v is a leaf, then Rv is a list of subgraphs selected from U . Moreover, Rx
and Ry are disjoint for two arbitrary distinct leaves x and y.

(b) If v is an internal node with the children u and w, then

Rv,i = Θ{Zu,fu,i(1) ∪ Zw,gw,i(1), Zu,fu,i(2) ∪ Zw,gw,i(2), . . . ,(3.1)

Zu,fu,i(av,i) ∪ Zw,gw,i(av,i)},

where 1 ≤ i ≤ k, Zu = Ru • Au = 〈Zu,1, Zu,2, . . . , Zu,k+r〉, Zw = Rw • Aw =
〈Zw,1, Zw,2, . . . , Zw,k+r〉. Note that Zu,fu,i(j) ∩ Zw,gw,i(j) = ∅ for 1 ≤ j ≤ av,i.

For a node v in an (r, k,Θ)-subgraph generating tree T , let T (v) be a subtree of
T rooted at v and let Gv be the subgraph of G induced by the leaves of Gv. Also let

1For ease of implementation, we allow a subgraph of G to be represented by its vertex set if it
has no edge.
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Uv be the set consisting of all subsets of (∪1≤i≤kRx,i)∪ (∪1≤i≤rAy,i), where x is a leaf
of T (v) and y ∈ V (T (v)). Note that Uv and Uw are disjoint if v and w are irrelative.

Let G be a distance-hereditary graph. As we will show in sections 4.1–4.5, solving
some subgraph optimization problem P on G can be transformed easily into solving
that on a corresponding (r, k,Θ)-subgraph generating tree T of G. According to the
essential property of P, each node v ∈ V (T ) can be associated with r(≥ 0) subgraphs
Av of Gv in advance such that the following condition holds. For an internal node
v with two children u and w, a solution of P on Gv can be obtained by selecting
a subgraph with the maximum or minimum cardinality (depending on P) from the
2(k+r) subgraphs in some combinations of Ru, Rw, Au, and Aw shown as (3.1). Note
that Rv is generated in a bottom-up fashion, and the selection can be implemented
according Θ together with fu,i, fw,i, gu,i and gw,i, 1 ≤ i ≤ k.

Definition 3.2. Let T be an (r, k,Θ)-subgraph generating tree. The (r, k,Θ)-
subgraph generating problem is the problem of finding the k target subgraphs of the
root of T .

Lemma 3.3. The (r, k,Θ)-subgraph generating problem can be solved in O((rk +
k2)n) time, where n is the number of vertices of the given tree.

Proof. Clearly, the problem can be solved by a bottom-up evaluation of the given
tree. We now show the complexity. Note that there are l ≤ r + k subgraphs in
(3.1) to generate Rv,i, 1 ≤ i ≤ k, using Θ. Without loss of generality, assume that
v is an internal node. According to (3.1), each term is obtained by the union of
two disjoint sets selected using the functions fu,i and gw,i, where u and w are the
two children of v. Since both fu,i and gw,i are linear unary functions which can be
evaluated in O(1) time, the desired l subgraphs can be obtained in O(r + k) time.
Next, we explain how to implement Θ to select a target subgraph. We can record the
cardinality of each of l subgraphs such that generating Rv,i is equivalent to finding the
maximum (or minimum) among l values. This can be implemented to run in O(r+k)
time. Therefore, generating Rv,i’s for all 1 ≤ i ≤ k takes O(rk + k2) time. Since
there are totally n vertices in the tree, the problem can be solved with the desired
complexity.

3.2. Parallel complexities of the (r, k,Θ)-subgraph generating problem.
In this section, we apply the binary tree contraction technique described in [1] to par-
allelize the (r, k,Θ)-subgraph generating problem. This technique recursively applies
two operations, prune and bypass, to a given binary tree. Prune(u) is an operation
which removes a leaf node u from the current tree, and bypass(v) is an operation
(following a prune operation) that removes a node v with exactly one child w and
then lets the parent of v become the new parent of w. We define a contraction phase
to be the consecutive execution of a prune and then bypass operations. Figure 3.1
shows two procedures, prune(u) and bypass(v).

Let T be an n-leave binary tree. Given an Euler tour starting from root(T ) of T ,
the algorithm initially numbers the leaves from 1 to n according to the order of their
appearances in the tour. Then the algorithm repeats the following steps. In each
step, prune and bypass work only on the leaves with odd indices and their parents.
Hence, these two operations can be performed independently and delete � l2� leaves
together with their parents on the binary tree in each step, where l is the number
of the current leaves. Therefore, the tree will be reduced to a three-node tree after
repeating the steps in �log n times.

Lemma 3.4 (see [1]). If the prune operation and bypass operation can be per-
formed by one processor in constant time, the binary tree contraction algorithm can
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Fig. 3.1. Illustrating two procedures, prune(u) and bypass(v).

be implemented in O(log n) time using O(n/ log n) processors on an EREW PRAM,
where n is the number of nodes in an input binary tree.

Definition 3.5. Let u and v be two nodes of an (r, k,Θ)-subgraph generating
tree T such that u is a descendant of v. A k-ary function h : Uuk �→ Uv possesses the
closed form if h(X1, . . . , Xk) = Θ{Xb1 ∪C1, Xb2 ∪C2, . . . , Xba ∪Ca, Q}, where bi �= bj
for two distinct 1 ≤ i, j ≤ a, and Ci, Q ∈ (Uv \ Uu).

Lemma 3.6. Let Θ ∈ {Minv,Maxv}, and let h0 : Uuk �→ Uv be a function
with the closed form, where u is a descendant of v. Let w be a descendant of u and
let hi : Uwk �→ Uu, 1 ≤ i ≤ k, be k functions possessing the closed form. Then the
function obtained from the composition h0◦(h1, h2, . . . , hk) : Uwk �→ Uv also possesses
the closed form.

Proof. Let hi(X1, . . . , Xk) = Θ{Xbi1 ∪ Ci1, Xbi2 ∪ Ci2, . . . , Xbiai
∪ Ciai , Qi} for all

0 ≤ i ≤ k. Note that Cij , Qi ∈ (Uu \ Uw), 1 ≤ j ≤ ai. Define function B(i, j) = bij ,
where 0 ≤ i ≤ k and 1 ≤ j ≤ ai. We show in the following that h0 ◦ (h1, . . . , hk) is a
function with the desired form. Clearly,

h0 ◦ (h1, . . . , hk) = Θ{hB(0,1) ∪ C0
1 , . . . , hB(0,a0) ∪ C0

a0 , Q0}.(3.2)

For 1 ≤ i ≤ a0, (hB(0,i) ∪ C0
i )(X1, . . . , Xk) = Θ{XB(B(0,i),1) ∪ C

B(0,i)
1 , XB(B(0,i),2) ∪

C
B(0,i)
2 , . . . , XB(B(0,i),aB(0,i)) ∪ C

B(0,i)
aB(0,i)

, QB(0,i)} ∪ C0
i = Θ{XB(B(0,i),1) ∪ (CB(0,i)

1 ∪
C0
i ), . . . , XB(B(0,i),j) ∪ (CB(0,i)

j ∪C0
i ), . . . , XB(B(0,i),aB(0,i)) ∪ (CB(0,i)

aB(0,i)
∪C0

i ), (QB(0,i) ∪
C0
i )} = Θ{XB(i′,1) ∪ C ′i

′
1 , . . . , XB(i′,ai′ ) ∪ C ′i

′
ai′ , Q

′
i} = h′i′(X1, . . . , Xk), where i′ =

B(0, i). We define {l1, l2, . . . , lt}, t ≤ k, to be the set of integers such that for each
ls, 1 ≤ s ≤ t, there is a term XB(q,p) in h′i′(X1, . . . , Xk) with XB(q,p) = Xls for
some p, q. For 1 ≤ s ≤ t, let Kls = {XB(q,p) ∪ C ′qp| XB(q,p) = Xls} and let
K ′ls = {C ′qp| (XB(q,p)∪C ′qp) ∈ Kls}. Since C ′qp ∈ (Uv \Uw), each set in K ′ls is disjoint
with Uw. Notice that Xls is drawn from Uw. Therefore, (3.2) can be further simpli-
fied as follows: Θ{Xl1 ∪ Θ{K ′l1}, . . . , Xlt ∪ Θ{K ′lt},Θ{Q0, Q′1, Q′2, . . . , Q′a0}} =
Θ{Xl1 ∪ Dl1 , . . . , Xlt ∪ Dlt , R}, where Dli = Θ{K ′li}, for 1 ≤ i ≤ t and R =
Θ{Q0, Q′1, Q′2, . . . , Q′a0}. It is easy to check that Dli , R ∈ Uv \ Uw, and w is a
descendant of v. Hence, h0 ◦ (h1, . . . , hk) possesses the desired form.

We next develop a parallel algorithm for the (r, k,Θ)-subgraph generating prob-
lem. For a node x in the current tree H, let parH(x) (childH(x)) denote the parent
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(children) of x and let sibH(x) denote the sibling of x. The subscript H can be omitted
if no ambiguity arises. Also let H(x) denote the subtree of H rooted at x. Recall that
Rx = 〈Rx,1, . . . , Rx,k〉 (respectively, Ax = 〈Ax,1, . . . , Ax,r〉) is the list of the target
(respectively, auxiliary) subgraphs associated with x.

During the process of executing the tree contraction, we aim at constructing k
k-ary functions hx,1, hx,2, . . . , hx,k associated with each node x of the current tree
such that each hx,i, 1 ≤ i ≤ k, possesses the closed form and satisfies the condition
described below. Let v be an internal node in the current tree whose left child and
right child are u and w, respectively. Let u′ be the left child and w′ be the right
child of v in the original tree. Note that u′ and w′ are ancestors of u and w in the
original tree, respectively. For the remainder of this section, we call u′ and w′ replacing
ancestors of u and w with respect to v, respectively. Once Ru,i and Rw,i, 1 ≤ i ≤ k,
are provided as the inputs of hu,i and hw,i, respectively, the target subgraphs of v
can be obtained from Zu′ = 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉•Au′ , and
Zw′ = 〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉 • Aw′ , using the formula

Rv,i = Θ{Zu′,fu′,i(1) ∪ Zw′,gw′,i(1), Zu′,fu′,i(2) ∪ Zw′,gw′,i(2), . . . ,(3.3)

Zu′,fu′,i(av,i) ∪ Zw′,gw′,i(av,i)}.

That is, Ru′ = 〈Ru′,1, . . . , Ru′,k〉 = 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉
and Rw′ = 〈Rw′,1, . . . , Rw′,k〉 = 〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉. We
call the above functions hx,i, 1 ≤ i ≤ k, computed for each node x in the current tree
the crucial functions of x. For ease of describing the concept of the crucial function,
we demonstrate an example as follows.

Example 1. Consider an internal node v in the original tree T whose left child and
right child are u′ and w′, respectively. Let u be a proper descendant of u′ which is a leaf
and let w be a proper descendant of w′ (see also Figure 3.2(a)). Initially, the k target
subgraphs Rv can be obtained by merging 〈hu′,1(Ru′,1, . . . , Ru′,k), . . . , hu′,k(Ru′,1, . . . ,
Ru′,k)〉 • Au′ and 〈hw′,1(Rw′,1, . . . , Rw′,k), . . . , hw′,k(Rw′,1, . . . , Rw′,k)〉 • Aw′ in which
Ru′ = 〈Ru′,1, . . . , Ru′,k〉 and Rw′ = 〈Rw′,1, . . . , Rw′,k〉 are indeterminate. After a
sequence of contraction phases, assume T ′ is the current tree in which the left child
and the right child of v are u and w, respectively (see also Figure 3.2(b)). Notice that
u′ and w′ are now replacing ancestors of u and w with respect to v, respectively. Rv
are then obtained by merging 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉•Au′ and
〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉•Aw′ . Since Ru,i are those subgraphs
associated with T before executing the tree contraction, the indeterminate part for
generating Rv is reduced to Rw = 〈Rw,1, . . . , Rw,k〉. This part is smaller than the
previous one.

We next describe the details of our algorithm. Initially, for each node v in the
given tree we construct k functions hv,i(X1, . . . , Xk) = Θ{Xi∪∅, ∅},1 ≤ i ≤ k. Clearly,
these functions are crucial functions.

In the execution of the tree contraction, assume that prune(u) and bypass(par(u))
are performed consecutively. Let par(u) = v and sib(u) = w in the current tree.
Let u′ and w′ be the replacing ancestors of u and w with respect to v, respec-
tively. Assume that hu,i and hw,i, 1 ≤ i ≤ k, are crucial functions of u and w
in the current tree. Thus Ru′ = 〈hu,1(Ru,1, . . . , Ru,k), . . . , hu,k(Ru,1, . . . , Ru,k)〉 and
Rw′ = 〈hw,1(Rw,1, . . . , Rw,k), . . . , hw,k(Rw,1, . . . , Rw,k)〉. Since u is a leaf, Ru,i’s are
associated with u before executing the tree contraction algorithm. Therefore, the
above k target subgraphs Ru′ can be obtained through function evaluation. On
the other hand, since w is not a leaf in the current tree, Rw,i, 1 ≤ i ≤ k, is an
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Fig. 3.2. The concept of crucial functions. The indeterminate part for evaluating Rv shown in
(a) is smaller than that shown in (b).

indeterminate value represented by variable Xi. Hence, Rw′ can be represented by
〈hw,1(X1, . . . , Xk), . . . , hw,k(X1, . . . , Xk)〉. By (3.1), we construct k intermediate func-
tions representing the k target subgraphs of v from those of u′ and w′ by

Rv,i = Θ{Zu′,fu′,i(1) ∪ Zw′,gw′,i(1), Zu′,fu′,i(2) ∪ Zw′,gw′,i(2), . . . ,(3.4)

Zu′,fu′,i(av,i) ∪ Zw′,gw′,i(av,i)},

where Zu′,fu′,i(j) = Ru′,fu′,i(j) = hu,fu′,i(j)(Ru,1, . . . , Ru,k), Zw′,gw′,i(j) ∈ Aw′ if gw′,i(j)

> k, and Zw′,gw′,i(j) = hw,gw′,i(j)(X1, . . . , Xk) if gw′,i(j) ≤ k.

Similar to the proof of Lemma 3.6, (3.4) can be further simplified as

Rv,i = Θ{Xb1 ∪ C1, Xb2 ∪ C2, . . . , Xba ∪ Ca, Q},(3.5)

where bi �= bj for two distinct 1 ≤ i, j ≤ a, Xbi are variables drawn from Uw, and
Ci, Q ∈ (Uv \ Uw).

Therefore, the above functions (constructed after executing prune(u)) possess the
closed form. Given those functions Rv,i’s, the contribution to the k target subgraphs
of par(v) is obtained by function composition hv,i(Rv,1, . . . , Rv,k) for all 1 ≤ i ≤ k.
These functions are constructed for w after executing bypass(par(v)). By Lemma 3.6,
hv,i(Rv,1, . . . , Rv,k), 1 ≤ i ≤ k, possesses the closed form. Hence, we have the following
lemma.

Lemma 3.7. During the process of executing the binary tree contraction on an
(r, k,Θ)-subgraph generating tree to remove some nodes, the crucial functions of the
remaining nodes of the current tree can be constructed in O(k2(r+k)) time using one
processor.
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Proof. This can be shown by induction on the number of contraction phases based
on the arguments preceding the lemma. For constructing each of the k functions, there
are at most k(r + k) terms generated. These terms can be simplified as the closed
form using Θ. Thus the desired complexities follow.

Theorem 3.8. The (r, k,Θ)-subgraph generating problem can be solved in O(k2(r+
k) log n) time using O(n/ log n) processors on an EREW PRAM, where n is the num-
ber of nodes of the input tree.

Proof. The algorithm for solving the (r, k,Θ)-subgraph generating problem con-
sists of an initial assignment of k crucial functions to each node of the input tree,
and an application of the tree contraction algorithm such that the crucial functions
after executing prune(v) and bypass(par(v)) are constructed by Lemma 3.7. Once
the algorithm terminates, a three-node tree T ′ results. Let t be the root of T ′ and
y, z be two children of t. Note that the k target subgraphs of y′ and z′, the replacing
ancestors of y and z with respect to t, can be generated by their corresponding crucial
functions. Moreover, the auxiliary subgraphs associated with y′ and z′ before execut-
ing the tree contraction are now maintained in y and z by (3.3). Therefore, according
to the operators associated with t, the k target subgraphs of t can be generated. By
Lemmas 3.4 and 3.7, the problem can be solved with the stated complexities.

Definition 3.9. Let G be a distance-hereditary graph. A problem P is said to be
an (r, k,Θ)-regular problem on G if P can be reduced to an (r, k,Θ)-subgraph gener-
ating problem B on a decomposition tree of G such that the following two conditions
hold.

1. The solution of B is exactly the solution of P.
2. The reduction scheme takes O(k2(r+k) log n) time using O(n/ log n) processors

on an EREW PRAM, where n is the number of nodes in the given decomposition tree.
Note that each (r, k,Θ)-regular problem corresponds to an (r, k,Θ)-subgraph gen-

erating tree. This tree is obtained from a decomposition tree DG in which some ad-
ditional data structures are associated with V (DG) (refer to Definition 3.1). In the
remainder of this section and section 4, we assume that a decomposition tree is given
for solving an (r, k,Θ)-regular problem on a distance-hereditary graph. Such a tree
will be constructed using a parallel algorithm presented in section 5.

Lemma 3.10. Given a decomposition tree of a distance-hereditary graph G,
an (r, k,Θ)-regular problem on G can be solved in O(k2(r + k) log n) time using
O(n/ log n) processors on an EREW PRAM.

Proof. The proof follows from Definition 3.9 and Theorem 3.8.
Lemma 3.11. An (r, k,Θ)-regular problem on a distance-hereditary graph can be

solved in O(k(r + k)n+m) sequential time.
Proof. According to Lemma 2.6, a corresponding (r, k,Θ)-subgraph generating

tree can be constructed in O(k(r+k)n+m) time. By Lemma 3.3, an (r, k,Θ)-regular
problem can be solved within the desired complexity.

4. (r, k,Θ)-regular problems. Given a problem P, a graph G, a subgraph H
of G, and a subset S of vertices in H, PS(G, H) is a solution to the problem such that
this solution has a nonempty intersection with S and is contained in H. For the case
of S = ∅, i.e., P∅(G, H), the notation represents a solution to G, and this solution is
contained in H. For brevity, let PS(G, G) = PS(G).

In this section, let G = (V, E) be a distance-hereditary graph and S be the twin
set of G. Also let G1 = (V1, E1) and G2 = (V2, E2) be distance-hereditary graphs
with the twin sets S1 and S2, respectively. Recall that S = S1 if G = G1 ⊕ G2.
We will show that the problems demonstrated in sections 4.1–4.5 can be efficiently
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parallelized using our strategy. We also note that combining the results of [9, 14], the
sequential linear time complexity of these problems can also be obtained.

4.1. The maximum clique problem. A graph is a clique if there is an edge
between every pair of vertices. We say a clique is in G if it is an induced subgraph
of G. We define the maximum clique problem C to be the problem that finds a clique
with the maximum number of vertices in the input graph. A previous work to solve
this problem on distance-hereditary graph can be found in [19]. Using our notation,
we want to solve C∅(G). For a primitive distance-hereditary graph G = ({v}, ∅),
C∅(G) = C∅(G, G[S]) = {v}.

Theorem 4.1.
1. In the case of G = G1 ⊗ G2,

• C∅(G) =Maxv{C∅(G1), C∅(G2), C∅(G1, G1[S1]) ∪ C∅(G2, G2[S2])};
• C∅(G, G[S]) = C∅(G1, G1[S1]) ∪ C∅(G2, G2[S2]).

2. In the case of G = G1 ⊕ G2,
• C∅(G) =Maxv{C∅(G1), C∅(G2), C∅(G1, G1[S1]) ∪ C∅(G2, G2[S2])};
• C∅(G, G[S]) = C∅(G1, G1[S1]).

3. In the case of G = G1 � G2,
• C∅(G) =Maxv{C∅(G1), C∅(G2)};
• C∅(G, G[S]) =Maxv{C∅(G1, G1[S1]), C∅(G2, G2[S2])}.

Proof. The proof is straightforward.
For a node v in a decomposition tree DG, recall that Gv denote a subgraph of G

induced by the leaves of the subtree of DG rooted at v. Let Sv denote the twin set of
Gv. For convenience, let V (Gv) = Vv.

Theorem 4.2. The maximum clique problem is a (1, 2,Maxv)-regular problem
on distance-hereditary graphs.

Proof. We first reduce the problem to a (1, 2,Maxv)-subgraph generating prob-
lem. A corresponding (1, 2,Maxv)-subgraph generating tree can be constructed by
the following steps:
(S1) For each node v ∈ V (DG), set Av = 〈∅〉.
(S2) For each internal node v, let u and w be the left child and the right child of v.
For x ∈ {u, w}, let Zx = Rx • Ax = 〈Zx,1, Zx,2, Zx,3〉 = 〈C∅(Gx), C∅(Gx, Gx[Sx]), ∅〉.
Set two integers av,1, av,2 and construct functions fx,i and gx,i, 1 ≤ i ≤ 2, according
to the following cases:
Case 1: v is a ⊗-node. Set av,1 = 3, av,2 = 1, and fu,1(1) = gw,1(2) = 1, fu,1(3) =

gw,1(3) = fu,2(1) = gw,2(1) = 2, fu,1(2) = gw,1(1) = 3.
According to Theorem 4.1(1), C∅(Gv) = Rv,1 =Maxv{Zu,fu,1(1) ∪Zw,gw,1(1),
Zu,fu,1(2)∪Zw,gw,1(2), . . . , Zu,fu,1(av,1)∪Zw,gw,1(av,1)} =Maxv{Zu,1∪Zw,3, Zu,3∪
Zw,1, Zu,2∪Zw,2}, and C∅(Gv, Gv[Sv]) = Rv,2 =Maxv{Zu,fu,2(1)∪Zw,gw,2(1),
Zu,fu,2(2) ∪ Zw,gw,2(2), . . . , Zu,fu,2(av,2) ∪ Zw,gw,2(av,2)} =Maxv{Zu,2 ∪ Zw,2}.

Case 2: v is a ⊕-node. Set av,1 = 3, av,2 = 1, and fu,1(1) = gw,1(2) = 1, fu,1(3) =
gw,1(3) = fu,2(1) = 2, fu,1(2) = gw,1(1) = gw,2(1) = 3.
Then, C∅(Gv) = Rv,1 = Maxv{Zu,1 ∪ Zw,3, Zu,3 ∪ Zw,1, Zu,2 ∪ Zw,2} and
C∅(Gv, Gv[Sv]) = Rv,2 =Maxv{Zu,2 ∪ Zw,3}.

Case 3: v is a �-node. Set av,1 = 2, av,2 = 2, and fu,1(1) = gw,1(2) = 1, fu,2(1) =
gw,2(2) = 2, fu,1(2) = gw,1(1) = gw,2(1) = fu,2(2) = 3.
Then, C∅(Gv) = Rv,1 =Maxv{Zu,1∪Zw,3, Zu,3∪Zw,1} and C∅(Gv, Gv[Sv]) =
Rv,2 =Maxv{Zu,2 ∪ Zw,3, Zu,3 ∪ Zw,2}.

(S3) For each leaf l corresponding to a primitive distance-hereditary graph Gl =
({v}, ∅), set two target subgraphs of l to be Rl = 〈Rl,1, Rl,2〉 = 〈C∅(Gl), C∅(Gl, Gl[Sl])〉
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= 〈{v}, {v}〉.
The other two cases for ⊕-node and �-node can be verified similarly. Therefore, the
maximum clique problem can be reduced to a (1, 2,Maxv)-subgraph generating prob-
lem. Clearly, steps (S1)–(S3) can be implemented in O(1) time using O(n) processors
on an EREW PRAM. As with the aid of Brent’s scheduling principle [22], the reduc-
tion scheme takes O(log n) time using O(n/ log n) processors on an EREW PRAM.
By Definition 3.9, the theorem holds.

4.2. The maximum independent set problem. An independent set of a
graph is a subset of its vertices such that no two vertices in the subset are adja-
cent. The maximum independent set problem I is the problem of finding a maximum
cardinality independent set in the input graph. A previous sequential linear time
algorithm to solve this problem on distance-hereditary graphs can be found in [15].
Using our notation, given an input graph G, a solution is I∅(G). For a primitive
distance-hereditary graph G = ({v}, ∅), I∅(G) and IS(G) are both equal to {v}, and
I∅(G, G[V \ S]) = ∅.

Theorem 4.3.

1. In the case of G = G1 ⊗ G2,
• I∅(G) =Maxv{IS1(G1) ∪ I∅(G2, G2[V2 \ S2]),

IS2(G2)∪I∅(G1, G1[V1 \S1]), I∅(G1, G1[V1 \S1])∪I∅(G2, G2[V2 \S2])};
• IS(G) =Maxv{IS1(G1)∪ I∅(G2, G2[V2 \ S2]), IS2

(G2)∪ I∅(G1, G1[V1 \
S1])};

• I∅(G, G[V \ S]) = I∅(G1, G1[V1 \ S1]) ∪ I∅(G2, G2[V2 \ S2]).
2. In the case of G = G1 ⊕ G2,

• I∅(G) =Maxv{IS1(G1) ∪ I∅(G2, G2[V2 \ S2]),
IS2
(G2)∪I∅(G1, G1[V1 \S1]), I∅(G1, G1[V1 \S1])∪I∅(G2, G2[V2 \S2])};

• IS(G) = IS1
(G1) ∪ I∅(G2, G2[V2 \ V2]);

• I∅(G, G[V \ S]) = I∅(G1, G1[V1 \ S1]) ∪ I∅(G2).
3. In the case of G = G1 � G2,

• I∅(G) = I∅(G1) ∪ I∅(G2);
• IS(G) =Maxv{IS1(G1) ∪ I∅(G2), IS2(G2) ∪ I∅(G1)};
• I∅(G, G[V \ S]) = I∅(G1, G1[V1 \ S1]) ∪ I∅(G2, G2[V2 \ S2]).

Proof. The proof is straightforward.

As with the proof similar to that of Theorem 4.2, the following result can be
obtained.

Theorem 4.4. The maximum independent set problem is a (0, 3,Maxv)-regular
problem on distance-hereditary graphs.

4.3. The vertex connectivity problem. We now consider the vertex connec-
tivity problem. A vertex separator (separator for short) of a graph is a set of vertices
whose removal increases the number of connected components or results in a trivial
graph, i.e., a graph with no edges. A vertex separator Q of G is minimal if any proper
subset of Q is not a vertex separator of G. A minimum vertex separator of G is a
vertex separator with the minimum cardinality. We define the vertex connectivity
problem V to be the problem that finds a minimum vertex separator for the input
graph. A related work can be found in [26]. Using our notation, a solution on the
input graph G is denoted as V∅(G).

Lemma 4.5. Let Q be a minimal vertex separator of G such that G = G1 ⊗G2 or
G = G1 ⊕ G2. If S1 �= V (G1) and S2 �= V (G2), then there is a connected component
H of G[V \ Q] such that V (H) ∩ (S1 ∪ S2) = ∅.
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Proof. Note thatG is connected and bothG[V \S1] andG[V \S2] are disconnected.
Thus S1 �⊂ Q and S2 �⊂ Q. By assumption, S1 �= V (G1) and S2 �= V (G2), and this
lemma holds trivially when S1 = Q or S2 = Q. We now assume S1 �= Q and S2 �= Q.
Hence there is a vertex of S1 and one of S2 in G[V \ Q]. Assume the contrary, that
every connected component C of G[V \Q] satisfies V (C)∩ (S1 ∪S2) �= ∅. Since every
vertex of S1 is connected to all the vertices of S2, G[V \ Q] remains connected which
contradicts the fact that Q is a vertex separator of G.

For a subset X of V , let NG(X) = (
⋃
v∈X NG(v)) \ X. The subscript G in the

notations used in this section can be omitted when no ambiguity arises.

Lemma 4.6. Let Q be a minimal vertex separator of G. If S1 �= V (G1) and
S2 �= V (G2), then Q ⊆ V (Gi) for some i ∈ {1, 2}.

Proof. If G = G1 � G2, the result holds clearly; otherwise, G = G1 ⊗ G2 or
G = G1 ⊕ G2. By Lemma 4.5, there exists a connected component H of G[V \ Q]
such that V (H) ⊆ V (Gi) for some i ∈ {1, 2}. Since G is connected and Q is a
minimal vertex separator, N(V (H)) = Q. By V (H) ∩ (S1 ∪ S2) = ∅, we know that
N(V (H)) ⊆ V (Gi). Therefore, Q ⊆ V (Gi).

Lemma 4.7. If G is disconnected, then for any connected component C of G,
C ∩ S �= ∅.

Proof. The proof is straightforward.

The following lemma can be shown by the structure characterization of distance-
hereditary graphs.

Lemma 4.8. Let G = G1 ⊗ G2 or G = G1 ⊕ G2. If V (Gi) = Si and Gj is
disconnected, where i, j ∈ {1, 2} and i �= j, then Si is a minimal vertex separator of
G.

Let inf be an infinite set of vertices. Given a graph G, let conn(G) be inf if G
is connected and be ∅ if G is disconnected. For a distance-hereditary graph G with
the twin set S, a vertex separator Q is called crucial if there exists a component H
of G[V \ Q] such that V (H) ∩ S = ∅. Define V2

S(G) to be the problem that finds
a minimum crucial vertex separator of G. Let V2

S(G) be inf if there is no vertex
separator satisfying the requirements. Recall that every connected component of G
has a nonempty intersection with S. We define V3

S(G) to be the problem that returns
inf if S = V (G), and returns Minv{V (C)∩ S| C if a connected component of G and
(V (C) \ S) �= ∅} otherwise. For a primitive distance-hereditary graph G = ({v}, ∅),
V∅(G) = ∅, V2

S(G) = inf , and V3
S(G) = inf .

Lemma 4.9. Assume that G = G1 ⊗ G2.

1. If S1 = V (G1) and S2 �= V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)},

V2
S(G) =Minv{V2

S2
(G2),V3

S2
(G2)}, and

V3
S(G) = S1 ∪ S2.

2. If S2 = V (G2) and S1 �= V (G1), then
V∅(G) =Minv{S2 ∪ conn(G1), S2 ∪ V∅(G1),V2

S1
(G1),V3

S1
(G1)},

V2
S(G) =Minv{V2

S1
(G1),V3

S1
(G1)}, and

V3
S(G) = S1 ∪ S2.

3. If S1 = V (G1) and S2 = V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S2 ∪ conn(G1), S1 ∪ V∅(G2), S2 ∪ V∅(G1)},
V2
S(G) = inf , and

V3
S(G) = inf .

4. If S1 �= V (G1) and S2 �= V (G2), then
V∅(G) =Minv{ V2

S1
(G1),V2

S2
(G2), V3

S1
(G1),V3

S2
(G2)},
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V2
S(G) =Minv{V2

S1
(G1),V2

S2
(G2),V3

S1
(G1),V3

S2
(G2)},

V3
S(G) = S1 ∪ S2.

Proof. We first consider the situation where S1 = V (G1) and S2 �= V (G2). Let Q
be a minimum vertex separator of G. Note that G is connected. There are five cases.
Case 1: Q ⊂ S1. It is impossible because G[V \ Q] remains to be connected.
Case 2: Q = S1. In this case, G2 must be disconnected. Thus V∅(G) equals S1 ∪
conn(G2).
Case 3: Q∩S1 �= ∅ and S1 \Q �= ∅. Clearly, Q∩V (G2) �= ∅. There are two subcases.
Case 3.1: S2 ⊂ Q. This contradicts the fact that |Q| is the minimum because S2 is

also a vertex separator of G.
Case 3.2: S2 \ Q �= ∅. Thus the vertices in (S1 ∪ S2) \ Q are in the same connected

component, say H, of G[V \ Q]. Let H ′ be another connected component of
G[V \Q]. Since G is connected and V (H ′)∩ (S1 ∪S2) = ∅, N(V (H ′)) = Q ⊆
V (G2). This contradicts Q ∩ S1 �= ∅.

Case 4: S1 ⊆ Q and Q ∩ V (G2) �= ∅. In this case, G2 is connected; otherwise, S1

is a vertex separator of G. Moreover, for every connected component C of G[V \ Q],
V (C) ∩ S2 �= ∅ (otherwise, Q \ S1 is a vertex separator of G). Let Q′ = Q ∩ V (G2).
Clearly, Q′ is a minimal vertex separator of G2 = (V2, E2). We next show Q′ is a
minimum vertex separator of G2. Assume the contrary, that Q′′ is a vertex separator
of G2 such that |Q′′| < |Q′|. There are two situations.
(a) Every connected component of G2[V2 \ Q′′] has a nonempty intersection with
S2. Clearly, S1 ∪ Q′′ is a vertex separator of G, and a contradiction arises because
|S1 ∪ Q′′| < |S1 ∪ Q′| = Q.
(b) There exists a connected component H of G2[V2 \Q′′] with V (H)∩S2 = ∅. Then
Q′′ is a vertex separator of G and |Q′′| < |Q′| < |Q| which contradicts the assumption
that Q is a minimum separator of G.
By the above discussion, V∅(G) equals S1 ∪ V∅(G2).
Case 5: Q ∩ S1 = ∅ (i.e., Q ⊆ V (G2)).

Case 5.1: Q is a vertex separator of G2. If every connected component of G[V \ Q]
has a nonempty intersection with S2, then G[V \Q] remains connected. This
contradicts the fact that Q is a vertex separator of G. Hence, there exists a
connected component H of G[V \ Q] such that V (H) ∩ S2 = ∅. This implies
V∅(G) = V2

S2
(G2).

Case 5.2: Q is not a vertex separator of G2. There exists a connected component
H of G[V \ Q] such that V (H) ∩ S1 = ∅ and V (H) ∩ S2 = ∅. Note that
N(V (H)) ⊂ V (G2). Moreover, the subgraph induced by V (H) ∪ Q is a
connected component, say C, of G2 and Q = (S2 ∩V (C)) by the facts that Q
is not a vertex separator of G2 and S2 ∩ V (C) is a minimal vertex separator
of G. This implies that V∅(G) = V3

S2
(G2).

Combining the above cases, we have V∅(G) =Minv{S1∪conn(G2), S1∪V∅(G2),V2
S2
(G2),

V3
S2
(G2)}. The equations for computing V2

S(G) and V3
S(G) can be shown similarly from

the structure characterization of G. By Lemmas 4.5–4.8, the other situations can be
shown analogously.

The following lemma can be shown in a way that is similar to the proof of
Lemma 4.9.

Lemma 4.10. Assume that G = G1 ⊕ G2.

1. If S1 = V (G1) and S2 �= V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)},

V2
S(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)}, and
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V3
S(G) = S1.

2. If S2 = V (G2) and S1 �= V (G1), then
V∅(G) =Minv{S2 ∪ conn(G1), S2 ∪ V∅(G1),V2

S1
(G1),V3

S1
(G1)},

V2
S(G) =Minv{V2

S1
(G1),V3

S1
(G1)}, and

V3
S(G) = S1.

3. If S1 = V (G1) and S2 = V (G2), then
V∅(G) =Minv{S1 ∪ conn(G2), S2 ∪ conn(G1), S1 ∪ V∅(G2), S2 ∪ V∅(G1)},
V2
S(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2)}, and

V3
S(G) = S1.

4. If S1 �= V (G1) and S2 �= V (G2), then
V∅(G) =Minv{V2

S1
(G1),V2

S2
(G2),V3

S1
(G1),V3

S2
(G2)},

V2
S(G) =Minv{V2

S1
(G1),V2

S2
(G2),V3

S1
(G1),V3

S2
(G2)}, and

V3
S(G) = S1.

Lemma 4.11. Assume that G = G1 � G2.
1. If S1 = V (G1) and S2 �= V (G2), then

V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) = V2

S2
(G2), and

V3
S(G) = V3

S2
(G2).

2. If S2 = V (G2) and S1 �= V (G1), then
V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) = V2

S1
(G1), and

V3
S(G) = V3

S1
(G1).

3. If S1 = V (G1) and S2 = V (G2), then
V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) = inf , and

V3
S(G) = inf .

4. If S1 �= V (G1) and S2 �= V (G2), then
V∅(G) =Minv{V∅(G1),V∅(G2)},
V2
S(G) =Minv{V2

S1
(G1),V2

S2
(G2)}, and

V3
S(G) =Minv{V3

S1
(G1),V3

S2
(G2)}.

Proof. The proof follows from the definition of the vertex separator and Lemma
4.6.

Theorem 4.12. The vertex connectivity problem is a (2, 4,Minv)-regular problem
on distance-hereditary graphs.

Proof. We first reduce the problem to a (2, 4,Minv)-regular problem. A corre-
sponding (2, 4,Minv)-subgraph generating tree can be constructed by the following
steps:
(S1) For each node v ∈ V (DG), determine whether Sv = V (Gv) and determine
whether Gv is connected.
(S2) For each node v ∈ V (DG), set Av = 〈∅, inf〉.2
(S3) For each internal node v, let u and w be the left child and the right child of
v, respectively. Set four integers av,1, . . . , av,4 and functions fx,i and gx,i, where
x ∈ {u, w} and 1 ≤ i ≤ 4, according to Lemmas 4.9–4.11. Without loss of gen-
erality, assume that v is a ⊗-node. (The case of v being a ⊕- or �-node can be
shown similarly.) There are four cases corresponding to 1–4 of Lemma 4.9. Here
we consider only that S1 = V (G1) and S2 �= V (G2). The other cases are analo-
gous. Let V∅(Gv) = Rv,1,V2

Sv
(Gv) = Rv,2,V3

Sv
(Gv) = Rv,3, and Sv = Rv,4, and let

2It is not difficult to generalize the (r, k,Θ)-subgraph generating tree problem when the input is
inf .
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Zv = Rv • Av = 〈Zv,1, . . . , Zv,6〉 = 〈V∅(Gv),V2
Sv
(Gv),V3

Sv
(Gv), Sv, ∅, inf〉. Consider

the following two cases.

Case 1: Gw is connected. In this case, V∅(G) =Minv{S1 ∪ conn(G2), S1 ∪ V∅(G2),
V2
S2
(G2),V3

S2
(G2)} =Minv{S1∪V∅(G2),V2

S2
(G2),V3

S2
(G2)} because conn(G2)

= inf . Set av,1 = 3, av,2 = 2, av,3 = av,4 = 1, and gw,1(1) = 1, gw,1(2) =
gw,2(1) = 2, gw,1(3) = gw,2(2) = 3, fu,1(1) = fu,3(1) = fu,4(1) = gw,3(1) =
gw,4(1) = 4, fu,1(2) = fu,1(3) = fu,2(1) = fu,2(2) = 5.
According to Lemma 4.9(1), V∅(Gv) = Rv,1 =Minv{Zu,fu,1(1) ∪ Zw,gw,1(1),
Zu,fu,1(2)∪Zw,gw,1(2), . . . , Zu,fu,1(av,1)∪Zw,gw,1(av,1)} =Minv{Zu,4∪Zw,1, Zu,5∪
Zw,2, Zu,5 ∪Zw,3}, V2

Sv
(Gv) = Rv,2 =Minv{Zu,fu,2(1) ∪Zw,gw,2(1), Zu,fu,2(2) ∪

Zw,gw,2(2), . . . , Zu,fu,2(av,2) ∪ Zw,gw,2(av,2)} = Minv{Zu,5 ∪ Zw,2, Zu,5 ∪ Zw,3},
V3
Sv
(Gv) = Rv,3 =Minv{Zu,fu,3(1) ∪ Zw,gw,3(1), Zu,fu,3(2) ∪ Zw,gw,3(2), . . . ,

Zu,fu,3(av,3) ∪ Zw,gw,3(av,3)} = Zu,4 ∪ Zw,4, and Sv = Rv,4 = Zu,4 ∪ Zw,4.
Case 2: Gw is disconnected. In this case, V∅(G) = Minv{S1 ∪ conn(G2), S1 ∪

V∅(G2),V2
S2
(G2),V3

S2
(G2)} = Minv{S1, S1 ∪ V∅(G2),V2

S2
(G2),V3

S2
(G2)} be-

cause conn(G2) = ∅. Set av,1 = 4, av,2 = 2, av,3 = av,4 = 1, and gw,1(2) =
1, gw,1(3) = gw,2(1) = 2, gw,1(4) = gw,2(2) = 3, fu,1(1) = fu,1(2) = fu,3(1) =
gw,3(1) = fu,4(1) = gw,4(1) = 4, fu,1(4) = fu,2(1) = fu,2(2) = fu,3(1) =
gw,1(1) = 5.
Then, V∅(Gv) = Rv,1 =Minv{Zu,4∪Zw,5, Zu,4∪Zw,1, Zu,5∪Zw,2, Zu,5∪Zw,3},
V2
Sv
(Gv) = Rv,2 = Minv{Zu,5 ∪ Zw,2, Zu,5 ∪ Zw,3}, V3

Sv
(Gv) = Rv,3 =

{Zu,4 ∪ Zw,4}, and Sv = Rv,4 = Zu,4 ∪ Zw,4.

(S4) For each leaf l corresponding to a primitive distance-hereditary graph ({v}, ∅),
let Rl = 〈Rl,1, Rl,2, Rl,3, R1,4〉 = 〈V∅(Gl),V2

Sl
(Gl),V3

Sl
(Gl), Sl〉 = 〈∅, inf, inf, {v}〉.

Since (S1) can be implemented in O(log n) time using O(n/ log n) processors on
an EREW PRAM by utilizing the binary tree contraction and the other steps can
be implemented within the desired complexities, the problem is a (2, 4,Minv)-regular
problem.

4.4. The independent domination problem. We say that in a graph G =
(V, E), a subset P of V dominates a subset Q of V if every vertex of Q is either in
P or adjacent to a vertex in P . A dominating set of a graph G = (V, E) is a subset
of V that dominates V . A dominating set is independent if the subgraph induced by
this set has no edge. The minimum independent domination problem ID is to find
a minimum cardinality independent dominating set of the given graph. A previous
known sequential result of this problem on distance-hereditary graphs can be found
in [6]. Another related work can be found in [5]. For a primitive distance-hereditary
graph G = ({v}, ∅), ID∅(G) and IDS(G) both equal {v}, ID∅(G[V \ S]) = ∅, and
ID∅(G, G[V \ S]) = inf .

Theorem 4.13.

1. In the case of G = G1 ⊗ G2,
• ID∅(G) =Minv{IDS1(G1)∪ID∅(G2[V2 \S2]), IDS2(G2)∪ID∅(G1[V1 \

S1]), ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2])};
• IDS(G) =Minv{IDS1(G1)∪ID∅(G2[V2\S2]), IDS2(G2)∪ID∅(G1[V1\

S1])};
• ID∅(G[V \ S]) = ID∅(G1[V1 \ S1]) ∪ ID∅(G2[V2 \ S2]);
• ID∅(G, G[V \ S]) = ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2]).

2. In the case of G = G1 ⊕ G2,
• ID∅(G) =Minv{IDS1(G1)∪ID∅(G2[V2 \S2]), IDS2(G2)∪ID∅(G1[V1 \

S1]), ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2])};
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• IDS(G) = IDS1
(G1) ∪ ID∅(G2[V2 \ S2]);

• ID∅(G[V \ S]) = ID∅(G1[V1 \ S1]) ∪ ID∅(G2);
• ID∅(G, G[V \S]) =Minv{ID∅(G1[V1\S1])∪IDS2(G2), ID∅(G1, G1[V1\

S1]) ∪ ID∅(G2, G2[V2 \ S2])}.
3. In the case of G = G1 � G2,

• ID∅(G) = ID∅(G1) ∪ ID∅(G2);
• IDS(G) =Minv{IDS1(G1) ∪ ID∅(G2), IDS2(G2) ∪ ID∅(G1)};
• ID∅(G[V \ S]) = ID∅(G1[V1 \ S1]) ∪ ID∅(G2[V2 \ S2]);
• ID∅(G, G[V \ S]) = ID∅(G1, G1[V1 \ S1]) ∪ ID∅(G2, G2[V2 \ S2]).

As with the method used in the previous problems, we have the following result.

Theorem 4.14. The independent domination problem is a (0, 4,Minv)-regular
problem on distance-hereditary graphs.

4.5. The domination problem. The minimum dominating set problem D
aims at finding a dominating set in the input graph with the minimum cardinal-
ity. A related work on distance-hereditary graph can be found in [5]. For a problem
PX(G, H), X = ∅ or X = S, used in this section, we relax the constraint that H
is restricted to be a subgraph of G; i.e., the desired dominating set of G is con-
tained in H, and H may not be a subgraph of G. For a primitive distance-hereditary
graph G = ({v}, ∅), D∅(G),DS(G) and DS(G[V \ S], G) are all equal to {v}, and
D∅(G[V \ S], G) = ∅.

Lemma 4.15. Assume that G = G1 ⊗ G2.

1. If S1 = V1 and S2 �= V2, then
• D∅(G) =Minv{DS2(G2),DS2(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\

S2], G2)}, where u ∈ V1;
• D∅(G[V \ S], G) = D∅(G2[V2 \ S2], G2);
• DS(G) =Minv{DS2(G2),DS2(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\

S2], G2)}, where u ∈ V1;
• DS(G[V \ S], G) = DS2(G2[V2 \ S2], G2).

2. If S1 �= V1 and S2 = V2, then
• D∅(G) =Minv{DS1(G1),DS1

(G1[V1\S1], G1)∪{u},D∅(G2)∪D∅(G1[V1\
S1], G1)}, where u ∈ V2;

• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1);
• DS(G) =Minv{DS1(G1),DS1(G1[V1\S1], G1)∪{u},D∅(G2)∪D∅(G1[V1\

S1], G1)}, where u ∈ V2;
• DS(G[V \ S], G) = DS1(G1[V1 \ S1], G1).

3. If S1 = V1 and S2 = V2, then
• D∅(G) =Minv{D∅(G1),D∅(G2), {u, w}}, where u ∈ V1 and w ∈ V2;
• D∅(G[V \ S], G) = ∅;
• DS(G) =Minv{D∅(G1),D∅(G2), {u, w}}, where u ∈ V1 and w ∈ V2;
• DS(G[V \ S], G) = {u}, where u ∈ V1 ∪ V2.

4. If S1 �= V1 and S2 �= V2, then
• D∅(G) = Minv{D∅(G1) ∪ D∅(G2),DS1(G1[V1 \ S1], G1) ∪ DS2(G2[V2 \

S2], G2),DS1(G1)∪D∅(G2[V2 \S2], G2),DS2(G2)∪D∅(G1[V1 \S1], G1)};
• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2);
• DS(G) =Minv{DS1(G1[V1 \ S1], G1) ∪ DS2(G2[V2 \ S2], G2),DS1(G1) ∪

D∅(G2[V2 \ S2], G2),DS2(G2) ∪ D∅(G1[V1 \ S1], G1)};
• DS(G[V \ S], G) =Minv{DS1(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2),

DS2
(G2[V2 \ S2], G2) ∪ D∅(G1[V1 \ S1], G1)}.

Lemma 4.16. Assume that G = G1 ⊕ G2.
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1. If S1 = V1 and S2 �= V2, then
• D∅(G) =Minv{DS2(G2),DS2(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\

S2], G2)}, where u ∈ V1;
• D∅(G[V \S], G) =Minv{D∅(G2),D∅(G2[V2 \S2], G2)∪{u}}, where u ∈

V1;
• DS(G) =Minv{DS2

(G2[V2\S2], G2)∪{u},D∅(G1)∪D∅(G2[V2\S2], G2)},
where u ∈ V1;

• DS(G[V \ S], G) = D∅(G2[V2 \ S2], G2) ∪ {u}, where u ∈ V1.
2. If S1 �= V1 and S2 = V2, then

• D∅(G) =Minv{DS1(G1),DS1(G1[V1\S1], G1)∪{w},D∅(G2)∪D∅(G1[V1\
S1], G1)}, where w ∈ V2;

• D∅(G[V \ S], G) = Minv{D∅(G1[V1 \ S1], G1) ∪ D∅(G2),DS1(G1[V1 \
S1], G1)};

• DS(G) =Minv{DS1(G1[V1 \ S1], G1) ∪ {w},DS1(G1)}, where w ∈ V2;
• DS(G[V \ S], G) = DS1

(G1[V1 \ S1], G1).
3. If S1 = V1 and S2 = V2, then

• D∅(G) =Minv{D∅(G1),D∅(G2), {u, w}}, where u ∈ V1 and w ∈ V2;
• D∅(G[V \ S], G) = {u}, where u ∈ V1;
• DS(G) =Minv{D∅(G1), {u, w}}, where u ∈ V1 and w ∈ V2;
• DS(G[V \ S], G) = {u}, where u ∈ V1.

4. If S1 �= V1 and S2 �= V2, then
• D∅(G) = Minv{D∅(G1) ∪ D∅(G2),DS1(G1[V1 \ S1], G1) ∪ DS2(G2[V2 \

S2], G2),DS1
(G1)∪D∅(G2[V2 \S2], G2),DS2

(G2)∪D∅(G1[V1 \S1], G1)};
• D∅(G[V \ S], G) = Minv{D∅(G1[V1 \ S1], G1) ∪ D∅(G2),DS1

(G1[V1 \
S1], G1) ∪ D∅(G2[V2 \ S2], G2)};

• DS(G) =Minv{DS1
(G1[V1 \ S1], G1) ∪ DS2

(G2[V2 \ S2], G2),DS1
(G1) ∪

D∅(G2[V2 \ S2], G2)};
• DS(G[V \ S], G) = DS1(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2).

Lemma 4.17. Assume that G = G1 � G2.

1. If S1 = V1 and S2 �= V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = D∅(G2[V2 \ S2], G2);
• DS(G) = D∅(G1) ∪ D∅(G2);
• DS(G[V \ S], G) = DS2(G2[V2 \ S2], G2).

2. If S1 �= V1 and S2 = V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1);
• DS(G) = D∅(G1) ∪ D∅(G2);
• DS(G[V \ S], G) = DS1(G1[V1 \ S1], G1).

3. If S1 = V1 and S2 = V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = ∅;
• DS(G) = D∅(G1) ∪ D∅(G2);
• DS(G[V \ S], G) = {u}, where u ∈ V1 ∪ V2.

4. If S1 �= V1 and S2 �= V2, then
• D∅(G) = D∅(G1) ∪ D∅(G2);
• D∅(G[V \ S], G) = D∅(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2)};
• DS(G) =Minv{DS1(G1) ∪ D∅(G2),D∅(G1) ∪ DS2(G2)};
• DS(G[V \ S], G) =Minv{DS1

(G1[V1 \ S1], G1) ∪ D∅(G2[V2 \ S2], G2),
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DS2
(G2[V2 \ S2], G2) ∪ D∅(G1[V1 \ S1], G1)}.

Theorem 4.18. The domination problem is a (2, 4,Minv)-regular problem on
distance-hereditary graphs.

Proof. A corresponding (2, 4,Minv)-subgraph generating tree can be constructed
by the following steps:
(S1) For each node v ∈ V (DG), determine whether Sv = V (Gv).
(S2) For each node v ∈ V (DG), set Av = 〈y, ∅〉, where y ∈ Sv.
(S3) For each internal node v, set av,1, . . . , av,4 and construct corresponding func-
tions, according to Lemmas 4.15–4.17. The details are similar to those in the proofs
of Theorems 4.2 and 4.12.
(S4) For each leaf l corresponding to a primitive distance-hereditary graph ({v}, ∅), set
four target subgraphs of l to be Rl = 〈D∅(Gl),D∅(Gl[Vl \Sl], Gl),DSl

(Gl),DSl
(Gl[Vl \

Sl], Gl)〉 = 〈{v}, ∅, {v}, {v}〉.
Clearly, the above reduction scheme can be implemented with the desired complexi-
ties. Therefore, the desired problem is a (2, 4,Minv)-regular problem.

5. Parallel constructing a decomposition tree. A parallel algorithm to con-
struct a decomposition tree of a distance-hereditary graph is presented in this section.

5.1. Previously known properties of distance-hereditary graphs. For
two arbitrary vertices u and v in a given graph H, let distH(u, v) be the length
of a shortest path between u and v in H. Given a vertex u in a connected graph
G = (V, E), the hanging of G rooted at u, denoted by hu, is the collection of
sets L0(u), L1(u), . . . , Lt(u) (or simply L0, L1, . . . , Lt without ambiguity), where t =
maxv∈V distG(u, v) and Li(u) = {v ∈ V | distG(u, v) = i} for 0 ≤ i ≤ t. For any
vertex v ∈ Li and any vertex set S ⊆ Li, 1 ≤ i ≤ t, let N ′(v) = N(v) ∩ Li−1 and
N ′(S) = N(S) ∩ Li−1. Any two vertices x, y ∈ Li (1 ≤ i ≤ t − 1) are said to be tied
if x and y have a common neighbor in Li+1.

A vertex subset S is homogeneous in a graph G = (V, E) if every vertex in V \S is
adjacent to either all or none of the vertices of S. We call a family of subsets arboreal
if every two subsets of the family are either disjoint or comparable (by set inclusion).
For a hanging hu = (L0, L1, . . . , Lt), Hammer and Maffray [15] defined an equivalence
relation ≡i between vertices of Li by x ≡i y, which means x and y are in the same
connected component of Li or x and y are tied. Let ≡a be defined on V (G) by x ≡a y,
which means x ≡i y for some i.

Lemma 5.1 (see [2, 11, 15]). Let hu be the hanging of G rooted at u and let
R1, R2, . . . , Rr be the equivalence classes with respect to hu. Then the following are
true.

1. For any two vertices x and y in some Ri, N ′(x) = N ′(y).
2. The graph obtained from G by shrinking each Rj into one vertex is a tree

rooted at u.
3. Each Rj induces a cograph.
4. The family {N ′(Rk)| N ′(Rk) ⊆ Ri}, for 1 ≤ i ≤ r, is an arboreal family of

homogeneous subsets of G[Ri].
A hanging of a distance-hereditary graph is depicted in Figure 5.1.

5.2. One-vertex-extension trees of cographs. A graph is cograph [8] if it
is either a vertex, the complement of a cograph, or the union of two cographs. The
cograph is also called the P4-free graph which does not contain any induced path of
length three [8]. It has been shown that the class of cographs is properly contained in
distance-hereditary graphs [15]. A cograph G has a tree representation called cotree,
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Fig. 5.1. The hanging ha of a distance-hereditary graph G. The dotted rings depict a partition
of V (G) into nine equivalence classes R0–R8.

denoted by TG, with the following four properties: (a) the leaves of TG are the vertices
of G; (b) the internal nodes of TG are labelled with 0 or 1; (c) 0 nodes and 1 nodes
alternate along every path staring from the root; (d) two vertices x and y of G are
adjacent if and only if the least common ancestor of x and y in TG is labelled with
1. Cotrees can be utilized to solve the recognition problem and some other subgraph
optimization problems on cographs [17, 23]. Figure 5.2 shows a cograph G and its
cotree TG.

Given a tree T , let leaf(T ) be the leaves of T .
Lemma 5.2. Let u and v be two leaves in a cotree TG such that par(u) = par(v).

If par(u) is labelled with 1 (respectively, 0), then u and v are true (respectively, false)
twins.

Proof. The proof is straightforward.
Given a cograph G represented by its cotree TG, the graph can be reduced to a

single vertex by repeatedly merging twins by the following procedure. We arbitrarily
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Fig. 5.2. A cograph and its cotree.

find two leaves u and v of the current tree with par(u) = par(v) = w. By Lemma 5.2,
u and v are twins in the current graph. We delete u from the current graph and
the current tree. At the same time, we check whether v is the only child of w in
the current tree. If so, we delete w from the current tree and let par(w) be the new
parent of v when w �= r. The above procedure is repeatedly executed until the current
graph contains only one vertex. Clearly, a one-vertex-extension ordering of G can be
obtained by reversing the above process. The above discussion leads to the following
algorithm.
Algorithm Tree 1
Input: A cograph G.
Output: A one-vertex-extension tree of G.

Step 1: Construct a cotree TG. Assume that r is the root of TG.
Step 2: Order the leaves of TG from 1 to k = |leaf(TG)|. Let order(v) be the

resulting order associated with v ∈ leaf(TG).
Step 3: Assign a label to each u ∈ TG:

Find the vertex v ∈ leaf(TG(u)) such that order(v) = max{order(w)| w ∈
leaf(TG(u))}. Let label(u) = v.

Step 4: For each v ∈ V (G), compute level(v) = min{distTG
(x, r)| label(x) = v}.

Step 5: Construct a tree EG:
5-1. Let label(r) be the root of EG.
5-2. For each nonroot node v ∈ TG, let par(label(v)) = label(par(v)) if
label(v) �= label(par(v)).
5-3. Label edge (label(v), label(par(v))) as T (respectively, F) if par(v) is a
1 (respectively, 0) node.

Step 6: Order the children of each nonleaf vertex v ∈ EG:
Assume that v1, v2, . . . , vp are p children of v. Order them by vi1 < vi2 <
· · · < vip if level(vi1) ≤ level(vi2) ≤ · · · ≤ level(vip), where 1 ≤ ij ≤ p. The
resulting tree is a one-vertex-extension tree of G.

An example of executing Algorithm Tree 1 is shown in Figure 5.3. In Fig-
ure 5.3(a), the numbers associated with the leaves form an order determined after
Step 2. The bold letters associated with internal nodes v represent label(v). In Fig-
ure 5.3(b), a one-vertex-extension tree is generated after Steps 4–6.

The correctness follows from the statements preceding the algorithm. The time-
processor complexity of Algorithm Tree 1 is analyzed below. In Step 1, TG can be
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Fig. 5.3. A one-vertex-extension tree shown in (b) is obtained from the given cotree shown in (a).

constructed in O(log2 n) time using O(n+m) processors on a CREW PRAM [10]. As
with the aid of the Euler-tour, the prefix-sum and the tree contraction techniques [21],
Steps 2 and 3 can be implemented in O(log n) time using O(n/ log n) processors on an
EREW PRAM. Step 4 can be done within the above complexities using the Euler-tour
technique together with the result of finding minimum value [21]. Step 5 can be done
in O(1) time using O(n) processors. By utilizing Cole’s parallel merge sort [7], Step
6 can be implemented in O(log n) time using O(n) processors on an EREW PRAM.
Therefore, we have the following theorem.

Theorem 5.3. Algorithm Tree 1 correctly constructs a one-vertex-extension tree
for a cograph in O(log2 n) time using O(n+m) processors on a CREW PRAM.

5.3. One-vertex-extension trees of distance-hereditary graphs. Through-
out this section, G is used to denote a distance-hereditary graph unless stated other-
wise.

Let R be an equivalence class of G with respect to a hanging hu. We call ΓR =
{Y ⊂ R| there is an equivalence class R′ with N ′(R′) = Y } the upper neighborhood
system in R and call each S ∈ ΓR, where S = N ′(R′), the upper neighborhood of R′.
By Lemma 5.1, ΓR is an arboreal family of homogeneous subsets of R. We define a
partial order ( between two different sets Yp and Yq in ΓR with Yp ( Yq ⇔ Yp ⊂ Yq.
According to the partial order ( defined on ΓR, let UR = {Yi| Yi �⊆ Yk, for all Yk ∈ ΓR
and k �= i}; that is, UR is the set of those maximal elements of ((,ΓR). We call UR
the maximal upper neighborhoods in R. For a set Y that is the upper neighborhood of
some equivalence class, we can also define ΓY and UY similarly. In what follows, the
notation R is referred to as an equivalence class or an upper neighborhood of some
equivalence class if it is not specified.

Lemma 5.4. Let UR = {Q1, Q2, . . . , Qk} and xi be an arbitrary vertex of Qi,
1 ≤ i ≤ k. The graph G[(R \ ∪ki=1Qi) ∪ {x1, x2, . . . , xk}] is a cograph.
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Proof. By the property that every induced subgraph of a P4-free graph remains
P4-free, the result holds.

Let G = (V, E) be a cograph and let Q = {Q1, Q2, . . . , Qt} be the set consisting
of homogeneous sets of G such that Qi ∩ Qj = ∅, 1 ≤ i, j ≤ t and i �= j. Also let
G′ = G[(V \(∪ti=1Qi))∪{x1, x2, . . . , xt}], where xi ∈ Qi. The following procedure can
be used to construct a one-vertex-extension tree of G by merging one-vertex-extension
trees of G′ and G[Qi]’s.
Procedure 1

S1: Construct a one-vertex-extension tree E ′ of G′. For each xi in E ′, 1 ≤ i ≤ t, let
(ci1, ci2, . . . , ciji) be the children of xi.

S2: Construct a one-vertex-extension tree Ei for each G[Qi]. Let ri be the root of Ei
and let (di1, di2, . . . , dili) be the children of ri. Rename the vertex xi in E ′ as
ri.

S3: Construct a tree EG by identifying each root ri of Ei with the vertex ri in E ′,
1 ≤ i ≤ t, such that (ci1, ci2, . . . , ciji , d

i
1, di2, . . . , dili) are the resulting children

of ri in EG.
Lemma 5.5. The tree EG constructed in Procedure 1 is a one-vertex-extension

tree of a cograph G.
Proof. We show the lemma by induction on |Q| = t. The base case of t = 0

holds clearly. Suppose now that t > 0. By the proof of Lemma 5.4, the graph
G1 = G[(V \Q1)∪{x1}] is a cograph with t−1 homogeneous sets Q2, Q3, . . . , Qt. By
the induction hypothesis, a one-vertex-extension tree EG1 can be correctly constructed
using Procedure 1. Since Q1 is a homogeneous set, NG1(x1) = (NG(y) \ Q1) for
y ∈ Q1 \ {x1}, and E(G) = E(G1) ∪ E(G[Q1]) ∪ {(z, b)| z ∈ Q1, b ∈ NG1

(x1)}. By
executing S2 of Procedure 1, a one-vertex-extension tree E1 of Q1 can be obtained.
By S3 of Procedure 1 and the definition of the one-vertex-extension tree, the graph
corresponding to EG is obtained by connectingG[Q1] andG1 through edges {(z, b)| z ∈
Q1, b ∈ NG1

(x1)}. Hence, EG is a one-vertex-extension tree of G.
For ordered k children (vi1 , vi2 , . . . , vik) of a node vi in EG, recall that EG(vij , vi)

is the subtree of EG induced by vi, vij , vij+1 , . . . , vik and all descendants of vij , vij+1 ,
. . . , vik .

Definition 5.6. Let R be an equivalence class with respect to a hanging. A
one-vertex-extension tree EG[R] is canonical if for each Q ∈ ΓR there exist a vertex
vi ∈ Q and one of its children vji such that EG[R](vji , vi) is a one-vertex-extension
tree of G[Q].

Given R and ΓR, the following procedure can be used to construct a canonical
one-vertex-extension tree of G[R].
Procedure 2

S1: Let ΓR ∪ {R} = {Y1, Y2, . . . , Yt}, and let UYi
= {Yi1 , Yi2 , . . . , Yili}, where Y1 = R

and 2 ≤ ij ≤ t for 1 ≤ j ≤ li. For each Yi ∈ ΓR and |Yi| > 1, select a
shrinking vertex yi ∈ Yi.

S2: Let Yi
′ = (Yi \ ∪lij=1Yij ) ∪ {yi1 , yi2 , . . . , yili}. Construct a one-vertex-extension

trees EG[Yi
′]’s, 1 ≤ i ≤ t, using Algorithm Tree 1.

S3: For each 1 ≤ i ≤ t, merge trees EG[Yi
′] and EG[Yi1

′], EG[Yi2
′], . . . , EG[Yili

′] using

Procedure 1.
Lemma 5.7. The tree constructed using Procedure 2 is a canonical one-vertex-

extension tree for G[Y1] = G[R].
Proof. The proof is by induction on |ΓY1 |. The base case of ΓY1 = ∅ trivially

holds. Now we consider |ΓY1 | > 0. By the induction hypothesis, the canonical one-
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Fig. 5.4. An example of constructing a canonical one-vertex-extension tree using Procedure 2.
The dotted lines shown in (b) represent identifying operations.

vertex-extension trees EG[Y1j
] of G[Y1j

], 1 ≤ j ≤ l1, can be correctly constructed

using Procedure 2. By Lemma 5.1(4), Y1j is a homogeneous set of G[Y1]. By the
definition of UY1 , Y1p ∩ Y1q = ∅, 1 ≤ p, q ≤ l1, and p �= q. The operations used to
merge EG[Y1

′] and EG[Y1j
]’s are based on Procedure 1. Hence, the resulting tree is a

one-vertex-extension tree of G[Y1]. Moreover, the canonical property holds from the
construction.

Figure 5.4 shows an example of generating a canonical one-vertex-extension tree
using Procedure 2. Consider Y1 = R = {a, b, c, d, e, f, g}, Y2 = {b, c, d}, Y3 = {c, d}, Y4

= {e, f, g}, and Y5 = {e, f} (see Figure 5.4(a)). Note that UY1 = {Y2, Y4},UY2 = {Y3},
and UY4 = {Y5}. Let y2 = d, y3 = d, y4 = e, and y5 = e. In Figure 5.4(b), trees EG[Yi

′]
are constructed after S2. The identifying operations shown as dotted lines i1–i4 are
then executed in S3. Note that i1 and i2 are executed after the labels of d in EG[Y1

′]
and d in EG[Y2

′] have been changed to b and c, respectively. Also note that the resulting
tree can be constructed correctly despite the operations i3 and i4 involving the vertex
which is the root of EG[Y4

′] and also the shrinking vertex of Y5. Figure 5.4(c) shows
the tree produced after executing Procedure 2.
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We now present an algorithm to construct a one-vertex-extension tree of a distance-
hereditary graph.
Algorithm Tree 2
Input: A distance-hereditary graph G.
Output: A one-vertex-extension tree EG.
Step 1: Build a hanging hu and compute the equivalence classes with respect to hu.
Step 2: For each equivalence class R, compute ΓR.
Step 3: For each equivalence class R, generate a canonical one-vertex-extension tree

EG[R] using Procedure 2.
Step 4: For each equivalence class R, let R′ be the equivalence class withN ′(R) ⊆ R′.

Find the subtree EG[N ′(R)] in EG[R′], which is a one-vertex-extension tree of
G[N ′(R)]. Let root(EG[N ′(R)]) be the root of EG[N ′(R)] and let (c1, c2, . . . , clN′(R)

)

be the children of root(EG[N ′(R)]) in EG[R′]. Construct EG as follows. Let the
root of EG[R] be a new child of root(EG[N ′(R)]) which is located between ciR
and ciR+1 for some 1 ≤ iR ≤ lN ′(R)−1 such that EG[R′](ciR+1, root(EG[N ′(R)]))
equals EG[N ′(R)]. The edge (root(EG[R]), root(EG[N ′(R)])) is labelled with “P.”

Figure 5.5 shows the construction of a one-vertex-extension tree of the graph
shown in Figure 5.1. The nine canonical one-vertex-extension trees EG[Ri]’s for 0 ≤
i ≤ 8 are generated in Step 3. The dotted lines represent those operations executed
in Step 4.

Recall that shrinking each equivalence class with respect to the given hanging
hu forms a tree (see Lemma 5.1(2)). We use Thu to denote such a tree. For each
equivalence class R, let νR be the node representing R in Thu . Let ψ(R) = {Q| νQ ∈
V (Thu(νR))} and let ψ′(R) =

⋃
X∈ψ(R) X.

Lemma 5.8. Algorithm Tree 2 correctly constructs a one-vertex-extension tree of
G[ψ′(R)].

Proof. The proof is by induction on |ψ(R)|. The base case of ψ(R) = {R} triv-
ially holds. Suppose now that |ψ(R)| = t > 1. Let R1, R2, . . . , Rr be the equivalence
classes with N ′(Ri) ⊆ R. After Step 3, a canonical one-vertex-extension tree EG[R]

can be constructed. Note that |ψ(Ri)| < t for all 1 ≤ i ≤ r. By the induction hy-
pothesis, the one-vertex-extension trees EG[ψ′(Ri)]’s can be correctly constructed using
Algorithm Tree 2. After Step 4, the graph corresponding to EG[ψ′(R)] can be obtained
from G[R] (corresponding to EG[R]) and G[ψ′(Ri)] (corresponding to EG[ψ′(Ri)]), 1 ≤
i ≤ r, by making Ri and N ′(Ri) form a join. According to the structure character-
ization described in Lemma 5.1, the resulting tree is a one-vertex-extension tree of
G[ψ′(R)].

By Lemma 5.8, Algorithm Tree 2 correctly constructs a one-vertex-extension tree
of G[ψ′({u})] = G, where u is the root of the given hanging.

We now analyze the time-processor complexity. Step 1 and Step 2 can be imple-
mented to run in O(log2 n) time using O(n+m) processors on a CREW PRAM [19].

To implement Step 3, we need to implement Steps (S1)–(S3) of Procedure 2.
In (S1), given ΓR ∪ {R} = {Y1, Y2, . . . , Yt}, we find UYi in O(log |R|) time using
O(
∑t
i=1 |Yi|) processors on an EREW PRAM [19]. Clearly, selecting a shrinking ver-

tex can be done in O(1) time using O(t) processors. Thus (S1) can be implemented in
O(log |R|) time using O(

∑t
i=1 |Yi|) processors on an EREW PRAM. The complexities

of (S2) are bounded by constructing EG[Yi
′], 1 ≤ i ≤ t. By Theorem 5.3, this step

can be implemented in O(log2 |R|) time using O(E(G[R])) processors on a CREW
PRAM. After executing this step, we assume that the children of each node in a given
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Fig. 5.5. An example of executing Algorithm Tree 2.

tree are manipulated using an ordered list. In (S3), we merge desired trees based on
the identifying operations in Procedure 1. Those operations can be implemented in
O(log t) time using O(t) processors on a CREW PRAM. By utilizing the list-ranking
technique and the prefix-sum technique [21], we maintain the children of each node in
the resulting tree through merging lists. Therefore, Step 3 can be implemented within
O(log2 n) time using O(n+m) processors on a CREW PRAM. Similarly, Step 4 can
be implemented with the desired complexities. Then, we have the following theorem.

Theorem 5.9. Algorithm Tree 2 correctly constructs a one-vertex-extension tree
of a distance-hereditary graph in O(log2 n) time using O(n+m) processors on a CREW
PRAM.

5.4. Decomposition trees of distance-hereditary graphs. Throughout this
section, we assume that each vertex of G is represented by its corresponding one-
vertex-extension order. By Lemma 2.3, the following recursive method can be used
to transform a one-vertex-extension tree into a decomposition tree. Let E be a given
one-vertex-extension tree whose root and leftmost child are x and y, respectively. If
(y, x) is labelled with T , then we create a ⊗-node as the root of a decomposition
tree DG[V (E(x))]. If (y, x) is labelled with P , then we create a ⊕-node as the root of
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Fig. 5.6. An example of executing Algorithm Tree 3. The tree shown in the left is an input and
that shown in the right is its corresponding output.

DG[V (E(x))]. Otherwise, we create a �-node as the root of DG[V (E(x))]. After recur-
sively constructing DG[V (E(y))] and DG[V (E(x))\V (E(y))]), we let the roots of DG[V (E(y))]
and DG[V (E(x))\V (E(y))] be the left child and the right child of the created node for
(y, x), respectively. The above method can be implemented using the following non-
recursive algorithm.
Algorithm Tree 3
Input: A one-vertex-extension tree EG.
Output: A decomposition tree DG.

Step 1: For each vertex v in EG, let num(v) be the one-vertex-extension order asso-
ciated with v. For each edge e = (v, par(v)) in EG, let num(e) = num(v).

Step 2: For each edge e in EG, create an internal node νe (⊗ or ⊕ or �) for DG
depending on the label of e.

Step 3: For each node νe, where e = (v, par(v)), execute the following operations:
(a) If par(v) contains no child w in V (EG) such that num((w, par(v))) >
num(e), create a node representing par(v) to be the right child of νe. Other-
wise, find the edge e′ next to e. Let the node created for e′ be the right child
of νe.
(b) If v is a leaf in V (EG), create a node representing v to be the left child of νe.
Otherwise, find the edge e′ = (z, v) such that num(z) = min{num(x)| x ∈
child(v)}. Let the node created for e′ be the left child of νe.

Figure 5.6 shows a one-vertex-extension tree with its corresponding decomposition
tree. The nodes να, νβ , νγ , νω are created in Step 2 of Algorithm Tree 3. The left child
and the right child of each node νe, where e is an edge in {α, β, γ, ω}, are determined
in Step 3 of Algorithm Tree 3.
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The correctness follows from the statements preceding the algorithm. Based on
the data structure maintained in Algorithm Tree 2 and the Euler-tour technique [21],
we have the following result.

Theorem 5.10. Algorithm Tree 3 correctly transforms a one-vertex-extension
tree into a decomposition tree in O(log n) time using O(n/ log n) processors on an
EREW PRAM.

6. Discussion and conclusion. In this paper, we first define the (r, k,Θ)-
subgraph generating problem on trees. We solve this problem in O((rk + k2)n)
sequential time, and in O(k2(r + k) log n) time using O(n/ log n) processors on an
EREW PRAM, where n is the number of nodes of the given tree. We then develop
a general problem-solving paradigm used to reduce a class of subgraph optimization
problems on distance-hereditary graphs to its corresponding (r, k,Θ)-subgraph gen-
erating problems. Using this paradigm, we define a class of (r, k,Θ)-regular prob-
lems on distance-hereditary graphs. Let Td(|V |, |E|) and Pd(|V |, |E|) denote the
time complexity and processor complexity required to construct a decomposition
tree of a distance-hereditary graph G = (V, E) on a PRAM model Md. We show
that an (r, k,Θ)-regular problem on a distance-hereditary graph G = (V, E) can be
solved in sequential O((rk + k2)n +m) time, and in O(Td(n, m) + logn) time using
O(Pd(n, m) + n/ log n) processors on Md. We also show that Td(n, m) = O(log2 n),
Pd(n, m) = O(n+m) under a CREW PRAM.

Several fundamental graph problems are shown to be (r, k,Θ)-regular, includ-
ing the maximum clique problem, the maximum independent set problem, the vertex
connectivity problem, the domination problem, and the independent domination prob-
lem. Therefore, the above problems can be solved in linear time, and in O(log2 n)
time using O(n+m) processors on a CREW PRAM. Opposed to less parallel results
on distance-hereditary graphs, our method classifies a class of problems on distance-
hereditary graphs to be in NC. We believe that more graph problems can be shown
to be in (r, k,Θ)-regular class.

We note that Golumbic and Rotics [14] showed that a distance-hereditary graph
has clique-width at most three and can be represented by a so called 3-expression.
Using this structure, it is shown that a class of problems can be solved in sequential
linear time on distance-hereditary graphs if those problems can be represented in
monadic second order logic with quantification over vertex sets only (MSOL problems
for short) [9]. Note that Bodlaender and Hagerup [4] developed a general parallel
algorithm to solve several subgraph optimization problems on special classes of graphs
with bounded tree-width. However, the tree-width of distance-hereditary graphs is
not bounded. It is hopeful and certainly interesting to see if clique-width can be used
similarly to solve subgraph optimization problems in parallel. However, to the best
of our knowledge, no such result exists.

In [24], Miller and Teng presented a systemic method for the design of efficient
parallel algorithms for the dynamic evaluation of computation trees and/or expres-
sions. Their method involves the use of uniform closure properties of certain classes
of unary functions. In this paper, we extend their work by considering k-ary func-
tions. Let D be the power set of some given set and let Min (respectively, Max) be
the operator defined on a subset of D that returns a set with the minimum (respec-
tively, maximum) cardinality. We show that a class algebraic computation tree over
{D,Min,Max,∪} can be optimally evaluated using a class of k-ary functions which
is closed under the composition.
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Abstract. The problem of monitoring an electric power system by placing as few measurement
devices in the system as possible is closely related to the well-known vertex covering and dominating
set problems in graphs. We consider the graph theoretical representation of this problem as a
variation of the dominating set problem and define a set S to be a power dominating set of a graph
if every vertex and every edge in the system is monitored by the set S (following a set of rules for
power system monitoring). The minimum cardinality of a power dominating set of a graph G is
the power domination number γP (G). We show that the power dominating set (PDS) problem is
NP-complete even when restricted to bipartite graphs or chordal graphs. On the other hand, we
give a linear algorithm to solve the PDS for trees. In addition, we investigate theoretical properties
of γP (T ) in trees T .

Key words. domination, power domination, electric power monitoring

AMS subject classification. 05C69
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1. Introduction. Electric power companies need to continually monitor their
system’s state as defined by a set of state variables (for example, the voltage magnitude
at loads and the machine phase angle at generators [6]). One method of monitoring
these variables is to place phase measurement units (PMUs) at selected locations in the
system. Because of the high cost of a PMU, it is desirable to minimize their number
while maintaining the ability to monitor (observe) the entire system. A system is said
to be observed if all of the state variables of the system can be determined from a set
of measurements (e.g., voltages and currents).

Let G = (V,E) be a graph representing an electric power system, where a vertex
represents an electrical node (a substation bus where transmission lines, loads, and
generators are connected) and an edge represents a transmission line joining two
electrical nodes. The problem of locating a smallest set of PMUs to monitor the
entire system is a graph theory problem closely related to the well-known vertex
covering and domination problems. Hence, this problem is not only of interest in the
power system industry but also as a new problem in graph theory. For a thorough
study of domination and related subset problems as well as terminology not defined
here, we refer the reader to two books [4, 5].

A PMU measures the state variable (voltage and phase angle) for the vertex at
which it is placed and its incident edges and their endvertices. (These vertices and
edges are said to be observed.) The other observation rules are as follows:
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1. Any vertex that is incident to an observed edge is observed.
2. Any edge joining two observed vertices is observed.
3. If a vertex is incident to a total of k > 1 edges and if k− 1 of these edges are

observed, then all k of these edges are observed.

For a given set of vertices P representing the nodes where the PMUs are placed,
the following algorithm determines the sets of (observed) vertices C and edges F .

Let P ⊆ V be the set of vertices where the PMUs are placed.

1. Initialize C = P and F = {e ∈ E(G) | e is incident to a vertex in P}.
2. Add to C any vertex not already in C which is incident to an edge in F .
3. Add to F any edge not already in F such that

a. both of its endvertices are in C or
b. it is incident to a vertex v of degree greater than one for which all the

other edges incident to v are in F .
4. If steps 2 and 3 fail to locate any new edges or vertices for inclusion, stop.

Otherwise, go to step 2.

Therefore, to solve the power system monitoring problem, we want C = V (G) and
F = E(G), and we want to minimize |P |. This monitoring problem was introduced
and studied in [1, 2, 3, 6].

A set S ∈ V (G) is a dominating set in a graph G = (V,E) if every vertex
in V − S has at least one neighbor in S. The cardinality of a minimum dominating
set of G is the domination number γ(G). Considering the power system monitoring
problem as a variation of the dominating set problem, we define a set S to be a power
dominating set (PDS) if every vertex and every edge in G is observed by S. The
power domination number γP (G) is the minimum cardinality of a power dominating
set of G. A dominating set (respectively, power dominating set) of G with minimum
cardinality is called a γ(G)-set (respectively, γP (G)-set).

Since any dominating set is a PDS, we have the following observation.

Observation 1. For any graph G, 1 ≤ γP (G) ≤ γ(G).

Obviously, any graph G with γ(G) = 1 demonstrates sharpness of both the upper
and lower bounds. Our next observation gives examples of graphs having a power
domination number equal to 1.

Observation 2. For the graph G, where G ∈ {Kn, Cn, Pn,K2,n}, γP (G) = 1.

The corona of two graphs G and H, denoted G ◦ H, is the graph formed from
one copy of G and |V (G)| copies of H where the ith vertex of G is adjacent to
every vertex in the ith copy of H. For another example, the corona G = Pk ◦K2 has
γP (G) = γ(G) = k. On the other hand, the difference γ(G)−γP (G) can be arbitrarily
large. For instance, the corona of a star T = K1,k ◦K1 has γp(T ) = 1 < k+ 1 = γ(T )
for k ≥ 1.

We note that every graph H is the induced subgraph of a graph G having
γP (G) = γ(G). Consider, for example, the coronaG = (H◦K2), where γP (G) = γ(G).
Hence, we have the following observation.

Observation 3. There is no forbidden subgraph characterization of the graphs G
for which γP (G) = γ(G).

Suppose that G is a graph with maximum degree at least 3 and that S is a
γP (G)-set that contains a vertex v of degree less than 3. Let u be a vertex of degree
at least 3 at minimum distance from v in G. Then, (S−{v})∪{u} is also a minimum
power dominating set of G. Hence, our next observation follows immediately.

Observation 4. If G is a graph with maximum degree at least 3, then G contains
a γP (G)-set in which every vertex has degree at least 3.
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❡ ❡❡ ❡✉ ✉

❡ ❡ ❡ ❡

u v w x

T :

Fig. 1. A tree T with γP (T ) = 2.

We note, however, that the vertices of small degree play a significant role in deter-
mining the power domination number of a graph. In particular, it is not necessarily
true that if G′ is the graph obtained from a graph G by subdividing one edge of G,
then γP (G′) = γP (G).

For example, if T is the tree shown in Figure 1 and if T ′ is the tree obtained from T
by subdividing the edge vw once, then γP (T ′) > γP (T ) and {u, x} is a γP (T )-set,
while {u, v, x} is a γP (T ′)-set.

Boisen, Baldwin, and Mili [2] investigated approximation algorithms to find a
solution to the power system monitoring problem. In this paper, we show that the
PDS problem is NP-complete even when restricted to bipartite or chordal graphs, give
a linear time algorithm to find a PDS in trees, and study theoretical properties of the
power domination number in trees.

2. NP-completeness. In this section we show that the following decision prob-
lem is NP-complete even when restricted to bipartite or chordal graphs.

POWER DOMINATING SET (PDS)
INSTANCE: A graph G = (V,E) and a positive integer k > 1.
QUESTION: Does G have a PDS of size at most k?

A relatively simple modification of the standard proof of NP-completeness of
DOMINATING SET, given in [4], suffices to establish the NP-completeness of the
PDS even when restricted to bipartite graphs.

Theorem 5. POWER DOMINATING SET is NP-complete for bipartite graphs.
Proof. We first show that PDS ∈ NP. This is easy to do since one can verify

a “yes” instance of PDS in polynomial time. That is, for a graph G = (V,E), a
positive integer k, and an arbitrary subset S ⊆ V with |S| ≤ k, it is easy to verify in
polynomial time whether S is a PDS.

We next construct a reduction from the well-known NP-complete problem 3-SAT.
3-SAT
INSTANCE: A set U = {u1, u2, . . . , un} of variables and a set C =
{C1, C2, . . . , Cm} of 3-element sets, called clauses, where each clause
Ci contains three distinct occurrences of either a variable ui or its
complement ui.
QUESTION: Does C have a satisfying truth assignment, i.e., an as-
signment of TRUE and FALSE to the variables in U such that at least
one variable (or its complement) in each clause Ci ∈ C is assigned
the value TRUE?

Given an instance C of 3-SAT, we construct an instance G(C) of the PDS as
follows. For each variable ui, construct a cycle on four vertices C4, where two non-
adjacent vertices are labelled ui and ui. These cycles and vertices are called vari-
able cycles and variable vertices, respectively. For each clause Cj = {ui, uk, ul} cre-
ate two nonadjacent vertices labelled Cj,1 and Cj,2 (called clause vertices), and add
edges: (ui, Cj,1), (ui, Cj,2), (uk, Cj,1), (uk, Cj,2), (ul, Cj,1), (ul, Cj,2). (For an example,
see Figure 2.) By construction, the graph G(C) is bipartite.
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Fig. 2. An instance of 3-SAT where U = {u1, u2, u3, u4, u5} and C = {{u1, u2, u3},
{u1, u4, u5}, {u2, u3, u4}, {u3, u4, u5}}.

We show that C has a satisfying truth assignment if and only if the graph G(C)
has a PDS of size at most k = n.

Suppose first that C has a satisfying truth assignment. We create a PDS S in G(C)
as follows: If variable ui is assigned the value TRUE, then put variable vertex ui in S;
otherwise, put variable vertex ui in S. The set S is a PDS for two reasons: (i) One
variable vertex in each variable cycle C4 belongs to S and therefore both vertices of
degree 2 in the variable cycle are dominated. Thus, every edge and vertex in each
variable cycle C4 is observed. (ii) Since the set S corresponds to a truth assignment
for C, every clause vertex Cj is dominated by at least one vertex in S. Therefore, all
edges between a variable vertex and a clause vertex, Cj,1 or Cj,2, are observed, and
S is a PDS of size at most k = n.

Conversely, we must show that if G(C) has a PDS of size at most k = n, then
C has a satisfying truth assignment. Notice first that if S is a PDS of G(C), then it
must contain at least one vertex from each variable cycle C4. This follows from the
observation that no set of clause vertices can suffice to dominate or observe all four
vertices of a variable cycle. Therefore, |S| ≥ n, i.e., |S| = n.

Notice next that a set S, all of whose vertices lie in the variable cycles (in fact,
one from each C4), can be a PDS if and only if every clause vertex is dominated by
at least one vertex in S. Although it is true that vertices in the variable cycles, which
are not variable vertices, can dominate both of their corresponding variable vertices,
it is not possible for these dominated variable vertices to subsequently observe any
clause vertex, since there are two (unobserved) edges from any given variable vertex
to clause vertices Cj,1 and Cj,2.

A similar transformation using the graph in Figure 3 with additional edges such
that the variable vertices induce a complete subgraph yields the result for chordal
graphs, which we state without proof.

Theorem 6. POWER DOMINATING SET is NP-complete for chordal graphs.

3. Trees. In this section, we investigate the power domination number of a tree.
For this purpose, we shall need the following notation. For any vertex v ∈ V , the
open neighborhood of v, denoted by N(v), is the set {u ∈ V | uv ∈ E} and its closed
neighborhood N [v] = N(v) ∪ {v}. For a set S ⊆ V , its open neighborhood N(S) =
∪v∈SN(v) and its closed neighborhood N [S] = N(S) ∪ S. The private neighbor set of
a vertex v with respect to a set S, denoted pn[v, S], is the set N [v] −N [S − {v}]. If
pn[v, S] �= ∅ for some vertex v and some S ⊆ V , then every vertex of pn[v, S] is called



POWER DOMINATION 523

� � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

❅
❅

❅

�
�

�
�

��

✦✦✦✦✦✦✦✦✦✦✦✦✦✦

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

✟✟✟✟✟✟✟✟✟✟✟

❆
❆

❆
❆

❆❆

✟✟✟✟✟✟✟✟✟✟✟

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

❅
❅

❅
❅

❅❅

✑
✑

✑
✑

✑
✑

✑✑

✦✦✦✦✦✦✦✦✦✦✦✦✦✦

❆
❆

❆
❆

❆❆

�
�

�
�

��

❅
❅

❅
❅

❅❅

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

�
�

�
�

��

❅
❅

❅
❅

❅❅

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

u1 u1 u2 u2 u3 u3 u4 u4 u5 u5

C1,1 C1,2 C2,1 C2,2 C3,1 C3,2 C4,1 C4,2

Fig. 3. Instance of 3-SAT where U = {u1, u2, u3, u4, u5} and C = {{u1, u2, u3},
{u1, u4, u5}, {u2, u3, u4}, {u3, u4, u5}}.

a private neighbor of v with respect to S, or just an S-pn.

If T is a tree rooted at r and v is a vertex of T , then the level number of v, which
we denote by �(v), is the length of the unique r-v path in T . If a vertex v of T is
adjacent to u and �(u) > �(v), then u is called a child of v, and v is the parent of u,
written v = parent(u). A vertex w is a descendant of v (and v is an ancestor of w)
if the level numbers of the vertices on the v-w path are monotonically increasing. We
let D(v) denote the set of descendants of v, and we define D[v] = D(v) ∪ {v}. The
maximal subtree of T rooted at v is the subtree of T induced by D[v] and is denoted
by Tv. We will refer to an endvertex of T as a leaf. A vertex adjacent to a leaf is
called a support vertex, and a vertex adjacent to two or more leaves is called a strong
support vertex.

Let T be the tree formed from a star by subdividing any number of its edges any
number of times; that is, T has at most one vertex of degree 3 or more. We call such
a tree T a spider. A path, for example, is a special case of a spider.

Theorem 7. For any tree T , γP (T ) = 1 if and only if T is a spider.

Proof. Suppose T is a spider. If T is a path, then any vertex of T forms a PDS
in T . On the other hand, if T is not a path, then the vertex of maximum degree in T
forms a PDS in T . In any event, γP (T ) = 1. This proves the sufficiency.

To prove the necessity, suppose that T is not a spider. Then T contains at least
two vertices, say u and v, of degree at least 3. We may assume that T is rooted
at v. Let S be any PDS of T . If |S| = 1, then, renaming u and v if necessary,
we may assume that no vertex in the maximal subtree Tu rooted at u belongs to S.
However then no edge in Tu is observed, a contradiction. Therefore, |S| ≥ 2. Hence,
γP (T ) ≥ 2.

Next we characterize those trees T with equal domination and power domination
numbers. We will use the following observation.

Observation 8. If v is a strong support vertex in a graph G, then v is in every
γ(G)-set and every γP (G)-set.

For a set S and a vertex v ∈ S, let Av denote the set V − (S ∪ pn[v, S]).

Theorem 9. For any tree T of order at least 3, γP (T ) = γ(T ) if and only if T
has a unique γ(T )-set S and every vertex in S is a strong support vertex.

Proof. Since 1 ≤ γp(T ) ≤ γ(T ), obviously the theorem holds if γ(T ) = 1. Thus
assume that γ(T ) ≥ 2. Let T be a tree with a unique γ(T )-set S, where every vertex
in S is a strong support vertex. Then Observation 8 implies that S is also a unique
γP (T )-set. Hence, γP (T ) = γ(T ).
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For the necessity, assume that γP (T ) = γ(T ). Suppose to the contrary that v ∈ S
for some γ(T )-set S and that v is not a strong support vertex.

Assume that pn[v, S] = {v}. Then every neighbor of v is dominated by S − {v}
and v is an isolate in the induced subgraph 〈S〉. Furthermore, all vertices and edges
in T − v are observed by S − {v}. Since T is a nontrivial tree, v has at least one
neighbor, say u, in V − S. Moreover, every edge incident to u in T − v is observed
by S−{v} implying that, in T , uv is observed by S−{v} for all u ∈ N(v). Then v is
also observed by S − {v}, and so S − {v} is a PDS for T , contradicting the fact that
γP (T ) = γ(T ). Hence, |pn[v, S]− {v}| ≥ 1.

Suppose there is no endvertex in pn[v, S]. Then each vertex in pn[v, S] − {v}
has a neighbor in Av. Moreover, since T is tree, |N [u] ∩ (pn[v, S] ∪ {v})| ≤ 1 for
all u ∈ V − S. Since S − {v} dominates Av, it follows that all the vertices and edges
of 〈Av〉 are observed by S − {v}. Furthermore, in T each edge between a vertex
in pn[v, S]∪{v} and a vertex in Av is incident to a vertex where all its other incident
edges are observed. Thus, every edge between pn[v, S] ∪ {v} and Av is observed
by S−{v} implying that pn[v, S]−{v} is observed by S−{v}. Now, for each edge uv
where u ∈ pn[v, S], all other edges incident to u are observed by S−{v}, and so uv is
also observed. Any other edge incident to v must be incident to a vertex in S−{v} and
hence is observed. Thus, v is also observed and S−{v} is a PDS of T with cardinality
less than γP (T ), again a contradiction. Hence, pn[v, S] contains an endvertex, say u
(adjacent to v).

By our assumption that no vertex is a strong support vertex, every vertex in
pn[v, S] − {u} has a neighbor in Av and is observed by S − {v} as before. Using
the same argument as before, we can show that the vertices V − {u} and every edge
except uv is observed by S − {v}, so uv is also observed. Hence, u is observed and
again we have a PDS with cardinality less than γP (T ), a contradiction. We conclude
that every vertex in S is a strong support vertex and S is a unique dominating set
of T as claimed.

Before proceeding further, we define the spider number of a tree T , denoted
by sp(T ), to be the minimum number of subsets into which V (T ) can be partitioned
so that each subset induces a spider. We call such a partition a spider partition and
each set of the partition a spider subset.

Lemma 10. For any tree T , sp(T ) ≤ γP (T ).

Proof. We proceed by induction on m = γP (T ). Suppose m = 1. Then, by
Theorem 7, T is a spider, and so sp(T ) = 1. Suppose, then, that all trees T ′

with γP (T ′) = m, where m ≥ 1, satisfy sp(T ′) ≤ γP (T ′). Let T be a tree with
γP (T ) = m + 1. Let S = {v1, v2, . . . , vm+1} be a γP (T )-set. By Observation 4, we
may assume that each vertex of S has degree at least 3 in T .

Let T be rooted at the vertex vm+1. Relabeling if necessary, we may assume that
v1 is the vertex of S at maximum distance from vm+1 in T . Then v1 has at least two
children, and each descendant of v1 has degree at most 2 in T . Let u1 be the ancestor
of v1 of degree at least 3 that is at a minimum distance from v1. Then either u1 is
the parent of v1 or every internal vertex on the u1-v1 path has degree 2 in T . We
consider two possibilities, depending on whether u1 ∈ S.

Case 1. u1 ∈ S.

Let w1 be the child of u1 on the u1-v1 path (possibly, w1 = v1), and let T1 be the
maximal subtree rooted at w1. Then, T1 is a spider with v1 as the vertex of degree
exceeding 2. Let T2 be the component of T−u1w1 containing u1, i.e., T2 = T−D[w1].
Then, S−{v1} is a PDS of T2, while {v1} is a PDS of T1. In particular, this implies that
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γP (T2) ≤ m and that T1 is a spider. If γP (T2) < m, then adding {v1} to a γP (T2)-set
produces a PDS of T of cardinality less than m + 1 = γP (T ), which is impossible.
Hence, γP (T2) ≥ m. Consequently, γP (T2) = m. Applying the inductive hypothesis
to T2, sp(T2) ≤ γP (T2) = m. Adding the subset V (T1) to a partition of V (T2) into
sp(T2) spider subsets produces a partition of V (T ) into sp(T2) + 1 ≤ m+ 1 = γP (T )
spider subsets. Thus, sp(T ) ≤ γP (T ).

Case 2. u1 /∈ S.

Let w1, w2, . . . , wk be the children of u1, where w1 is the child on u1 on the u1-v1
path (possibly, v1 = w1). For i = 1, 2, . . . , k, let Wi = D[wi]. In particular, v1 ∈ W1.
Since u1 /∈ S and since S is a PDS of T , all except possibly one of the sets W2, . . . ,Wk

contains a vertex of S.

Suppose one of the sets W2, . . . ,Wk contains no vertex of S. We may assume
that W2 ∩ S = ∅. Necessarily, W2 induces a path (possibly trivial). If k ≥ 3, then
|Wi ∩ S| ≥ 1 for i = 3, . . . , k. Let T1 be the tree induced by W1 ∪W2 ∪ {u1}. Then,
T1 is a spider with v1 as the vertex of degree exceeding 2. Let T2 = T − D[u1]. If
k ≥ 3, let Ti be the maximal subtree rooted at wi for i = 3, . . . , k. For i = 1, 2, . . . , k,
let Si = S ∩ V (Ti). Note that S1 = {v1}. Let i ∈ {1, 2, . . . , k}. Then, Si is a
PDS of Ti. In particular, this implies that γP (Ti) ≤ |Si|. If γP (Ti) < |Si|, then
adding S − Si to a γP (Ti)-set produces a PDS of T of cardinality less than m+ 1 =
γP (T ), which is impossible. Hence, γP (Ti) ≥ |Si|. Consequently, γP (Ti) = |Si| ≤ m.
Applying the inductive hypothesis to Ti, sp(Ti) ≤ γP (Ti) = |Si|. Hence, there exists
a spider partition of V (Ti) of cardinality sp(Ti). Thus, V (T ) can be partitioned
into sp(T1) + sp(T2) + · · · + sp(Tk) ≤ |S1| + |S2| + · · · + |Sk| = |S| = γP (T ) spider
subsets. Thus, sp(T ) ≤ γP (T ).

Suppose, on the other hand, that each of the sets W2, . . . ,Wk contains a vertex
of S. Then, |Wi ∩S| ≥ 1 for i = 1, 2, . . . , k. Let T1 be the tree induced by W1 ∪{u1}.
Then, T1 is a spider with v1 as the vertex of degree exceeding 2. For i = 2, . . . , k, let Ti
be the maximal subtree rooted at wi. Let Tk+1 = T −D[u1]. For i = 1, 2, . . . , k + 1,
let Si = S ∩ V (Ti). Then, proceeding as in the previous paragraph, each Si is a
γP (Ti)-set and, applying the inductive hypothesis to Ti, V (T ) can be partitioned
into sp(T1) + sp(T2) + · · ·+ sp(Tk+1) ≤ |S1|+ |S2|+ · · ·+ |Sk+1| = |S| = γP (T ) spider
subsets. Thus, once again, sp(T ) ≤ γP (T ).

Lemma 11. For any tree T , γP (T ) ≤ sp(T ).

Proof. We proceed by induction on m = sp(T ). Suppose m = 1. Then T
is a spider, and so, by Theorem 7, γP (T ) = 1 = sp(T ). Suppose, then, that all
trees T ′ with sp(T ′) = m, where m ≥ 1, satisfy γP (T ′) ≤ sp(T ′). Let T be a
tree with sp(T ) = m + 1. Let {V1, V2, . . . , Vm+1} be a spider partition of V (T ).
For i = 1, 2, . . . ,m+ 1, let Ti be the tree induced by Vi; that is, Ti = 〈Vi〉.

Let G be the graph with vertex set {V1, V2, . . . , Vm+1} where two vertices Vi
and Vj are adjacent in G if and only if there is an edge of T joining a vertex of Vi
and a vertex of Vj . Since T is a tree, so too is G. Without loss of generality, we may
assume that V1 is an endvertex of G and that V1 and V2 are adjacent in G. Hence,
there exist vertices u1 and u2 in V1 and V2, respectively, such that u1u2 is an edge
of T , and this is the only edge joining a vertex of V1 and a vertex of V (T )− V1. Let
T ′ = T − V1; that is, T ′ is obtained from T by deleting the vertices in the subset V1.
If sp(T ′) < m, then we can add the subset V1 to a minimum spider partition of V (T ′)
to produce a spider partition of V (T ) of cardinality sp(T ′) + 1 < m + 1 = sp(T ),
which is impossible. Hence, sp(T ′) ≥ m. Since {V2, . . . , Vm+1} is a spider partition
of V (T ′), sp(T ′) ≤ m. Consequently, sp(T ′) = m. Applying the inductive hypothesis
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to T ′, γP (T ′) = m.
Let S′ be a γP (T ′)-set. Thus all vertices and edges of T ′ are observed by S′. Let

v1 be a vertex of maximum degree in the spider T1. Let S = S′ ∪ {v1}. Then the
vertex u1 is observed from the vertex v1, while the vertex u2 is observed from a vertex
of S′. Thus the edge u1u2 is observed from S. It follows that S is a PDS of T , and
so γP (T ) ≤ m+ 1 = sp(T ).

As an immediate consequence of Lemmas 10 and 11, we have the following result
which states that the power domination number of a tree is precisely the spider number
of the tree.

Theorem 12. For any tree T , γP (T ) = sp(T ).
As a consequence of Theorem 12, we can determine a lower bound on the power

domination of a tree in terms of the number of vertices of degree at least 3.
Theorem 13. If T is a tree having k vertices of degree at least 3, then

γP (T ) ≥ k + 2

3
,

and this bound is sharp.
Proof. Suppose γP (T ) = m. Then, by Theorem 12, sp(T ) = m. Let {V1, V2, . . . ,

Vm} be a spider partition of V (T ). For i = 1, 2, . . . ,m, let Ti be the tree induced
by Vi; that is, Ti = 〈Vi〉. Since each Ti is a spider, there is at most one vertex of
degree at least 3 in Ti.

Let G be the graph with vertex set {V1, V2, . . . , Vm} as defined in the proof of
Theorem 12. Then G is a tree with m−1 edges. Each vertex of T that is not incident
with any of these m− 1 edges of G and that is not a vertex of degree at least 3 in the
spider Ti to which it belongs has degree at most 2 in T . It follows that T contains
at most m+ 2(m− 1) = 3m− 2 vertices of degree at least 3. Thus, k ≤ 3m− 2, or,
equivalently, γP (T ) = m ≥ (k + 2)/3.

That this bound is sharp may be seen as follows. Let T be the corona of a path on
3n vertices; that is, T = P3n◦K1. (The corona of a path is also called a comb.) Let the
path be denoted by v1, v2, . . . , v3n. Then, ∪ni=1{v3i−1} is a PDS of G of cardinality n,
and so γP (T ) ≤ n. However, since T has k = 3n− 2 vertices of degree at least 3 in T ,
it follows that γP (T ) ≥ (k + 2)/3 = n. Consequently, γP (T ) = (k + 2)/3 = n.

We show next that the power domination of a tree is at most a third of the order
of the tree.

Theorem 14. For any tree T of order n ≥ 3, γP (T ) ≤ n/3 with equality if and
only if T is the corona T ′ ◦K2, where T

′ is any tree.
Proof. We proceed by induction on the number m of vertices of degree at least 3

in a tree T of order n ≥ 3. If m = 0 or m = 1, then T is a spider, and so, by
Theorem 7, γP (T ) = 1 ≤ n/3. Assume, then, that for all trees T ′ of order n′ ≥ 3 with
fewer than m vertices of degree at least 3, where m ≥ 2, that γP (T ′) ≤ n′/3. Let T
be a tree of order n with m vertices of degree at least 3.

We may assume that T is rooted at the vertex r. Let v be a vertex of degree at
least 3 at maximum distance from r in T . Then every descendant of v in T has degree
at most 2, and so the maximal subtree of T rooted at v is a spider. Let T ′ be the
tree of order n′ obtained from T by removing v and all its descendants. Since m ≥ 2,
n′ ≥ 3. Furthermore, since v has at least two children, n′ ≤ n − 3. By construction,
T ′ has fewer than m vertices of degree at least 3. Applying the inductive hypothesis
to T ′, there exists a PDS S′ of T ′ satisfying |S′| ≤ n′/3. Since S ∪{v} is a PDS of T ,
γP (T ) ≤ |S|+ 1 ≤ n′/3 + 1 ≤ n/3.
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Obviously, if T is the corona T ′ ◦K2, where T ′ is a tree, γP (T ) = |V (T ′)| = n/3.
Suppose that T is a tree of order n ≥ 3 satisfying γP (T ) = n/3. Among all minimum
spider partitions of T , let P = {V1, V2, . . . , Vn/3} be chosen to contain the minimum
number of sets of cardinality at most 2. For i = 1, . . . , n/3, we may assume that vi is
a vertex of maximum degree in Ti.

Suppose that |Vi| ≤ 2 for some i, 1 ≤ i ≤ n/3. Since T is a tree of order at least 3,
we may assume that vi is adjacent to a vertex u ∈ Vj for some j �= i. Note that uvi
is the only edge joining Vi and Vj . If u = vj , then Ti ∪ Tj ∪ {uvi} is a spider and
(P −{Vi, Vj})∪{Vi ∪Vj} is a spider partition with fewer than n/3 sets, contradicting
the fact that S is a minimum spider partition. If u is an endvertex in Tj , then again
Ti ∪ Tj ∪ {uvi} is a spider, and we have the same contradiction. Hence, u must be a
vertex of degree 2 in Tj . Thus vj has degree at least 3 in Tj . (For otherwise we could
choose u as the vertex of maximum degree in Tj , which produces a contradiction.)
We may assume that the tree Tj is rooted at the vertex vj and that uj is the parent
of u in Tj (possibly, uj = vj). Let T ′j be the maximal subtree of Tj rooted at u (i.e.,
T ′j consists of u and its descendants in Tj). Then, Ti ∪ T ′j ∪ {uvi} is a spider of order
at least 4, while Tj − V (T ′j) is a spider of order at least 3. Let V ′i = Vi ∪ V (T ′j),
and let V ′j = Vj − V (T ′j). Then, (P − {Vi, Vj}) ∪ {V ′i , V ′j } is a spider partition with
cardinality n/3 having fewer sets of cardinality at most 2 than P , contradicting our
choice of P . Hence, |Vi| ≥ 3 for each i, 1 ≤ i ≤ n/3. Since γP (T ) = n/3, each
set Vi therefore has cardinality exactly 3; i.e., Ti = P3 for 1 ≤ i ≤ n/3. If, in T , an
endvertex of Ti has a neighbor in a set Vj , j �= i, then Vi ∪ Vj induces a spider and
again we have a smaller spider partition, a contradiction. Hence, the n/3 − 1 edges
connecting the spider subgraphs to form T are incident to the vertices in S. It follows
that T = T ′ ◦K2, where T ′ is the tree induced by the vertices in S.

Next we present a linear algorithm for finding a minimum PDS in a nontrivial
tree T .

Algorithm 1.
Input: A tree G on n ≥ 2 vertices rooted at a vertex of maximum degree with the
vertices labeled v1, v2, . . . , vn so that �(vi) ≤ �(vj) for i > j. [Note: the root of G is
labeled vn.]
Output: A minimum PDS S of G and a partition of V (G) into |S| subsets {Vx |
x ∈ S} so that each subset induces a spider.
Begin

1. If G is a spider, then S ← {vn} and Vvn ← V (G), and output S and {Vx |
x ∈ S}; otherwise, continue.

2. Type(vi)← TRUE and Vvi ← ∅ for all i = 1, 2, . . . , n.
3. i← 1, T ← G, I ← {1, 2, . . . , n}, and S ← ∅.
4. v ← vi.
5. If degT v ≤ 2, then

5.1. if there exists a child u of v (in G) such that Type(u) = TRUE and
u ∈ Vx for some x ∈ S, then

5.1.1. if v is a leaf (in T ), then
5.1.1.1. Vx ← Vx ∪ {v},
5.1.1.2. T ← T − v, I ← I \ {i} and go to step 13;

5.1.2. if degT v = 2, then
5.1.2.1. Vx ← Vx ∪ V (Tv),
5.1.2.2. w ← v and go to step 12;

5.2. otherwise (if no such child exists), I ← I \ {i} and go to step 13;
otherwise (if degT v ≥ 3), then continue.
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6. S ← S ∪ {v}.
7. w ← vm, where m← min{k | vk is an ancestor of v of degree at least 3 in T
or k = n}.

8. u← {child of w on the w-v path}.
9. If w = vn, then

9.1. if the component of T − uw containing w is the trivial path w or a path
with w as a leaf, then Vv ← V (Tw), and output S and {Vx | x ∈ S};

9.2. otherwise, Vv ← V (Tu) and go to step 11.
10. If w �= vn, then

10.1. z ← parent(w);
10.2. if degT w ≥ 4 or if degT w = 3 and the component of T − {uw,wz}

containing w is a not a path, then Vv ← V (Tu) and go to step 11;
10.3. if degT w = 3 and the component of T − {uw,wz} containing w is a

path, then Vv ← V (Tw) and go to step 12.
11. T ← T − V (Tu), I ← I \ {k | vk ∈ V (Tu)}, and go to step 13.
12. T ← T − V (Tw), I ← I \ {k | vk ∈ V (Tw)}, Type(w) ← FALSE. Go to
step 13.

13. i← min{k | k ∈ I}.
14. If i < n, then return to step 4.
15. If i = n, then

15.1. if (a) T is the trivial path vn or T is a path with vn as a leaf, and
(b) there exists a child u of v (in G) such that Type(u) = TRUE and
u ∈ Vx for some x ∈ S, then

15.1.1. Vx ← Vx ∪ V (Tvn),
15.1.2. output S and {Vx | x ∈ S}.

15.2. Otherwise (if (a) or (b) in 15.1 does not hold), then
15.2.1. S ← S ∪ {vn},
15.2.2. Vvn ← V (Tvn),
15.2.3. output S and {Vx | x ∈ S}.

End

We now verify the validity of Algorithm 1.

Theorem 15. Algorithm 1 produces a γP (G)-set in a nontrivial tree G.

Proof. Let G be a nontrivial tree of order n, and let S be the set produced by
Algorithm 1. It follows from the way in which the set S is constructed that S is a
PDS of G, and so γP (G) ≤ |S|. We show that γP (G) = |S|. If G is a spider, then
it follows from Theorem 7 and from our choice of the root vn that S = {vn} is a
γP (G)-set of G. Hence, we may assume that γP (G) ≥ 2. Let S = {vi1 , vi2 , . . . , vim},
where i1 < i2 < · · · < im. Suppose that γP (G) < |S|. Among all γP (G)-sets, let S∗

be chosen so that the first integer j, 1 ≤ j ≤ m, such that vij /∈ S∗ is as large as
possible. If |S∗ ∩ Vit | ≥ 2 for some t, 1 ≤ t < j, then any vertex of S∗ ∩ Vit different
from {vit} can be replaced with an ancestor of vit that does not belong to Vit . Hence,
we may assume that for each t with 1 ≤ t < j, S∗ ∩ Vit = {vit}. If S∗ contains a
descendant u of vij that belongs to Vij , then we can replace u with vij to produce a
new γP (G)-set that contains all the vertices in {vi1 , . . . , vij}, contrary to our choice
of S∗. Hence, S∗ contains no descendant of vij that belongs to Vij .

We now consider the subtree T which has been constructed at the stage in the
algorithm when vij is considered as the active vertex v in step 5. Since vij was added
to S in step 6 of the algorithm, we know that degT vij ≥ 3, and so vij has at least
two children in T . Let y be a descendant of vij in T . Since y has not already been
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deleted from T , it follows from step 5 of the algorithm that every child u of y (in G)
that belongs to V (G)− V (T ) satisfies Type(u) = FALSE and therefore has degree at
least 3 (in G) and does not belong to S. Since S∗ contains no descendant of vij that
belongs to Vij , it is evident that y cannot be observed by S∗, a contradiction. We
deduce, therefore, that we must have γP (G) = |S|.

In closing, we note that we have yet to establish the power domination number
of graphs of bounded tree width.
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1. Introduction. Let G = (V,E) be a complete graph with vertex set V such
that |V | = n, edge set E, and edge weights w(u, v) ≥ 0, (u, v) ∈ E. A p-matching is
a set of p disjoint edges in a graph. A p-matching with p = �n2 � is called perfect. A
perfect matching M that for each p = 1, . . . , |M | contains p edges whose total weight
is at least α times the maximum weight of a p-matching is said to be α-robust. We
prove that G contains a 1√

2
-robust matching. On the other hand, there are graphs

that do not contain an α-robust matching for any α > 1√
2
.

In section 2, we generalize the robustness concept to independence systems. We
prove that a greedy algorithm can be applied in some cases to form robust solutions.
Our main theorem on robust matchings is proved in section 3, and we use it and
a theorem from section 2 to approximate within a factor 1√

2
the following problem:

Given constants c1 ≥ c2 ≥ · · · ≥ cp, find a p-matching M that maximizes
∑p
i=1 ciwi,

where w1 ≥ w2 ≥ · · · ≥ wp are the edge weights in M .
In section 4, we use these results to approximate the NP-hard metric maximum

clustering problem with given cluster sizes. The input for the problem is
a complete graph with edge weights that satisfy the triangle inequality, and a set of
cluster sizes. The goal is to find a partition of the vertex set, with part (or “cluster”)
sizes as required, that maximizes the total edge weight within the same cluster.

For V ′ ⊆ V we denote by E(V ′) the edge set of the subgraph induced by V ′. For
E′ ⊂ E we denote by W (E′) the total weight of edges in E′.

2. Robust independent sets. An independence system is a pair (E,F) con-
sisting of a ground set E and a collection of independent sets, or, equivalently, feasible
solutions, such that F ′ ⊂ F ∈ F implies F ′ ∈ F . Let we ≥ 0, e ∈ E, be weights
attached to the elements of E. The problem of computing an independent set of
maximum weight generalizes many interesting combinatorial optimization problems.
Korte and Hausmann [1] analyzed the performance of the greedy algorithm for the
above problem. The algorithm sorts the elements by weight and inserts them into
the solution, starting with the heaviest one and excluding an element if its addition
would generate a set not in F . They proved the following theorem.

∗Received by the editors January 5, 1998; accepted for publication (in revised form) July 1, 2002;
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Theorem 2.1. For any E′ ⊆ E define l(E′)and u(E′) to be the smallest and
largest cardinality, respectively, of a maximal (with respect to inclusion) independent

set contained in E′. Let r(E,F) = minE′⊆E
l(E′)
u(E′) . Then the greedy solution is an

r(E,F)-approximation; that is, the value of the greedy solution is at least r(E,F)
times the optimal value.

Now consider a game of the following type: You choose a maximal independent
set in E. An adversary then selects a bound p on the allowed number of elements.
Last, you output the p heaviest elements of your solution (or the solution itself if p is
greater or equal to its cardinality). By the definition of an independence system, the
output is independent. Your payoff is the ratio between the weight of your output
and the maximum weight of an independent set whose cardinality is at most p. A
solution is α-robust if it guarantees a payoff of at least α.

Theorem 2.2. The greedy solution is r(E,F)-robust.
Proof. Define (E,Fp) to be the independence system in which F ∈ Fp if and only

if F ∈ F and |F | ≤ p. Let lp and up denote the l and u values in the new system,
respectively. Then for every E′ ⊂ E

lp(E
′)

up(E′)
=

min(l(E′), p)
min(u(E′), p)

≥ l(E′)
u(E′)

so that r(E,Fp) ≥ r(E,F) and the claim follows from Theorem 2.1.
The edges and matchings in a graph constitute an independence system for which

r = 1
2 [1]. It follows that the greedy solution is 1

2 -robust. We will reach this conclusion
later in a different way but not before we obtain stronger results in the next section.

2.1. Weighted robustness. Let c1 ≥ c2 ≥ · · · ≥ cn ≥ 0 be given constants.
For an independent set F = {e1, . . . , em} with weights w1, w2, . . . , wm, define C(F ) =∑m
j=1 cjwj . Since we are interested in obtaining large values of C(F ), we will assume

that the elements are numbered so that w1 ≥ w2 ≥ · · · ≥ wm. Thus, C(F ) is well
defined for any set F without explicitly specifying an order on its elements. We will
also denote Fp = {e1, . . . , ep}, p = 1, . . . ,m, and Fp = F for p > m.

Problem 2.3. Compute an independent set F ∈ F of cardinality |F | ≤ p that
maximizes C(Fp).

The following theorem was proved by Gerhard Woeginger.
Theorem 2.4. Problem 2.3 is NP-hard even when F is the set of matchings in a

graph with edge set E (so that F ⊆ E is in F if it consists of vertex-disjoint edges).
Proof. The reduction is from the following NP-complete variant of 3-PARTITION.

Input: A positive integer t. 2n positive integers a1, a2, . . . , a2n and n positive integers
b1, b2, . . . , bn. These integers fulfill the equation

∑2n
i=1 ai +

∑n
i=1 bi = nt. Moreover,

ai ≤ t and bi ≤ t holds for all i. These 3n integers are encoded in unary.

Question: Does there exist a permutation π of {1, . . . , 2n} such that for all i =
1, . . . , n we have aπ(2i−1) + aπ(2i) + bi = t?

Consider an instance I of 3-PARTITION. For i = 1, . . . , n we define the cost
coefficient ci = nbi . Moreover, we construct from I an edge-weighted complete graph
G on 2n vertices v1, . . . , v2n. The weight w(vi, vj) of the edge between vertices vi and
vj equals

w(vi, vj) = n2t − nai+aj ≥ 0.
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All these weights and costs are encoded in binary. Then the length of the encoding of
every such value is bounded by 2t log n, which is polynomial in the size of the instance
I (which is encoded in unary). We claim that G has a matching F of n independent
edges with

C(F ) ≥ n2t
n∑
i=1

nbi − nt+1 =: T ∗

if and only if the instance I of 3-PARTITION has answer YES.

(If) Consider a solution π of 3-PARTITION. For i = 1, . . . , n the matching F
matches vertex vπ(2i−1) with vertex vπ(2i) and assigns the cost coefficient ci to this

edge. Hence this edge contributes n2tnbi − nt to the objective value, and the claim
follows.

(Only if) Consider a matching F with the desired objective value. For i = 1, . . . , n
let (vπ(2i−1), vπ(2i)) denote the edge that is assigned to the cost coefficient ci = nbi .
We claim that π constitutes a solution to the 3-PARTITION instance. Otherwise,
there exists an index i with aπ(2i−1) + aπ(2i) + bi ≥ t + 1. The contribution of this

coefficient is then ≤ nbin2t−nt+1. The contribution of every other coefficient cj is at
most nbj (n2t − n). We can never reach an objective value T ∗.

Theorem 2.5. Let F and F ′ be independent sets. If F ′ is α-robust, then C(F ′p) ≥
αC(Fp) for every p = 1, 2, . . . n and any constants c1 ≥ c2 ≥ · · · ≥ cn ≥ 0.

Proof. Let w1 ≥ w2 ≥ · · · ≥ wp and w′1 ≥ w′2 ≥ · · · ≥ w′p be the weights of the
elements of Fp and F ′p, respectively. (If |F | < p, then define wj = 0 for j > |F |.)
Then

C(F ′p) =
p∑
i=1

ciw
′
i

=

p−1∑
j=1

(cj − cj+1)

j∑
i=1

w′i + cp

p∑
i=1

w′i

=

p−1∑
j=1

(cj − cj+1)W (F ′j) + cpW (F ′p)

≥
p−1∑
j=1

(cj − cj+1)αW (Fj) + cpαW (Fp)

= α

p∑
i=1

ciwi = αC(Fp).

3. Robust matchings. A matching is a set of vertex-disjoint edges. The weight
of a matching is the total weight of its edges. A maximum matching is a matching with
maximum weight. A p-matching is a matching with p edges. We denote m = �n2 �,
the maximum number of edges in a matching. An m-matching is said to be perfect.
Note that this extends the common use of this concept to the case where the graph
has an odd number of vertices.

An easy way to produce a maximum p-matching is as follows: Extend G by adding
to it n− 2p vertices. Each new vertex is connected to each original vertex by an edge
with a “large” weight, say, twice the largest weight in G. Now compute a maximum
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perfect matching (with n − p edges) in the extended graph. It will be composed of
n− 2p heavy new edges and a maximum p-matching in G.

For a perfect matching M we define Mp to be the set of its p heaviest edges,
p = 1, . . . ,m. We denote by M (p) a maximum p-matching. A matching is α-robust if

W (Mp) ≥ αW (M (p)) p = 1, . . . ,m.

In this section, we show that for every graph there exists a 1√
2
-robust matching and

that it can be constructed by a single application of a maximum matching algorithm.
The following example shows that the value of 1√

2
cannot be increased.

Consider a 4-vertex graph with weights w(1, 2) = w(3, 4) = 1, w(2, 3) =
√
2, and

all other edges have zero weight. For this graph W (M1) =
√
2 and W (M2) = 2. The

graph has three perfect matchings and none is α-robust for α > 1√
2
: The matchings

{(1, 2), (3, 4)} and {(2, 3), (1, 4)} are 1√
2
-robust, and {(1, 3), (2, 4)} is 0-robust.

Theorem 3.1. Let S be a maximum perfect matching with respect to the squared
weights w2(e), e ∈ E. S is 1√

2
-robust.

The rest of this section is devoted to proving Theorem 3.1. We will prove it by
treating the squared edge weights as variables whose sizes are to be determined in
order to form a contradiction to the theorem. We will prove that to achieve such
a contradiction we may make several assumptions on these variables. Finally, these
assumptions will lead to the conclusion that the claim is true.

Consider the set S ∪M (p). It consists of a collection of disjoint paths and cycles.
A path may consist of a single edge or it alternates between S and M (p). Since S is
perfect, the end edges of the path are from S except possibly one end of one path in
the case of odd n (since in this case there is exactly one vertex that is not incident to
an edge of S). A cycle alternates between S and M (p). We will construct from the

edges of S a p-matching whose weight is at least W (M(p))√
2

. Since the weight of this

matching is at most the weight of the p heaviest edges in S, this construction will
prove the theorem.

We choose a p-matching from S as follows: Every edge in S ∩M (p) is chosen. All
of the edges of S contained in a cycle of S ∪M (p) are chosen. From every nontrivial
path (containing more than a single edge) of S ∪M (p) we choose all the edges that
belong to S except for the lightest one. There is one exception to the last rule: If
there is a path with only one end edge from S (this happens when n is odd), then we
choose all of the S-edges of this path. The total number of edges selected is equal to
|M (p)| = p. It is sufficient to prove that the claimed bound on the ratio of the edge
weights in S and in M (p) holds for every such path and cycle.

Consider a nontrivial path P with squared weights x1, y1, x2, y2, . . . , yr−1, xr,
where the x values correspond to the edges of S and the y values correspond to
the edges of M (p) in the order they appear on P .

We denote x[i,j] =
∑j
l=i xl, and similarly y[i,j] =

∑j
l=i yl. We are interested in

subpaths Pi,j of P consisting of the edges whose weights are xi, yi, . . . , yj−1, xj . Note
that P = P1,r. Since S is maximum with respect to the squared weights,

x[i,j] ≥ y[i,j−1] 1 ≤ i < j ≤ r.(3.1)

Let xmin = min{xi | i = 1, . . . , r}. Our goal is to prove that the ratio of the total
weight of the r − 1 heaviest edges in P ∩ S to the weight of P ∩Mk is at least 1√

2
;
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that is,

Z =

∑r
i=1

√
xi −√xmin∑r−1
i=1

√
yi

≥ 1√
2

for all x, y that satisfy (3.1).

We will prove that Z ≥ 1√
2
for every nontrivial path by induction on r. Note that

the proof and induction hypothesis apply to any nontrivial path P in S ∪M (p), not
just to maximal (with respect to inclusion) paths. A subpath is subject to additional
constraints arising from longer subpaths that contain it, but these constraints may
increase only the lower bound on Z for the subpath in question. We first prove this
property for r = 2 and r = 3.

Lemma 3.2. Z ≥ 1√
2

when r = 2.

Proof. Without loss of generality we can assume that x1 ≥ x2; thus Z =
√
x1√
y1
,

and we look for its minimum subject to x1 + x2 ≥ y1 and x1 ≥ x2. This minimum is
obtained when x1 = x2 = y1

2 and its value is 1√
2
.

Lemma 3.3. Z ≥ 1√
2

when r = 3.

Proof. In this case x2 appears in every constraint of (3.1), and thus Z can be
minimized with x2 ≥ x1, x3. Without loss of generality we assume that x3 = xmin so

that Z =
√
x1+
√
x2√

y1+
√
y2
. We minimize Z subject to (3.1) and x2 ≥ x1 ≥ x3. If x1 > xmin,

then, by concavity of the square root function, Z can be reduced by decreasing x1

and increasing x2. Thus we assume x1 = x3 = xmin. Again by concavity, Z can be
decreased by increasing x2 and simultaneously decreasing x1 and x3. This change is
feasible if x1 + x2 + x3 > y1 + y2. Thus we assume equality in this constraint, that is,
2x1 + x2 = y1 + y2. We now show that the claimed bound holds even for the relaxed
problem of minimizing Z subject to only 2x1+x2 = y1+y2 and x2 ≥ x1 ≥ 0. Suppose
first that y1 and y2 are fixed and we minimize over x1 and x2. The feasible set of
solutions is a convex polyhedron and the objective function,

√
x1 +

√
x2, is concave.

Thus the minimum value is attained at an extreme point of the feasible set. There are

two such points. In one, x1 = x2 = y1+y2
3 and Z =

2
√

y1+y2
3√

y1+
√
y2
. In the other one, x1 = 0

and x2 = y1 + y2, giving Z =
√
y1+y2√
y1+
√
y2
, which is clearly smaller than the former case

and attains its minimum over y1 and y2 when y1 = y2 and Z = 1√
2
.

We now proceed to proving the general step of the induction for r > 3. Thus, we
assume that the claim holds for smaller r values.

Lemma 3.4. We can assume that xj > xmin j = 2, . . . , r − 1.

Proof. Suppose that xj = xmin for some j ∈ {2, . . . , r − 1}. Then

Z =
(
∑j
i=1

√
xi −√xmin) + (

∑r
i=j

√
xi −√xmin)∑j−1

i=1

√
yi +

∑r−1
i=j

√
yi

≥ min

{∑j
i=1

√
xi −√xmin∑j−1
i=1

√
yi

,

∑r
i=j

√
xi −√xmin∑r−1
i=j

√
yi

}
.

Since xj = min{xi | i = 1, . . . , j} = min{xi | i = j, . . . , r}, it follows from the
induction hypothesis that Z ≥ 1√

2
.

We call a subpath Pi,j for which x[i,j] = y[i,j−1] tight.
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Lemma 3.5. (i) Let i ≤ k ≤ j ≤ l such that i < j and k < l. If k < j and both
Pi,j and Pk,l are tight, then so is Pk,j. (ii) Let i < j < l. If Pij is tight, then Pj,l is
not.

Proof. (i) By assumption, x[i,j] = y[i,j−1] and x[k,l] = y[k,l−1]. Summing these
equations we get

x[i,l] + x[k,j] = x[i,j] + x[k,l] = y[i,j−1] + y[k,l−1] = y[i,l−1] + y[k,j−1].

Since x[i,l] ≥ y[i,l−1] and x[k,j] ≥ y[k,j−1] it follows that both of the latter relations
satisfy equality and the respective subpaths are tight.

(ii) From the same equation with j = k it follows that xj = 0 and 1 < j < r, in
contrast to Lemma 3.4.

Suppose that r ≥ 3. Let 1 < j < r. We can assume that there exists a tight
interval containing the edge ej whose weight is xj ; otherwise, we reduce xj until some
subinterval containing ej becomes tight, and this change reduces Z. Consider the
intersection of all tight intervals containing ej ∈ S. It follows from Lemma 3.5 that
the intersection is a nontrivial tight subpath. Again by this lemma, the x values in
this subpath share the same set of tight subpaths, and therefore we can assume that
the sum of their squared roots is minimized subject to a single constraint on their
sum. By concavity of the square root function, this objective is attained by setting
all of these values to 0 except for a single one, say xk > 0. From Lemma 3.4 and
since xmin ≥ 0, it follows that k ≤ 4. For r ≤ 3, the claim has already been proved
in Lemmas 3.2 and 3.3. Suppose that r = 4; then it must be that P12 and P34 are
tight, and thus x1 = x4 = y2 = 0, y1 = x2, and y3 = x3. In this case Z = 1, and this
completes the proof for paths with two ends from S.

For a path with only one end edge from S we can assume that a fictitious S-edge
of zero weight is added at that end. The set of constraints (3.1) then extends in a
natural way, and the same proof holds.

Now suppose that there is a cycle C that contradicts the claim. We will show
how to construct an instance consisting of a path that contradicts the claim. Since
we have already proved that this is impossible, it will follow that such a cycle cannot
exist. Specifically, let the cycle’s edges have weights x1, y1, . . . , xr, yr, in this order,
with the x-weights corresponding to edges of S. Form a path by concatenating many
repetitions of this sequence of weights. Last, add an x-edge at the end where it is
missing, with a sufficiently large weight, such asW (C∩M (p)), so that (3.1) is satisfied.
The path obtained this way will have (asymptotically, as the number of pasted copies
increases) the same Z-value as C. This concludes the proof of Theorem 3.1.

3.1. More robustness results. Most of the proof of Theorem 3.1 is valid for
any concave function, not just the square root function. Using this observation, the
theorem can be generalized as follows. Let Sb be a maximum perfect matching with
respect to the weights wb(e), e ∈ E, where b ≥ 1 is a constant. Let β = 1

b . The
following lemmas and theorem follow easily by adapting the proofs of the respective
results obtained in the previous subsection for β = 1

2 .
Lemma 3.6. Z ≥ 1

2β when r = 2.

Lemma 3.7. Z ≥ 1
21−β when r = 3.

Theorem 3.8. Sb is min{ 1
2β ,

1
21−β }-robust.

Maximum robustness is obtained when β = 1
2 , the case to which Theorem 3.1

applies. We note two interesting extreme cases. When b = β = 1, Sb is just a matching
of maximum weight. When b→∞ and thus β → 0, we get a greedy matching. Such
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a matching is obtained by sorting the edge weights in nonincreasing order, and then
scanning the list and adding an edge to the matching if it is disjoint to the previously
selected edges. In both cases the resulting bound is 1

2 , giving the following corollary.

Corollary 3.9. Maximum and greedy matchings are 1
2 -robust.

4. Clustering. In the metric maximum clustering problem with given
cluster sizes, the goal is to partition the vertex set V into sets (“clusters”) of given
sizes so that the total weight of edges inside the clusters is maximized. Specifically,
the input for the problem consists of a complete graph with edge weights satisfying the
triangle inequality and cluster sizes c1 ≥ c2 ≥ · · · ≥ cp ≥ 1 such that c1+ · · ·+cp = n.
We want to partition V into clusters of these sizes maximizing their total weight.

Let dj = � cj2 �, Dj = d1 + · · · + dj j = 1, . . . , p, and D0 = 0. We propose the
following algorithm.

Algorithm 4.1.

1. Compute a maximum matching S with respect to the squared weights. Let
S = {(uj , vj) j = 1, . . . ,m}, where w(uj , vj) ≥ w(uj+1, vj+1) j = 1, . . . ,m−1.

2. Set Vi = {uj , vj | j = Di−1 + 1, . . . , Di} i = 1, . . . , p.
3. For each i such that ci is odd, add to Vi an arbitrary yet unassigned vertex.

Theorem 4.2. Let opt and apx denote the solution values of the optimal and
approximate solutions, respectively. Then

apx ≥ 1

2
√
2
opt.

Proof. Consider an optimal partition O1, . . . , Op. LetMi be a maximum matching
in the subgraph induced by Oi, i = 1, . . . , p. Denote the edge weights in Mi by
wi1 ≥ · · · ≥ widi .

Let bi = ci − 1 if ci is even and bi = ci if ci is odd. The edges E(Oi) can be
covered by a set of bi ≤ ci disjoint matchings. Since Mi is a maximum matching in
Gi it follows that biW (Mi) ≥W (E(Oi)) and therefore

opt ≤
p∑
i=1

ciW (Mi).

Let V1, . . . , Vp be the partition produced by Algorithm 4.1. Let Si = S ∩ E(Vi).
Consider a cluster Vi with vertices u, v, q ∈ Vi such that (u, v) ∈ Si. By the triangle
inequality, w(u, q) + w(v, q) ≥ w(u, v).

Suppose that ci is even. Sum this inequality over all q �= u, v ∈ Vi; then sum
again over (u, v) ∈ Si. Note that every edge in E(Vi) \ Si is summed twice. Thus,
every edge (u, v) ∈ Si contributes to the total weight of E(Vi) in addition to its own
weight also at least 1

2 (ci − 2) times its weight through the edges incident to it. Thus,
W (E(Vi)) ≥ 1

2ciW (Si).

Suppose now that ci is odd. In this case Vi contains a vertex, say vi, that was
added to Vi in step 3 of the algorithm. In the summation, the weight of edges incident
to vi is used just once. Thus, each edge (u, v) ∈ Si contributes its weight 1

2 (ci − 3)
times when summed over Vi\{u, v, vi}, once more through w(u, vi)+w(v, vi), and once
when it contributes its own weight. Thus, also in this case, W (E(Vi)) ≥ 1

2ciW (Si).

By Theorem 2.5 and the assumption c1 ≥ · · · ≥ cp,
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apx ≥ 1

2

p∑
i=1

ciW (Si)

≥ 1

2
√
2

p∑
i=1

ciW (Mi)

≥ 1

2
√
2
opt.
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1. Introduction. We consider only simple graphs in this paper unless otherwise
stated. A plane graph is a particular drawing of a planar graph in the Euclidean plane.
For a plane graph G, we denote its vertex set, edge set, face set, order, and minimum
degree by V (G), E(G), F (G), |G|, and δ(G), respectively. Let dG(x) denote the
degree of a vertex or a face x of G. The degree of a face is the total number of edge
steps of the closed walk(s) in G bounding the face. When the boundary of a face f
is a cycle, we usually write f = [u1u2 · · ·un], where u1, u2, . . . , un are the boundary
vertices in cyclic order. A vertex (or face) of degree k is called a k-vertex (or k-face).
A triangle is synonymous with a 3-cycle. We say that two cycles or faces of a plane
graph are adjacent if they share at least one common (boundary) edge. Two cycles or
faces are intersecting if they share at least one common (boundary) vertex. A vertex
v and a face f are said to be incident if v belongs to the boundary of f . Let F (v)
denote the set of all faces that are incident to the vertex v.

A coloring of a graph G is a mapping φ from V (G) to the set of colors {1, 2, . . . , k}
for some positive integer k. A coloring is called proper if φ(x) �= φ(y) for every edge xy
of G. The chromatic number χ(G) is the smallest integer k such that G has a proper
coloring into the set {1, 2, . . . , k}. We say that L is an assignment for the graph G if it
assigns a list L(v) of possible colors to each vertex v of G. If G has a proper coloring
φ such that φ(v) ∈ L(v) for all vertices v, then we say that G is L-colorable or φ is an
L-coloring of G. The graph G is k-choosable if it is L-colorable for every assignment
L satisfying |L(v)| = k for all vertices v. The choice number or list chromatic number
χ�(G) of G is the smallest k such that G is k-choosable. By considering colorings
for E(G), we can define analogous notions such as edge assignment, edge-L-coloring,
edge-k-choosable, the edge chromatic number χ′(G), the edge choice number χ′�(G),
etc.

The concept of list coloring was introduced by Vizing [17] and independently by
Erdős, Rubin, and Taylor [5]. In recent years, a number of interesting results about
the choosability of planar graphs have been obtained, e.g., [2], [6], [14], [15], [16],
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[18], [19], and [20]. A graph G is said to be k-degenerate if every nonempty subgraph
G′ of G has a vertex of degree at most k in G′. The list chromatic number of a
k-degenerate graph is at most k + 1. It is obvious that every planar graph without
triangles is 4-choosable because such a graph is 3-degenerate. Lam, Xu, and Liu
[12] proved that every planar graph without 4-cycles is 4-choosable. Recently, we
have proved in [21] and [22] that every planar graph without 5-cycles or 6-cycles is
4-choosable. These results have been generalized in Lam, Shiu, and Xu [13] to show
that, if a planar graph G is free of k-cycles for some k ∈ {3, 4, 5, 6}, then G is (4m,m)-
choosable for all nonnegative integers m; i.e., if every vertex is assigned a list of 4m
colors, then every vertex can be given m colors from its own list so that adjacent
vertices get disjoint sets of colors. When m = 1, (4m,m)-choosable means the same
as 4-choosable.

In this paper, we will prove that every planar graph without intersecting triangles
is 4-choosable. The second main result of this paper is to show that the following
conjecture holds for a planar graph G without intersecting triangles and ∆(G) �= 5.

Conjecture 1.1. Every simple graph G is edge-(∆(G) + 1)-choosable.

The above conjecture was first proposed by Vizing (see [11]). An earlier result of
Harris [8] asserts that, if G is a graph with ∆(G) ≥ 3, then χ′�(G) ≤ 2∆(G)− 2. This
implies Conjecture 1.1 for the case ∆(G) = 3. Recently, Juvan, Mohar, and Škrekovski
[10] settled the case for ∆(G) = 4. Conjecture 1.1 has been confirmed for other special
cases such as complete graphs [7], graphs with girth at least 8∆(G)(ln∆(G) + 1.1)
[11], and planar graphs with ∆(G) ≥ 9 [3].

2. 4-Choosability. To establish our main result about 4-choosability, we need
a few lemmas. The first one has already been used in [5].

Lemma 2.1. Every cycle of even length is 2-choosable.

Suppose that L is an assignment for a graph G such that |L(u)| ≥ k(u) for each
vertex u ∈ V (G), where k(u) is a nonnegative integer determined by the vertex u.
Let L′ denote an assignment for G such that L′(u) ⊆ L(u) and |L′(u)| = k(u) for
every u ∈ V (G). Evidently, G is L-colorable if G is L′-colorable. This fact will be
used frequently in what follows.

Let A0 denote a graph obtained by adding a chord u3u6 to a 6-cycle u1u2 · · ·u6u1.
A graph A is called a type one graph if it satisfies the following two conditions.

(1) A0 is a spanning subgraph of A.

(2) A has no intersecting triangles.

The graph A0 itself is a type one graph.

Lemma 2.2. Let A be a type one graph. Let L be an assignment for A such
that |L(u3)| ≥ 2, |L(u6)| ≥ 3, and |L(ui)| ≥ dA(ui) for i = 1, 2, 4, 5. Then A is
L-colorable.

Proof. It suffices to prove that A is L-colorable when |L(u3)| = 2, |L(u6)| = 3,
and |L(ui)| = dA(ui) for i = 1, 2, 4, 5.

We note that every edge in E(A) \ E(A0) has one end in {u1, u2} and the other
end in {u4, u5} by the defining property (2).

If L(u1)∩L(u3) �= ∅, we color both u1 and u3 with some color α ∈ L(u1)∩L(u3).
Afterwards, we color u2, u4, u5, and u6 successively. If L(u1) ∩ L(u3) = ∅, then
|(L(u1) ∪ L(u3)) \ L(u6)| ≥ |L(u1)| + |L(u3)| − |L(u6)| ≥ 1. Thus there exists β ∈
(L(u1) ∪ L(u3)) \ L(u6). When β ∈ L(u1), we first color u1 with β then color u2, u3,
u4, u5, and u6 successively. When β ∈ L(u3), we first color u3 with β then color u2,
u1, u4, u5, and u6 successively.
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Let B0 be the union of two 4-cycles C1 = xu1u2u3x and C2 = xv1v2v3x such that
V (C1)∩V (C2) = {x}. A graph B is called a type two graph if it satisfies the following
two conditions.

(1) B0 is a spanning subgraph of B.

(2) B has no intersecting triangles.

The graph B0 itself is a type two graph.

Lemma 2.3. Let B be a type two graph. Let L be an assignment for B such
that |L(x)| ≥ 3, |L(ui)| ≥ dB(ui), and |L(vi)| ≥ dB(vi) for i = 1, 2, 3. Then B is
L-colorable.

Proof. It suffices to prove that B is L-colorable when |L(x)| = 3, |L(ui)| = dB(ui),
and |L(vi)| = dB(vi) for i = 1, 2, 3.

We note that every edge in E(B) \ E(B0) has one end in {u1, u2, u3} and the
other end in {v1, v2, v3} by the defining property (2).

If L(u1)∩L(u3) �= ∅, we color both u1 and u3 with some color α ∈ L(u1)∩L(u3).
Then we color u2 afterwards. Now each vertex in V (C2) has at least two colors to
choose from. By Lemma 2.1, V (C2) can be colored properly. If L(u1) ∩ L(u3) = ∅,
then there exists β ∈ (L(u1) ∪ L(u3)) \ L(x). If β ∈ L(u1), we first color u1 with
β then color u2 and u3. Again every vertex in V (C2) has at least two colors to
choose from, and hence can be colored properly. The case β ∈ L(u3) can be treated
similarly.

Let G be a plane graph with δ(G) = 4. A 4-face f = [w1w2w3w4] of G is said
to be bad if dG(w1) = 5 and dG(wi) = 4 for i = 2, 3, 4. Clearly, every subgraph of a
planar graph without intersecting triangles is also a planar graph without intersecting
triangles. Every subgraph of a k-choosable (or edge-k-choosable) graph is also k-
choosable (or edge-k-choosable). These straightforward facts are tacitly used in the
following proofs. Moreover, for a connected plane graph G, the following identity
follows from the well-known Euler’s formula |V (G)| − |E(G)|+ |F (G)| = 2.

∑
v∈V (G)

(2dG(v)− 6) +
∑

f∈F (G)

(dG(f)− 6) = −12. (∗)

Theorem 2.4. If G is a plane graph without intersecting triangles, then G is
4-choosable.

Proof. Suppose that the theorem is false. Let G be a counterexample plane
graph having the fewest vertices. Let L be an arbitrary assignment for G such that
|L(v)| = 4 for all v ∈ V (G). Then the following properties (P1) to (P5) hold for G.

(P1) The minimum degree δ(G) ≥ 4.
If δ(G) ≤ 3, let dG(u) = δ(G) for some vertex u of G. By the minimality of G,

the graph G − u is 4-choosable. Every L-coloring of G − u can be extended to an
L-coloring of G since u has at most three forbidden colors. This contradicts the choice
of G.

(P2) The graph G does not contain a 4-face f such that dG(v) = 4 for every
boundary vertex v of f .

Suppose f = [w1w2w3w4] is a 4-face of G such that dG(wi) = 4 for 1 ≤ i ≤ 4.
Since G does not contain intersecting triangles, both w1w3 and w2w4 are nonedges.
Let H = G − {w1, w2, w3, w4}. By the minimality of G, the graph H is 4-choosable.
Each wi is adjacent to exactly two vertices in H. By Lemma 2.1, every L-coloring of
H can be extended to an L-coloring of G. This contradicts the choice of G.
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(P3) The graph G does not contain two bad 4-faces f1 = [u1u2u3u6] and f2 =
[u3u4u5u6] sharing a unique common edge u3u6 and dG(u3) = 5.

Suppose on the contrary that G contains such adjacent bad 4-faces f1 and f2. Let
S = {u1, u2, . . . , u6}. The induced subgraph A = G[S] is a type one graph. For any
L-coloring of G−S, we use Ui to denote the set of colors assigned to the neighbors of ui
in G−S. We further let σ(ui) denote the number of those neighbors. On the graph A,
define an assignment L′(ui) = L(ui)\Ui for i = 1, 2, . . . , 6. We note that |Ui| ≤ σ(ui),
and hence |L′(u3)| ≥ 2, |L′(u6)| ≥ 3, and |L′(ui)| ≥ dG(ui) − σ(ui) = dA(ui) for
i �= 3, 6. It follows that L′ satisfies the conditions of Lemma 2.2, and hence A is
L′-colorable. Therefore G is L-colorable, contradicting the choice of G.

(P4) The graph G does not contain two bad 4-faces f1 = [xu1u2u3] and f2 =
[xv1v2v3] sharing a unique common vertex x and such that dG(x) = 5.

Suppose on the contrary that G contains such intersecting bad 4-faces f1 and f2.
Let S = {x, u1, u2, u3, v1, v2, v3}. Thus the induced subgraph B = G[S] is a type two
graph. For every L-coloring of G−S, we can derive an assignment L′ for B such that
|L′(x)| ≥ 3, |L′(ui)| ≥ dB(ui), and |L′(vi)| ≥ dB(vi) for i = 1, 2, 3. It follows from
Lemma 2.3 that B is L′-colorable, and hence G is L-colorable. This is a contradiction.

(P5) A 5-vertex v ∈ V (G) is incident to at most one bad 4-face.

Suppose that v is incident to two distinct bad 4-faces f1 = [vu1u2u3] and f2 =
[vv1v2v3]. Then dG(ui) = dG(vi) = 4 for i = 1, 2, 3. First we note that u1 �= u3 and
v1 �= v3. Suppose that u1, u3, v1, and v3 are arranged around the vertex v in this
order. Since dG(v) = 5, it follows that either u1 �= v3 or u3 �= v1. Without loss of
generality, we assume that u3 �= v1.

Suppose that u1 = v3. If u2 = v2, then dG(u1) = 2, contradicting (P1). Since G
contains no intersecting triangles, u2 �= v1 and u3 �= v2. This contradicts (P3).

Suppose that u1 �= v3. Since G contains no intersecting triangles, u2 �= v1, v3 and
v2 �= u1, u3. If, further, u2 �= v2, it would contradict (P4).

Finally, suppose that u2 = v2. Let S = {v, u1, u2, u3, v1, v3}. For every L-
coloring of G−S, we can trim L to become an assignment L′ for the induced subgraph
H = G[S] such that |L′(u2)| = 4, |L′(v)| = 3, and |L′(t)| = 2 for all t ∈ {u1, u3, v1, v3}.
If L′(v) ∩ L′(u2) �= ∅, we color both v and u2 with some color α ∈ L′(v) ∩ L′(u2).
Then color u1, u3, v1, and v3. Suppose L′(v)∩L′(u2) = ∅. Then there exist β ∈ L′(v)
and γ ∈ L′(u2) such that L

′(t) �= {β, γ} for t ∈ {u1, u3, v1, v3}. We color v with β, u2

with γ, and then color t with a color in L′(t) \ {β, γ} for t ∈ {u1, u3, v1, v3}. Thus H
is always L′-colorable. Hence we arrive at the conclusion that G is L-colorable. This
contradiction completes the proof of (P5).

The counterexample graph G is clearly connected. Let c denote the charge func-
tion defined on V (G)∪F (G) by c(v) = 2dG(v)−6 if v ∈ V (G) and c(f) = dG(f)−6 if
f ∈ F (G). Thus

∑{c(x) | x ∈ V (G)∪ F (G)} = −12 by identity (∗). We are going to
redistribute the vertex charge c(v) to its incident faces according to the discharging
rules (R1)–(R4). During the process, the total sum of all charges is fixed. However,
after the discharging is complete, the new charge function c′(x) is nonnegative for all
x ∈ V (G) ∪ F (G). This leads to an obvious contradiction.

Now let v ∈ V (G). By (P1), dG(v) ≥ 4 and c(v) = 2dG(v) − 6 ≥ 2. The
discharging rules are as follows.

(R1) If dG(v) ≥ 6, or if dG(v) = 5 and v is incident to neither 3-faces nor bad
4-faces, or if dG(v) = 4 and v is not incident to any 3-faces, then we transfer the
amount w(v)/dG(v) from v to each face in F (v).

(R2) If dG(v) = 5 and v is incident to a 3-face f1 and a bad 4-face f2, then from
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v we transfer 1 to each of f1 and f2 and 2/3 to each face in F (v) \ {f1, f2}.
(R3) If dG(v) = 5 and v is incident to exactly one face f∗ that is a 3-face or a

bad 4-face, then from v we transfer 1 to f∗ and 3/4 to each face in F (v) \ {f∗}.
(R4) If dG(v) = 4 and v is incident to a 3-face f0, then from v we transfer 1 to

f0 and 1/3 to each face in F (v) \ {f0}.
Let τ(v → f) denote the amount transferred out of a vertex v into a face f ∈

F (v) according to the above rules. Then the following observations are immediate
consequences of (R1)–(R4).

Observation 1. For every v ∈ V (G) and every f ∈ F (v), τ(v → f) ≥ 1/3.
Observation 2. For every v ∈ V (G) with dG(v) ≥ 6 and every f ∈ F (v), τ(v →

f) ≥ 1.
By (P5), the rules imply that at most the amount c(v) is transferred from every

vertex v to its incident faces. Thus c′(v) ≥ 0 for every v ∈ V (G). It remains to prove
that c′(f) ≥ 0 for every f ∈ F (G).

If dG(f) ≥ 6, then c′(f) ≥ c(f) = dG(f)− 6 ≥ 0.
If dG(f) = 5, it follows from Observation 1 that c′(f) ≥ c(f) + 5/3 = 2/3.
If dG(f) = 3, the discharging rules and Observation 2 imply that f receives at

least 1 from each of its boundary vertices. So c′(f) ≥ c(f) + 3 = 0.
If dG(f) = 4, then the boundary of f contains at least one vertex of degree 5

or more by (P2). If the boundary of f contains a vertex v of degree at least 6, then
c′(f) ≥ 0 by Observations 1 and 2. If the boundary of f contains two 5-vertices u1

and u2, it follows from (R1), (R2), and (R3) that τ(u1 → f) ≥ 2/3 and τ(u2 → f) ≥
2/3. Hence c′(f) ≥ 0 by Observation 1. If the boundary of f contains exactly one
5-vertex v, then f is a bad 4-face. By (R2) and (R3), we derive τ(v → f) = 1 and
c′(f) ≥ 0.

The result of Theorem 2.4 is sharp in the sense that there exist planar graphs
G without intersecting triangles such that χ�(G) = 4. Havel [9] gave a planar graph
G of order 16 that contains four vertex-disjoint triangles and χ(G) = χ�(G) = 4.
Furthermore, Voigt [19] constructed a triangle-free planar graph G with χ(G) = 3
and χ�(G) = 4. More examples can be found in Aksionov and Mel’nikov [1].

Let T1 and T2 be two triangles of a graph G. The distance between T1 and T2 is
the length of a shortest path connecting a vertex of T1 to a vertex of T2. Let t(G)
denote the least integer k such that G contains two triangles T1 and T2 at distance
k. Define t(G) to be infinity if there exists at most one triangle in each component
of G. Lam, Shiu, and Xu [13] showed that every planar graph G with t(G) ≥ 2 is
4-choosable. Theorem 2.4 strengthens this result to prove that t(G) ≥ 1 guarantees
4-choosability for a planar graph. The condition t(G) ≥ 1 is essential since there exist
non-4-choosable planar graphs G with t(G) = 0; see [6, 14, 18]. However, we would
like to propose the following conjecture.

Conjecture 2.5. Every planar graph without adjacent triangles is 4-choosable.

3. Edge-(∆(G) + 1)-choosability. Borodin [4] showed that every 3-polytope
G, i.e., 3-connected planar graph, without intersecting triangles contains an edge
xy ∈ E(G) such that dG(x) + dG(y) ≤ 8. The following is a generalization of this
result.

Theorem 3.1. If G is a planar graph without intersecting triangles and δ(G) ≥ 3,
then there exists an edge xy ∈ E(G) such that dG(x) + dG(y) ≤ 8.

Proof. If G is 2-connected, the result follows from Theorem 3.2. Indeed, we may
choose any vertex of G as the specific vertex t∗. Otherwise, let H be a block of G
that contains a unique cut vertex, say t∗, of G. Since H is 2-connected and dH(v) ≥ 3
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for all v ∈ V (H) \ {t∗}, H − t∗ contains an edge xy such that dH(x) + dH(y) ≤ 8 by
Theorem 3.2. The result follows since dG(x) = dH(x) and dG(y) = dH(y).

Theorem 3.2. Let G be a 2-connected plane graph without intersecting 3-faces
and let t∗ ∈ V (G) be an arbitrarily chosen vertex. If dG(v) ≥ 3 for all v ∈ V (G)\{t∗},
then G− t∗ contains an edge xy such that dG(x) + dG(y) ≤ 8.

Proof. To obtain a contradiction, suppose that

dG(x) + dG(y) ≥ 9 for every edge xy of G− t∗. (∗∗)

We again use identity (∗) to define the charge function by c(v) = 2dG(v)−6 if v ∈ V (G)
and c(f) = dG(f) − 6 if f ∈ F (G). We are going to describe a discharging process
that will redistribute the charge c(v) of each vertex v to its incident faces while the
total sum of charges is kept fixed. We first note that, since G is 2-connected, the
boundary walk of every face of G forms a simple cycle.

(r0) We transfer the amount 2 from t∗ to every face in F (t∗).
Let v ∈ V (G) \ {t∗}. If dG(v) = 3, we do nothing. Otherwise, we redistribute

charges according to the following rules.

(r1) If dG(v) = 4, or if dG(v) ≥ 5 and v is not incident to any 3-face, then we
transfer the amount c(v)/dG(v) from v to each face in F (v).

(r2) If dG(v) ≥ 5 and v is incident to a 3-face f∗ with vertices u, v, w, let
dG(w) ≥ dG(u) and consider the following three subcases (r21), (r22), and (r23).

(r21) Assume dG(v) = 5. Then from v we transfer 5/4 to f∗ and 11/16 to each
face in F (v) \ {f∗}.

(r22) Assume dG(v) = 6. We further divide the situation into two subcases:

(r221) If dG(u) ≥ 4, let f1 and f2 denote the two faces in F (v) \ {f∗} that are
adjacent to f∗. Since G is 2-connected, f1 is different from f2. Then from v we
transfer 5/4 to f∗, 7/8 to f1, 7/8 to f2, and 1 to each face in F (v) \ {f1, f2, f

∗}.
(r222) If dG(u) ≤ 3, let fvw denote the face of G adjacent to f∗ such that vw is

their common edge. Then from v we transfer 3/2 to f∗, 1/2 to fvw, and 1 to each
face in F (v) \ {f∗, fvw}.

(r23) If dG(v) ≥ 7, then from v we transfer 2 to f∗ and (c(v)− 2)/(dG(v)− 1) to
each face in F (v) \ {f∗}.

We still use τ(v → f) to denote the amount transferred out of a vertex v into an
incident face f according to the above rules. Then the following claims hold.

Claim 1. If u ∈ V (G) and dG(u) ≥ 4, then τ(u→ f) ≥ 1/2 for all f ∈ F (u).

Claim 2. If v ∈ V (G) \ {t∗} and dG(v) ≥ 3, then
∑{τ(v → f) | f ∈ F (v)} ≤ c(v).

This implies c′(v) ≥ 0 for all v ∈ V (G) \ {t∗} with dG(v) ≥ 3.
Claim 3. If v ∈ V (G) with dG(v) ≥ 7, then τ(v → f) ≥ 1 for all f ∈ F (v).

Claim 4. Suppose that f = [u1u2u3u4] is a 4-face of G and t∗ is not incident to
f . If dG(u1) = dG(u3) = 3, then τ(u2 → f) ≥ 1 and τ(u4 → f) ≥ 1.

Proof of Claim 4. By (∗∗), we have dG(u2) ≥ 6 and dG(u4) ≥ 6. If dG(u2) ≥ 7,
then τ(u2 → f) ≥ 1 by Claim 3. So we assume dG(u2) = 6. If u2 is not incident to
any 3-face, then τ(u2 → f) = 1 by (r1). Otherwise, we suppose that u2 is incident to
a 3-face f0 = [u2xy]. If f0 is not adjacent to f , then τ(u2 → f) = 1 by (r221) and
(r222). If f0 is adjacent to f , we may suppose that x = u1. Thus dG(y) ≥ 6. It is easy
to see that τ(u2 → f) = 1 by (r222). Similarly, we can prove that τ(u4 → f) ≥ 1.
This completes the proof of Claim 4.

Now let us verify c′(f) ≥ 0 for all f ∈ F (G). If dG(f) ≥ 6, then c′(f) ≥ c(f) =
dG(f)− 6 ≥ 0. Otherwise, we consider two cases as follows.
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Assume that t∗ is incident to f . If 4 ≤ dG(f) ≤ 5, then c′(f) ≥ c(f) + 2 ≥
−2 + 2 = 0 by (r0). Assume f = [xyt∗] is a 3-face with dG(x) ≤ dG(y). If dG(x) ≥ 4,
then c′(f) ≥ −3+2+1/2+1/2 = 0 by (r0) and Claim 1. If dG(x) = 3, (∗∗) guarantees
dG(y) ≥ 6, and hence c′(f) ≥ −3 + 2 + 3

2 = 1/2 by (r0), (r222), and (r23).
Next assume that t∗ is not incident to f . If dG(f) = 5, it follows from (∗∗)

that the boundary of f contains at least three vertices of degree ≥ 5. By Claim 1,
c′(f) ≥ c(f) + 3/2 = 1/2.

If dG(f) = 3, we let f = [vuw] and suppose that dG(w) ≥ dG(u) ≥ dG(v). If
dG(v) ≥ 5, then c′(f) = c(f)+τ(v → f)+τ(u→ f)+τ(w → f) ≥ −3+ 5

4+
5
4+

5
4 = 3/4

by (r2). If dG(v) = 4, then (∗∗) implies that dG(w) ≥ dG(u) ≥ 5. Thus c′(f) ≥ 0
by (r1) and (r2). If dG(v) = 3, then dG(w) ≥ dG(u) ≥ 6. It follows from (r222) and
(r23) that c′(f) ≥ 0.

Finally, we suppose that dG(f) = 4, and hence c(f) = −2. Let f = [u1u2u3u4]
satisfying dG(u1) = min{dG(ui) | 1 ≤ i ≤ 4}. If dG(u1) ≥ 4, then c′(f) ≥ c(f)+2 = 0
by Claim 1. So we assume dG(u1) = 3. It follows that dG(u2) ≥ 6 and dG(u4) ≥ 6.
Assume dG(u4) ≥ dG(u2). Our proof is further divided into three subcases.

(C1) dG(u2) ≥ 7. Then Claim 3 guarantees c′(f) ≥ 0.
(C2) dG(u4) ≥ 7 and dG(u2) = 6. If dG(u3) ≥ 4, then by Claims 1 and 3 we have

c′(f) ≥ 0. If dG(u3) = 3, then τ(u2 → f) ≥ 1 and τ(u4 → f) ≥ 1 by Claim 4, and
hence c′(f) ≥ 0.

(C3) dG(u2) = dG(u4) = 6. If dG(u3) = 3, we have c′(f) ≥ 0 by Claim 4. If
dG(u3) ≥ 7, then τ(u3 → f) ≥ 1. By Claim 1, c′(f) ≥ 0. Now assume 4 ≤ dG(u3) ≤ 6.
If u2u3 is not in the boundary of any 3-face, then τ(u2 → f) = 1 by (r1), (r221), or
(r222) (with u = u1 in (r222)). By Claim 1, we obtain c′(f) ≥ 0. If u2u3 is in the
boundary of a 3-face, then u3u4 is not in the boundary of a 3-face since G has no
intersecting 3-faces, and so c′(f) ≥ 0 in this case also.

It follows that c′(x) ≥ 0 for all x ∈ (V (G)∪F (G))\{t∗}. However, c′(t∗) = c(t∗)−
2|F (t∗)| ≥ 2dG(t∗)− 6− 2dG(t∗) = −6. Thus we obtain the following contradiction.

−12 =
∑
{c(x) | x ∈ V (G) ∪ F (G)} =

∑
{c′(x) | x ∈ V (G) ∪ F (G)} ≥ −6.

The following is a direct consequence of Theorem 3.1.
Corollary 3.3. If G is a planar graph without intersecting triangles, then

δ(G) ≤ 4.
We note that the upper bound in Theorem 3.1 is tight. We can construct infinitely

many examples of 4-regular plane graphs without intersecting triangles. For instance,
we take any 3-regular triangle-free 3-polytope (e.g., the dual of any 4-connected tri-
angulation) and replace every edge by two (geometrically) parallel edges and every
vertex by three vertices forming a triangle.

Theorem 3.4. Every planar graph G without intersecting triangles is edge-k-
choosable, where k = max{7,∆(G) + 1}.

Proof. The proof is carried out by induction on the number |E(G)| of edges.
The theorem holds trivially when |E(G)| ≤ 3. Let G be a planar graph without
intersecting triangles such that |E(G)| ≥ 4. Suppose that L is an edge assignment
for G such that |L(e)| = k for each e ∈ E(G). Let δ′(G) = min{dG(v) | dG(v) > 0}.
If δ′(G) ≤ 2, let e be an edge of G incident to a vertex of degree δ′(G) in G. By
the induction hypothesis, G − e has an edge-L-coloring φ. We can extend φ to the
edge e because there are at most ∆(G) forbidden colors for e, whereas the number of
available colors is at least ∆(G) + 1. If δ′(G) ≥ 3, G contains an edge xy such that
dG(x) + dG(y) ≤ 8 by Theorem 3.1. The induction hypothesis implies that G − xy
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has an edge-L-coloring φ. We can color xy with some color from L(xy) that was not
used by φ on the edges adjacent to xy. Since there exist at most six such edges and
|L(xy)| = k ≥ 7, the required color is available.

Combining Theorem 3.4 and the results of [8] and [10], we obtain the following.
Theorem 3.5. If G is a planar graph without intersecting triangles and ∆(G) �=

5, then χ′�(G) ≤ ∆(G) + 1.
Acknowledgment. The authors would like to thank the referees for valuable

suggestions to improve this work. The examples supplied after Corollary 3.3 are due
to one of the anonymous referees.
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Abstract. Using a new string representation, we develop two algorithms for generating noniso-
morphic chord diagrams. Experimental evidence indicates that the latter of the two algorithms runs
in constant amortized time. In addition, we use simple counting techniques to derive a formula for
the number of nonisomorphic chord diagrams.
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1. Introduction. Chord diagrams are the fundamental combinatorial objects
underlying Vassiliev invariants, which have applications in knot theory [1]. A chord
diagram is a set of 2n points on an oriented circle (counterclockwise) joined pairwise
by n chords. Figure 1 illustrates a chord diagram with four chords. Two chord digrams
are isomorphic if one can be obtained by some rotation of the other. Special instances
of chord diagrams are shown to have application in stamp foldings by Koehler [7]. A
related object called a linearized chord diagram is studied by Stoimenow in [12] and
braided chord diagrams are discussed by Birman and Trapp in [2].
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Fig. 1. Chord diagram with four chords.

Two fundamental questions when dealing with any combinatorial object are the
following:

1. How many instances of the object are there? (i.e., How many nonisomorphic
chord diagrams are there with n chords?)
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part by Czech grant GAČR 201/99/0242 and ITI under project LN-00A 056.

http://www.siam.org/journals/sidma/15-4/37797.html
†Department of Computer Science, University of Toronto, Toronto, ON, Canada (jsawada@cs.

toronto.edu).

546



GENERATING NONISOMORPHIC CHORD DIAGRAMS 547

2. How can we efficiently generate (list) all instances of the object? (i.e., Can we
develop a fast algorithm to generate all nonisomorphic chord diagrams with
n chords?)

In response to the first question, three independent papers by Li and Sun [8], Cori
and Marcus [4], and Stoimenow [13] have derived enumeration formulas for the num-
ber of nonisomorphic chord diagrams. In each of these papers, the exact formula is
the main result; however, in each case the derivation of the formula uses relatively
complex methods. Cori and Marcus use Burnside’s lemma (stated in section 3) along
with liftings of quasidiagrams; Li and Sun introduce a new object called a general-
ized m-configuration; Stoimenow uses Burnside’s lemma along with two new objects:
linearized chord diagrams and generalized linearized chord diagrams. As a secondary
result in this paper, we derive an exact formula for the number of nonisomorphic
chord diagrams with n chords using simple counting techniques.

The second question has not received as much attention as the first, or at least no
significant results have been previously recorded. In response to this open problem,
we develop two algorithms for generating nonisomorphic chord diagrams using a new
string representation. A primary goal in any generation algorithm is for the amount of
computation to be proportional to the number of objects generated. Such algorithms
are said to be CAT, for constant amortized time. The first algorithm we develop is
very simple but does not attain this time bound. The second algorithm requires more
explanation; however, experimental evidence gives a strong indication that it is CAT.

In the following section we give some basic number theory definitions, along with
a background of a related object called a necklace. In section 3 we derive an exact
formula for enumerating nonisomorphic chord diagrams using simple techniques. In
section 4 we describe a new string representation for chord diagrams. Then, in section
5, we outline a simple generation algorithm for nonisomorphic chord diagrams. In sec-
tion 6 we present another generation algorithm, with experimental results indicating
that the algorithm is CAT. We conclude with a discussion of future work and open
problems in section 7.

2. Background. In the next section we derive an exact formula for the number
of nonisomorphic chord diagrams with n chords. In the derivation, we encounter the
following number theoretic functions.

The Euler totient function on an integer n, denoted φ(n), is the number of positive
integers less than n that are relatively prime to n.

The bifactorial of an integer n, denoted n!!, is defined by the following:

n!! =




�n−1
2 �∏
j=0

n− 2j if n > 0,

1 if n = 0 or n = −1,
0 if n ≤ −2 .

Using this notation, it is easy to see that the number of chord diagrams with n chords
is (2n− 1)!!.

2.1. Necklaces. An object closely related to a chord diagram is a necklace.
A necklace is the lexicographically smallest element of an equivalence class of k-ary
strings under rotation. For example, the set of all binary necklaces of length 4 is
{0000, 0001, 0011, 0101, 0111, 1111}. We call an aperiodic necklace a Lyndon word
and a string that is a prefix of a necklace a prenecklace. We will reserve the term
periodic necklace for a necklace that is not a Lyndon word.
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procedure GenNecklaces ( t, p : integer );
local j : integer;
begin

if t > n then
if n mod p = 0 then Print()

else begin
for j ∈ {at−p, . . . , k − 2, k − 1} do begin

at := j;
if at = at−p then GenNecklaces( t+ 1, p );
else GenNecklaces( t+ 1, t );

end;
end;

end;

Fig. 2. The recursive necklace generation algorithm.

Later, when we outline two algorithms for generating nonisomorphic chord dia-
grams, we follow the methods used in Ruskey’s recursive necklace generation algorithm
GenNecklaces(t, p) shown in Figure 2 [3]. This algorithm has been the basis for gener-
ating many other objects with rotational equivalence. In particular, it has been used
to develop CAT algorithms to generate bracelets [11], fixed density necklaces [9], and
unlabeled necklaces [3]. The general idea of this backtracking algorithm is to generate
a length t prenecklace, stored in the array a, and then for each valid character append
it to the end of the prenecklace to get a length t + 1 prenecklace. The parameter p
maintains the length of the longest Lyndon prefix of the string. When the prenecklace
is of length n, a simple test determines whether or not it is a necklace. This algorithm
can also generate Lyndon words by changing the condition from n mod p = 0 to n = p.
The initial call is GenNecklaces(1,1), and a0 is initially set to 0. The function Print()
prints out the string a1a2 · · · an. A more detailed explanation and a proof showing
the algorithm is CAT is found in [3].

3. Enumerating nonisomorphic chord diagrams. One of the most useful
tools for enumerating combinatorial objects with equivalence under some group action
is Burnside’s lemma.

Burnside’s Lemma. If a group G acts on a set S and Fix(g) = {s ∈ S|g(s) = s},
then the number of equivalence classes is given by

1

|G|
∑
g∈G
|Fix(g)|.

The set of all chord diagrams with n chords is partitioned into equivalence classes
by the cyclic group C2n. Two chord diagrams are isomorphic if one can be obtained by
some rotation of the other. If we let σ denote a single rotation by (360/2n) degrees,
then the group elements of C2n are σj for j = 1, 2, . . . , 2n. To count the number
of nonisomorphic chord diagrams with n chords, which we denote C(n), we apply
Burnside’s lemma:

C(n) =
1

2n

2n∑
j=1

Fix(σj).
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 (a)

q

2q

3q

4q

5q

6q

7q

5q

6q

4q

2q

q

3q

 (b)

Fig. 3. (a) One of the 2n− p possible lengths for the chords starting at q, 2q, . . . , pq. (b) For p
even, there is only one choice for the endpoint landing back in the list q, 2q, . . . , pq.

The number of chord diagrams fixed by σj depends only on the order of σj . In other
words, if two group elements σj and σk have the same order, then the set of chord
diagrams fixed by each group element will be the same. The number of elements of
C2n with order p (where p|2n) is φ(p). Thus, if we let T (2n, p) denote the number of
chord diagrams with n chords fixed by a group element of order p (namely σq), then

C(n) =
1

2n

∑
pq=2n

φ(p)T (2n, p).

We now derive a formula for T (2n, p) by deriving recurrence equations for two
cases: p odd and p even. We start by labeling the endpoints on a chord diagram
from 1 to 2n in counterclockwise order around the circle. For each endpoint i we
consider the chord that touches i to start at i and end at its other endpoint j. With
this labeling, we define the length of a chord starting from i and ending at j to be
(j − i) mod 2n. We now consider the chords starting at q, 2q, . . . , pq, where pq = 2n.
If a chord diagram is fixed by σq, then the length of the chords starting at these
positions must be the same. If p is odd, then there are 2n− p possible lengths for the
chords, since it is impossible for two endpoints in the list q, 2q, . . . , pq to be joined
together (see Figure 3(a)). If we now ignore these chords and their 2p endpoints, we
are reduced to the problem of counting T (2n− 2p, p). Thus, if p is odd,

T (2n, p) = (2n− p)T (2n− 2p, p).

In the base case, T (0, p) = 1. If p is even, then there is also one way for the chords
to have both endpoints in the set q, 2q, . . . , pq. This case arises when there are p/2
chords of length n which means that there are only p endpoints to ignore (see Figure
3(b)). Therefore, if p is even,

T (2n, p) = (2n− p)T (2n− 2p, p) + T (2n− p, p).

In the base cases, T (p, p) = T (0, p) = 1.
Solving the two recurrence equations yields the following exact formula:

T (2n, p) =




p
q
2 (q − 1)!! if p odd,

� q2 �∑
j=0

pj
(

q

2j

)
(2j − 1)!! if p even.
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(a) string = 42123143

2

3

1 3

4

2

4

1

2

3

6

5

3

5

6

2

(b) string = 62363525

s

Fig. 4. Two string representations: (a) label chords then endpoints; (b) label endpoints by chord
length.

The solution for odd p is easily obtained by substituting into the recurrence. Proof
by induction on q will verify the solution when p is even.

4. Representing chord diagrams. There are numerous ways to represent
chord diagrams. Several objects equivalent to our definition of chord diagrams have
been studied by other authors, including polygons where the sides are identified pair-
wise [14, 15] and one-vertex maps [6]. In this section we develop a new string repre-
sentation.

Before we describe this new string representation for chord diagrams, we outline a
very natural one. First, assign each chord a unique value from 1 to n and then label the
endpoints with the value of their incident chord. If we arbitrarily pick a starting point
s, then we obtain a string representation by recording the endpoint values starting
at s and moving counterclockwise (by convention) around the circle. In this manner,
any string with length 2n containing exactly two occurrences of the values 1 through
n can be used to represent a chord diagram. An example of this string representation
is shown in Figure 4(a). Such string representations have equivalence under string
rotation and permutation of the alphabet symbols 1 through n. Thus, there may be
up to 2n(n!) strings in each equivalence class. The lexicographically smallest strings
in each equivalence class are more commonly known as unlabeled necklaces (where the
number of each alphabet symbol is 2). Currently, there exists an efficient algorithm
for generating binary unlabeled necklaces [3]; however, no efficient algorithm exists
for strings on an arbitrarily sized alphabet. There also exists an efficient algorithm
to generate necklaces where the number of 0’s is fixed [9], but there is currently no
efficient algorithm to generate necklaces if the number of each alphabet symbol is
fixed.

Because no efficient generation algorithm currently exists using this natural string
representation, we consider a new approach. This time we label each endpoint with
its associated length (see section 3). Note that the lengths are independent of the
starting point s; however, there is a dependency between each pair of endpoints joined
by a chord—their values must sum to 2n. If we again traverse counterclockwise
around the circle starting at s, recording the endpoint values, we obtain a new string
representation. In this new string representation, we no longer have equivalence under
permutation of the alphabet symbols, and the number of each alphabet symbol is no
longer fixed; however, the size of the alphabet has increased from n to 2n − 1. An
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example of this string representation is given in Figure 4(b).

In each of the following two sections, we present an algorithm for generating
nonisomorphic chord diagrams. Both algorithms use the new string representation
outlined in this section; however, each algorithm defines a different representative for
each equivalence class.

5. A simple algorithm. In this section we develop a simple algorithm to list
all nonisomorphic chord diagrams with n chords. To represent the chord diagrams,
we use the new string representation described in the previous section. Using the
lexicographically smallest string as the representative of each equivalence class, we
arrive at a problem equivalent to generating length 2n necklaces on an alphabet of
size 2n−1, with the added restriction that each necklace corresponds to a valid chord
diagram.

Recall that when generating necklaces, we build up a prenecklace one character at
a time. Applying this to chord diagrams, we instead add one chord or two characters
at a time. Thus, if we are adding the value j to the tth position of the string, then
we must also add the value 2n − j to the (t + j)th position. Of course, we must
observe the condition that t + j ≤ 2n. In addition, we must make sure that we do
not overwrite values already assigned to positions t and t + j in the prenecklace. If
we have already assigned a value to the tth position (i.e., if at �= 0), then we continue
generation with position t + 1 only if the string a1 . . . at is a valid prenecklace (i.e.,
at ≥ at−p). If at < at−p, then any chord diagram with prefix a1a2 · · · at will not be
lexicographically minimal under rotation [3]. By adding these simple modifications
to GenNecklaces(t, p), we ensure that each necklace generated corresponds to a valid
chord diagram. The resulting algorithm for generating nonisomorphic chord diagrams
in lexicographic order, SimpleChords(t, p), is shown in Figure 5. The initial call is
SimpleChords(1, 1), and a0 is initially set to 1. The function Print() prints out the
string a1a2 · · · a2n. Aperiodic chord diagrams can be generated by replacing the test
2n mod p = 0 with 2n = p, as was the case with necklaces.

Recall that our goal is to develop a generation algorithm which runs in constant
amortized time. The goal does not look promising with this algorithm since the depth
of the computation tree is 2n when we require only the assignment of n chords per
diagram. To verify this conjecture we gather some experimental evidence. To calculate
the amount of computation we sum the number of recursive calls plus the number of
iterations of the for loop that did not produce a recursive call. The resulting ratio
of this computation compared to the number of chord diagrams generated is given
in Table 1 for n ≤ 11 . Notice that the ratios are steadily increasing as the number
of chords increases. This is a strong indication that the algorithm is not CAT. For
this reason, we attempt no mathematical analysis and focus on developing a faster
algorithm.

6. A fast algorithm. In this section we develop an experimentally CAT algo-
rithm for generating nonisomorphic chord diagrams. In this algorithm we use the
same string representation for chord diagrams as in the previous algorithm, but this
time we use a different representative for each equivalence class.

Let α = a0a1a2 · · · a2n−1 represent a chord diagram with n chords. Let posi be
the increasing sequence (possibly empty) composed of the positions (indexes) for all
occurrences of the value i in α. Now consider the string β = pos1pos2pos3 · · · pos2n−1.
Using this construction, each string α yields a unique string β. We define the canonical
form, or representative, of each equivalence class to be the string α with the lexico-
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procedure SimpleChords ( t, p : integer );
local j : integer;
begin

if t > 2n then
if 2n mod p = 0 then Print()

else begin
if at = 0 and t+ at−p ≤ 2n then begin

for j ∈ {at−p, . . . , 2n− t} do begin
if at+j = 0 then begin

at := j; at+j := 2n− j;
if at = at−p then SimpleChords( t+ 1, p );
else SimpleChords( t+ 1, t );
at+j := 0;

end;
end;
at := 0;

end;
else if at = at−p then SimpleChords( t+ 1, p );
else if at > at−p then SimpleChords( t+ 1, t );

end;
end;

Fig. 5. A simple algorithm for generating nonisomorphic chord diagrams with n chords.

Table 1
Experimental results for SimpleChords(t, p).

Number of Nonisomorphic Ratio of work done to
chords n chord diagrams chord diagrams generated

1 1 1.0
2 2 3.0
3 5 8.0
4 18 11.8
5 105 14.3
6 902 15.7
7 9749 16.9
8 127072 17.9
9 1915951 18.8
10 32743182 19.8
11 624999093 20.7

graphically smallest string β. For example, in Table 2 we show the equivalence class of
strings representing the chord diagram in Figure 4(b) along with their corresponding
β strings.

Before we develop a generation algorithm using these representatives, we first
outline a linear time verification algorithm for determining whether or not the string
α (representing a chord diagram) is in canonical form.

6.1. A verification algorithm. A näıve method for determining if a chord
diagram α is in canonical form is to compare its β string with the β string of all other
strings in its equivalence class. Such an algorithm would take worst case time O(n2).
We present an algorithm that runs in linear time.

By the definition of the canonical form, we see that the positions of the minimum
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Table 2
The canonical form for this equivalence class is 25623635.

α β
62363525 16245703
23635256 05134627
36352562 47023516
63525623 36172405
35256236 25061347
52562363 14570236
25623635 03461725
56236352 27350614

value in the string α = a0a1 · · · a2n−1 are the most critical. If v∗ is the minimum
value, then we consider the string posv∗ = p1p2 · · · pt, where there are t occurrences
of the value v∗ in α. In order for α to be in canonical form then p1 must equal 0 or,
equivalently, a0 = v∗. If p1 had any other value, then there would exist a rotation of
α such that p1 = 0. This would yield a smaller posv∗ string, and thus a smaller β
string. Now consider the modified string pos′v∗ = q1q2 · · · qt, where qi = pi+1 − pi for
i = 1, 2, . . . , t− 1 and qt = 2n− pt. If the string pos′v∗ is a necklace, then it is easy to
verify that the original string posv∗ will be the lexicographically smallest string when
compared to the corresponding posv∗ strings from other strings in α’s equivalence
class. Furthermore, if pos′v∗ is a Lyndon word, then α will be the unique string in its
equivalence class to yield the string posv∗ , and thus it is in canonical form. If pos′v∗ is
not a necklace, then we can find a rotation of the string α such that a smaller string
posv∗ can be obtained, implying that α is not in canonical form. As an example to
the above strategy, consider the string α = 363959463789. Since the minimum value
is 3, we consider pos3 = 028 and pos′3 = 264. Because pos′3 is a Lyndon word, α is in
canonical form.

Using this strategy, we can determine whether or not a string α is in canonical
form unless the string pos′v∗ is a periodic necklace. If pos′v∗ has length t and pe-
riod p, assign p′ = 2n(pt ); then the rotations of the string α starting at positions
p′, 2p′, . . . , 2n− p′ will all yield the same string posv∗ . In this case, we must continue
examining α’s corresponding β string. We update the value v to the next smallest
value found in α and focus on the new string posv. Observe that we can no longer
employ the same strategy as before, since the starting points for the other rotations
of α that may be the canonical form have been restricted. Of these remaining strings,
for α to be in canonical form, it must have the lexicographically smallest string posv.
To determine this efficiently, we modify the string posv in the following manner. First,
the values p′, 2p′, . . . , 2n − p′, 2n are inserted into posv so the string is still in sorted
order. Then each value j is replaced with j mod p′. Finally, we replace all 0’s, which
were originally the values p′, 2p′, . . . , 2n, with p′. We denote this modified string by
pos′v. Notice that such a construction implies that the string pos′v for σj(α), where
j is p′, 2p′, . . . , 2n − p′, is a rotation of the string pos′v for α. Thus, as before, if the
resulting string pos′v is a Lyndon word, then α is in canonical form. If pos′v is a peri-
odic necklace with period p and length t, then we repeat this procedure with the next
largest v, updating p′ to 2n(pt ). If pos′v is not a necklace, then α is not in canonical
form. Due to the dependencies on the string α, if v ever exceeds n, then the chord
diagram is in canonical form and has period equal to the last updated value for p′.

To get a better understanding of this verification algorithm, we go through two
examples.
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Example 1. Consider a chord diagram represented by α = 1925819258 . We want
to determine if α is in canonical form. First we consider pos1 = 05 and pos′1 = 55.
Since pos′1 is a periodic necklace we must consider pos2 = 27, with p′ = 5. To modify
pos2, we insert the value 5 and 10 to get the string 2 5 7 10. Next, we replace each
value j with j mod 5 to get 2020. Finally, we replace the 0’s with 5 to get the new
string pos′2 = 2525. Since this is a periodic necklace, we must repeat this procedure
for the string pos5 updating p′ = 5. We now consider pos5 = 38 and perform the
modifications to get pos′5 = 3535. Again we have a periodic necklace and update
p′ = 5. Since the next value exceeds n, we conclude that α is in canonical form (with
period 5).

Example 2. Consider the string α = 3 6 10 13 11 4 7 10 3 12 4 13 6 9 12 5 rep-
resenting a chord diagram with eight chords. To determine if it is in canonical form we
first consider pos3 = 08 with pos′3 = 88. Since the latter string is a periodic necklace
we must consider pos4 = 5 10 with pos′4 = 5828. Now since 5828 is not a necklace,
the string α is not in canonical form.

In the worst case, this verification algorithm must analyze each string pos′v for
v = 1, 2, . . . , n. Using Duval’s algorithm for factoring a string into Lyndon words [5],
we can determine if pos′v is a necklace or a Lyndon word in linear time. Therefore,
an upper bound for the running time of the algorithm is proportional to

∑n
v=1 |pos′v|.

Observe that length of each string pos′v is at most |posv| + |posv−1|. Thus, since∑n
v=1 |posv| ≤ 2n, the verification algorithm runs in time O(n).

6.2. The generation algorithm. In this subsection we describe a fast algo-
rithm for generating chord diagrams. The method behind the generation algorithm
follows directly from the verification algorithm described in the previous subsection.

Following the verification algorithm, the placement of the minimum value v∗ is
the most important. Specifically, the value v∗ must occur in the position a0, and the
string pos′v∗ must be a necklace. Thus, the first step in the generation algorithm is to
generate all strings posv∗ (the placing of the values v∗ in α) so that the corresponding
string pos′v∗ is a necklace. For each string pos′v∗ that is a Lyndon word, it does not
matter how the rest of the string α is filled as long as each position has value at least
v∗ + 1. Of course, each value added to a string represents an endpoint of a chord
whose other endpoint must be added simultaneously, so that whenever the value v is
added to position s the value 2n − v must be added to position (s + v) mod 2n. If
the string pos′v∗ is a periodic necklace, then we repeat the process by attempting to
place the next largest value v in such a way that pos′v is a necklace. The result of this
approach is the generation of all strings α which represent unique chord diagrams.

This algorithm is naturally divided into three separate recursive routines: the
first routine Gen(t, p, s, v∗, last, B) generates the necklaces pos′v∗ ; the second routine
Gen2(t, p, s, v, p′, part) generates the necklaces pos′v for all v > v∗; and the third
routine GenRest(s, e, v) fills the remaining positions with values that are at least v.
The routine FastChords() drives these routines to generate all nonisomorphic chord
diagrams with n chords.

Within the algorithm a global linked list is used to keep track of the available
positions of α, in increasing order. The variable head is the value of the first available
position, and the value 2n represents the end of the list. If s is an available position in
the list, then s.next will give the value of the next available position in the list. If the
list is implemented using an array with next and previous pointers, then the functions
Add(s), Remove(s), and Avail(s) can be implemented in constant time. The boolean
function Avail(s) returns TRUE if s is in the list of available positions and FALSE
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procedure FastChords ();
local i, v∗ : integer;
begin

InitList();
for v∗ ∈ {1, 2, . . . , n− 1} do posv∗,0 := 0;
for v∗ ∈ {1, 2, . . . , n− 1} do begin

a0 := v∗; av∗ := 2n− v∗;
Remove(0); Remove(v∗);
Gen(1, 1, head, v∗, 0,TRUE);
Add(v∗); Add(0);

end;
for i ∈ {0, 1, 2, . . . , 2n− 1} do ai := n;
Print();

end;

Fig. 6. FastChords().

otherwise. The routine InitList() initializes the list to contain every position from 0 to
2n− 1. The function Print() prints out the contents of the string α = a0a1 · · · a2n−1.

The various details of the functions FastChords(), Gen(t, p, s, v∗, last, B),
Gen2(t, p, s, v, p′, part), and GenRest(s, e, v) are described in the following subsections.
Many of the details correspond directly to comments made in the verification algo-
rithm.

6.2.1. FastChords(). The routine FastChords() drives the algorithm by calling
Gen(1, 1, head, v∗, 0,TRUE) for each value v∗ ranging from 1 to n− 1. Before making
the call, it makes the first assignment of the value v∗ to the position a0 as well as the
assignment of the value 2n − v∗ to the position av∗ . The only string with minimum
value n is α = n2n. This string is listed separately at the end of this function. The
pseudocode for FastChords() is shown in Figure 6.

6.2.2. Gen(t, p, s, v∗, last, B). This function generates all necklaces pos′v∗ by re-
cursively going through each available position s in α and attempting to place the
value v∗. The function maintains the following parameters (the first two are from the
necklace generation algorithm):

• t: maintains the length of the prenecklace pos′v∗
• p: maintains the length of the longest Lyndon prefix of pos′v∗
• s: the position of α to be filled
• v∗: the value to be placed into position s
• last: the position of the last inserted value v∗ in α
• B: boolean value indicating if it the first time the prenecklace pos′v∗ has been
encountered

At each call to Gen(t, p, s, v∗, last, B), the string pos′v∗ = q1q2 · · · qt−1 is a prenecklace.
To extend this string to a length t prenecklace, the next value qt must be at least qt−p.
If we set the value min = last + qt−p then if s ≥ min, then the new value s − last
can be appended to the prenecklace of length t− 1 (as long as the associated position
(s+ v∗) mod 2n is available) to obtain a new prenecklace of length t.

Before we attempt to extend the pre-necklace pos′v∗ we must consider its sta-
tus with the value 2n − last appended to the end. If min < 2n, then the string
with the appended value is a Lyndon word and for each Lyndon word we call Gen-
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procedure Gen ( t, p, s, v∗, last: integer; B: boolean );
local s′,e,min : integer;
begin

min := last+ pos′v∗,t−p;
if min < 2n and B = TRUE then GenRest(head, head.next, v∗ + 1);
if min = 2n and t mod p = 0 and B = TRUE then begin

if t = n then Print();
else Gen2(1, 1, head, v∗ + 1, 2npt , 0);

end;
if min < 2n and s < 2n then begin

e := (s+ v∗) mod 2n;
if s ≥ min and Avail(e) then begin

s′ := s.next;
if s′ = e then s′ := e.next;
as := v∗; ae := 2n− v∗;
Remove(s); Remove(e);
pos′v∗,t := s− last;
if s = min then Gen(t+ 1, p, s′, v∗, s,TRUE);
else Gen(t+ 1, t, s′, v∗, s,TRUE);
Add(e); Add(s);

end;
Gen(t, p, s.next, v∗, last,FALSE);

end; end;

Fig. 7. Gen(t, p, s, v∗, last, B).

Rest(head, head.next, v∗ + 1) to fill the remainder of the string α. If min = 2n and
t mod p = 0, then the modified string is a periodic necklace and for each periodic neck-
lace we attempt to place the value v∗ + 1 by calling Gen2(1, 1, head, v∗ + 1, 2npt , 0),
unless α has been completely filled (t = n), in which case we simply print the string.
For these tests we must be careful not to consider the same prenecklace pos′v∗ twice.
The boolean value B indicates whether or not the prenecklace has been encountered
before. If B is TRUE, then it is the first time the prenecklace has been encountered.

Once we have checked if pos′v∗ with the appended value 2n − last is a necklace,
we proceed by attempting to add the value v∗ to the position s. If we can, then we
remove the positions s and (s+ v∗) mod 2n from the avail list, make the appropriate
assignments to α and pos′v∗ , and make a recursive call with appropriate updates to the
parameters. Finally, regardless of whether or not a value has been placed, we make a
recursive call for the next available position s.next, but here we must set the boolean
value B to FALSE, since the same prenecklace is used in the resulting recursive call.

This function assumes that the first position in the string α has been assigned
the value v∗. The pseudocode for Gen(t, p, s, v∗, last, B) is shown in Figure 7.

6.2.3. Gen2(t, p, s, v, p′, part). This function generates all necklaces pos′v for val-
ues v > v∗, given the remaining available positions in the string α. It maintains the
following parameters:

• t: maintains the length of the prenecklace pos′v
• p: maintains the length of the longest Lyndon prefix of pos′v
• s: the position of α to be filled
• v: the value to be placed into position s
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• p′: the value as described in the verification algorithm
• part: maintains the number of times p′ has been inserted

According to the verification algorithm, we must make two modifications to the
string posv. First we convert all positions s in the string to s mod p′. Second we
must insert the values p′ at particular locations in the string. Thus, if we generate
the prenecklaces posv by converting each position s to s mod p′ and adding the values
p′ where necessary, we are in fact generating the prenecklaces pos′v.

The extension of the prenecklaces pos′v = q1q2 · · · qt−1 is similar to the pre-
vious function, but in this case the value min is simply qt−p and the value we
wish to add is s mod p′. Thus if s mod p′ ≥ min and the associated position (s +
v) mod 2n is available, then we can extend the prenecklace pos′v in a similar fashion
to Gen(t, p, s, v∗, last, B).

Once we have considered all available positions s in α, the parameter s will equal
2n. If head = 2n, then α is full and by construction it is in canonical form. In this
case the string α is printed. Otherwise, we analyze the string pos′v to see if it is a
Lyndon word or a periodic necklace. If min is strictly less than p′, then the string
is a Lyndon word and GenRest(head, head.next, v + 1) is called to fill the remaining
available positions in α. If t mod p = 0, then the string is a periodic necklace. In this
case we call Gen2(1, 1, head, v + 1, 2npt , 0) to generate the necklaces pos′v+1. Before
we make the initial test of s = 2n, however, we must consider three special cases.

Case 1. When v = n we do not want to place the value v in any position s greater
than n. This is because the resulting string is equivalent to placing the value in the
position n − s. Thus as soon as we reach such a state we terminate generation from
this node, unless α is full (head = 2n), in which case we print the string.

Case 2. We must consider the case when the value v is not placed in the string α.
This state occurs when t = 1 and s > p′. In this case we continue with the placement
of v+1 by calling Gen2(1, 1, head, v+1, p′, 0). Before making this call, we must make
sure that v is less than n. Otherwise, we will end up trying to place a value greater
than n which will result in the value 2n − v, which will be less than n, being added
to α.

Case 3. The final case to consider is the placement of the values p′ in the string
pos′v. These values are placed the first time the position s exceeds the value p′(part+
1). Once the value is added, then the generation is continued by incrementing the
parameter part by 1 and updating the values t and p as usual.

The pseudocode for Gen2(t, p, s, v, p′, part) is shown in Figure 8.

6.2.4. GenRest(s, e, v). The routine GenRest(s, e, v) is a simple recursive proce-
dure that fills the remaining available positions in α with values greater than or equal
to v. It takes the following parameters as input:

• s: the first available position in α
• e: another available position in α
• v: the minimum value to be placed

The idea is to place a chord joining positions s and e. Such an assignment is valid
as long as the values e − s and 2n − e + s are both greater than or equal to v. If
the assignment is valid, then a recursive call is made with the next two available
positions. Regardless, if the assignment is valid, we make a recursive call to check the
next possible position for e which is e.next. If 2n − e.next + s < v, then clearly no
empty positions past e will provide valid assignments. Once all the positions are filled
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procedure Gen2 ( t, p, s, v, p′, part: integer );
local s′,e,min: integer;
begin

min := pos′v,t−p;
if v = n and s > n then begin

if head = 2n then Print();
end;
else if t = 1 and s > p′ then begin

if v < n then Gen2(1, 1, head, v + 1, p′, 0);
end;
else if s > p′(part+ 1) then begin

pos′v,t := p′;
if min = p′ then Gen2(t+ 1, p, s, v, p′, part+ 1);
else Gen2(t+ 1, t, s, v, p′, part+ 1);

end;
else if s = 2n then begin

if head = 2n then Print();
else if min < p′ then GenRest(head, head.next, v + 1);
else if t mod p = 0 then Gen2(1, 1, head, v + 1, 2npt , 0);

end;
else begin

e := (s+ v) mod 2n;
if s mod p′ ≥ min and Avail(e) then begin

s′ := s.next;
if s′ = e then s′ := e.next;
as := v; ae := 2n− v;
Remove(s); Remove(e);
pos′v,t := s mod p′;
if s mod p′ = min then Gen2(t+ 1, p, s′, v, p′, part);
else Gen2(t+ 1, t, s′, v, p′, part);
Add(e); Add(s);

end;
Gen2(t, p, s.next, v, p′, part);

end; end;

Fig. 8. Gen2(t, p, s, v, p′, part).

(s = 2n) then the string is printed. The pseudocode for GenRest(s, e, v) is shown in
Figure 9.

6.2.5. Analysis. As with the previous algorithm, we obtain experimental results
for the amount of work done compared to the number of chord diagrams generated.
Since the work done for each recursive call is constant, we count the amount of work
done by summing the number of recursive calls. The resulting ratios are shown in
Table 3 for n ≤ 12. Notice that the ratios are decreasing (after n = 5) as the number
of chords increases. This gives a very strong indication that the algorithm runs in
constant amortized time.
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procedure GenRest ( s, e, v : integer );
begin

if s = 2n then Print();
else if e �= 2n then begin

if e− s ≥ v and 2n− e+ s ≥ v then begin
as := e− s; ae := 2n− as;
Remove(s); Remove(e);
GenRest(head,head.next,v);
Add(e); Add(s);

end;
if 2n− e.next+ s ≥ v then GenRest(s,e.next,v);

end; end;

Fig. 9. GenRest(s, e, v).

Table 3
Experimental results for FastChords().

Number of Nonisomorphic Ratio of work done to
chords n chord diagrams chord diagrams generated

1 1 1.0
2 2 3.0
3 5 9.2
4 18 13.6
5 105 14.2
6 902 12.4
7 9749 11.0
8 127072 10.0
9 1915951 9.4
10 32743182 8.9
11 624999093 8.5
12 13176573910 8.2

Conjecture 1. The algorithm for generating nonisomorphic chord diagrams,
FastChords(), is CAT.

A complete C program for each of the nonisomorphic chord diagram generation algo-
rithms is available from the author. Table 4 shows the outputs from each of the two
algorithms for values of n up to 4.

7. Future work. In this paper we have outlined a fast algorithm for generating
nonisomorphic chord diagrams. However, we have not found a mathematical proof to
show that the algorithm is CAT, leaving a challenging open problem. We have also
mentioned two other open problems in this paper:

• the development of an efficient algorithm to generate k-ary unlabeled neck-
laces;
• the development of an efficient algorithm to generate k-ary necklaces where
the number of occurrences of each alphabet symbol is fixed.

The canonical form used in the algorithm FastChords() has recently been used to
develop a CAT algorithm for the latter problem if the number of occurrences of some
value v is relatively prime to n [10].
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Table 4
Different outputs for the two generation algorithms.

Output from SimpleChords(t, p) Output from FastChords()

n = 1: 1 1 n = 1: 1 1

n = 2: 1 3 1 3 n = 2: 1 3 1 3
2 2 2 2 2 2 2 2

n = 3: 1 5 1 5 1 5 n = 3: 1 5 1 5 1 5
1 5 2 2 4 4 1 5 3 1 5 3
1 5 3 1 5 3 1 5 2 2 4 4
2 3 4 2 3 4 2 3 4 2 3 4
3 3 3 3 3 3 3 3 3 3 3 3

n = 4: 1 7 1 7 1 7 1 7 n = 4: 1 7 1 7 1 7 1 7
1 7 1 7 2 2 6 6 1 7 1 7 3 1 7 5
1 7 1 7 3 1 7 5 1 7 1 7 2 2 6 6
1 7 2 3 6 2 5 6 1 7 4 1 7 2 4 6
1 7 2 4 6 1 7 4 1 7 5 3 1 7 5 3
1 7 3 3 3 5 5 5 1 7 4 4 1 7 4 4
1 7 3 4 2 5 6 4 1 7 2 3 6 2 5 6
1 7 4 2 3 6 4 5 1 7 3 3 3 5 5 5
1 7 4 4 1 7 4 4 1 7 3 4 2 5 6 4
1 7 5 2 2 6 6 3 1 7 4 2 3 6 4 5
1 7 5 3 1 7 5 3 1 7 5 2 2 6 6 3
2 2 6 6 2 2 6 6 2 2 6 6 2 2 6 6
2 3 6 3 5 2 5 6 2 5 6 2 3 6 3 5
2 4 6 3 3 4 5 5 2 4 6 4 2 4 6 4
2 4 6 4 2 4 6 4 2 4 6 3 3 4 5 5
3 4 4 5 3 4 4 5 3 5 3 5 3 5 3 5
3 5 3 5 3 5 3 5 3 4 4 5 3 4 4 5
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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Abstract. In this paper we study inverting random functions under the maximum likelihood
estimation (MLE) criterion in the discrete setting. In particular, we consider how many independent
evaluations of the random function at a particular element of the domain are needed for reliable
reconstruction of that element. We provide explicit upper and lower bounds for MLE, both in the
nonparametric and parametric setting, and give applications to coin-tossing and phylogenetic tree
reconstruction.
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1. Review of random functions. This paper is a sequel of our earlier paper
[12]. We assume that the reader is familiar with that paper; however, we repeat the
most important definitions.

For two finite sets, A and U , let us be given a U -valued random variable ξa for
every a ∈ A. We call the vector of random variables (ξa : a ∈ A) a random function
Ξ : A→ U . Ordinary functions are specific instances of random functions. It is easy
to see [12] that an equivalent definition of random functions is obtained by picking
one of the |U ||A| ordinary functions from A to U according to some distribution.

Given another random function, Γ, from U to V , we can speak about the compo-
sition of Γ and Ξ, Γ ◦ Ξ : A→ V , which is the vector variable (γξa : a ∈ A). In this
paper we are concerned with inverting random functions. In other words, we look for
random functions Γ : U → A in order to obtain the best approximations of the iden-
tity function ι : A→ A by Γ ◦ Ξ. We always assume that Ξ and Γ are independent.
This assumption holds for free if either Ξ or Γ is a deterministic function.

Our motivation for the study of random functions came from phylogeny recon-
struction. Stochastic models define how biomolecular sequences are generated at the
leaves of a binary tree. If all possible binary trees on n leaves come equipped with a
model for generating biomolecular sequences of length k, then we have a random func-
tion from the set of binary trees with n leaves to the ordered n-tuples of biomolecular
sequences of length k. Phylogeny reconstruction is a random function from the set of
ordered n-tuples of biomolecular sequences of length k to the set of binary trees with
n leaves. It is a natural assumption that random mutations in the past are indepen-
dent from any random choices in the phylogeny reconstruction algorithm. Criteria for
phylogeny reconstruction may differ according to what one wishes to optimize.
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Consider the probability of returning a from a by the composition of two random
functions; that is, ra = P[γξa = a]. The assumption on the independence of Ξ and Γ
immediately implies

ra =
∑
u∈U

P[ξa = u] · P[γu = a].(1.1)

A natural criterion is to find Γ for a given Ξ in order to maximize
∑
a ra. More

generally, we may have a weight function w : A→ R
+, and we may wish to maximize∑

a raw(a). This can happen if we give preference to returning certain a’s, or if we have
a prior probability distribution on A and we want to maximize the expected return
probability for a random element of A selected according to the prior distribution.
A random function Γ∗ : U → A can be defined in the following way: for any fixed
u ∈ U ,

γ∗u = a∗ for sure if ∀a ∈ A, P[ξa∗ = u]w(a∗) ≥ P[ξa = u]w(a).(1.2)

In case there is more than one element a∗ that satisfies (1.2), we may select uniformly
at random from the set of such elements. This function Γ∗ is called the maximum a
posteriori estimator (MAP) in the literature [7]. The special case when the weight
function w is constant is known as the maximum likelihood estimation (MLE) [2, 7].
The MAP estimator Γ∗ maximizes

∑
a raw(a) for any given Ξ; i.e., MAP is best on

average. This result appears as Theorem 17.2 of [8], but an equivalent formulation, in
the context of decision theory, is given by Theorem 10.3.1 of [2]; a further formulation,
using a different proof, appears as Theorem 3.1 of [12]. However, it is at least as
natural to look at a more conservative criterion: maximize the smallest value of ra
for a ∈ A; i.e., do the worst case the best. For this criterion MAP or MLE is, in
general, not optimal. It is surprising, but little is known about the performance of
MAP or MLE under this more conservative criterion.

Our paper [12] introduced a new abstract model for phylogeny reconstruction:
inverting parametric random functions. Most of the work done on the mathematics
of phylogeny reconstruction can be discussed in this context. This model is more
structured than random functions, and hence is better suited to describe details of
models of phylogeny and the evolution of biomolecular sequences. The approach is
likely to be applicable in other areas where “nuisance” parameters are involved.

Assume that for a finite set A, for every a ∈ A, an (arbitrary, finite, or infinite)
set Θ(a) �= ∅ is assigned, and, moreover, Θ(a) ∩Θ(b) = ∅ for a �= b. Set B = {(a, θ) :
a ∈ A, θ ∈ Θ(a)} and let π1 denote the natural projection from B to A. A parametric
random function is the collection Ξ of random variables such that

(i) for a ∈ A and θ ∈ Θ(a) there is a (unique) U -valued random variable ξ(a,θ)
in Ξ.

We are interested in random functions Γ : U → A independent from Ξ so
that γξ(a,θ)

best approximates π1 under certain criteria. Call R(a,θ) the probabil-
ity P[γξ(a,θ)

= a]. MLE, as it is used in the practice of phylogeny reconstruction,
would take the Γ′, for which, for every fixed u, γ′u = a′ for sure, if

∀(a, θ) ∈ B ∃θ′ ∈ Θ(a′) P[ξ(a′,θ′) = u] ≥ P[ξ(a,θ) = u].(1.3)

In case there is more than one element a′ that satisfies (1.3), we may select uniformly
at random from the set of such elements. (We avoided using the more natural looking
quantification ∃θ′ ∈ Θ(a′) for all (a, θ) ∈ B, since P[ξ(a′,θ′) = u] may not take a
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maximum value!) We denote by R′(a,θ) the probability that from the pair (a, θ) the

MLE Γ′ returns a, i.e.,

R′(a,θ) = P[γ′ξ(a,θ)
= a].(1.4)

In [12] we made further assumptions on parametric random functions that we do
not make in this paper:

(ii) There is a measure space (Θ(a), µa(.)) defined on every Θ(a) such that
µa(Θ(a)) < ∞.

(iii) For all u ∈ U , and for all a ∈ A, P[ξ(a,θ) = u] ∈ L1(Θ(a), µa(.)).
Under these additional conditions we showed in [12] that in the model of para-

metric random functions the MLE criterion has to be modified to ensure the property
that Γ′ maximizes: ∑

a∈A

∫
R(a,θ)dµa(θ).(1.5)

This criterion is natural, since if
∑
a∈A

∫
dµa(θ) = 1, the formula (1.5) can be inter-

preted as the expected probability of return of elements of A, given a prior distribution
on A.

The purpose of this paper is to place explicit upper and lower bounds on the
probability that MLE correctly reconstructs elements of A, in both the parametric and
nonparametric settings. Our primary interest is in the situation where k independent
experiments are carried out, and we wish to determine how large k needs to be in
order to correctly recover the underlying element of A with high probability. To
emphasize the role of k we will let [r(k)]∗a (resp., [R(k)]′(a,θ)) denote the probability

that MLE correctly reconstructs a in the nonparametric (resp., parametric) setting.
We illustrate our bounds in the nonparametric setting by applications to coin-tossing
and phylogeny reconstruction.

For the parametric setting, we first show, by way of an example, that the non-
parametric upper bound on k does not extend in the way one might hope or expect.
Nevertheless, we provide (in Theorem 5.1) an explicit upper bound on the number k
of experiments required for MLE to reconstruct elements of A accurately. This result
can be regarded as an extension of a discrete version of Wald’s theorem [15]. We
describe some implications of this result for phylogeny reconstruction in the remarks
following Theorem 5.1.

Most of present paper can be considered as an attempt to analyze the worst
case behavior of MLE. This is a very natural question in situations where a prior
distribution is not given on A, or the inverting of the random function is to be carried
out only once. Such a situation arises in phylogeny reconstruction, where we do not
have a prior distribution on alternative evolutionary scenarios, and the reconstruction
is not going to be repeated—there is only one “tree of life” that we want to know.
However, the results in this paper are not restricted to the phylogeny setting and may
be relevant to several other areas where MLE estimation is employed.

Our approach is information-theoretic; we focus on the possibility or impossibility
of inverting random functions, and not on the computational complexity issues. Our
results can also be restated in the language of decision theory, by talking about “loss
functions” and “risk function” associated with the ML decision rule. Although some
of our consequences or applications (described in section 4) may be derivable from
existing theory, as far as we are aware the main results in this paper are not special
cases of published results in either information theory or statistical decision theory.
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2. Distances between distributions. For a, b ∈ A, Ξ : A→ U , let

d(a, b) =
∑
u∈U
|P[ξa = u]− P[ξb = u]|.(2.1)

We will refer to d(a, b) as the variational distance of the random variables ξa and ξb.
We also use the Hellinger distance of the random variables ξa and ξb, defined by

dH(a, b) =

√√√√∑
u∈U

(√
P[ξa = u]−

√
P[ξb = u]

)2

.(2.2)

These measures sometimes appear with slightly different definitions, terminology,
and normalization constants. (For example, 1

2d(a, b) is sometimes referred to as the
“variation distance.”) It is well known (see p. 25 in [9]) that 0 ≤ d(a, b) ≤ 2 and

d2
H(a, b) ≤ d(a, b) ≤ 2dH(a, b).(2.3)

We are going to use a well known and elegant multiplicative property of the Hellinger
distance. For any Ξ : A → U random function define the Ξ(k) : A → Uk random

function as a sequence of k independent trials of Ξ. Let d
(k)
H (a, b) denote the Hellinger

distance of the random variables ξ
(k)
a and ξ

(k)
b . Then independence immediately im-

plies the identity

1− 1

2

(
d
(k)
H (a, b)

)2

=

(
1− 1

2
d2
H(a, b)

)k
,(2.4)

by virtue of the formula

∑
u∈U

(√
P[ξa = u]−

√
P[ξb = u]|

)2

= 2− 2
∑
u∈U

√
P[ξa = u]

√
P[ξb = u].(2.5)

Combining the inequality 1−(1−x)k ≤ kx which holds for all 0 ≤ x ≤ 1 and k positive
integers, and (2.4), we obtain(

d
(k)
H (a, b)

)2

= 2

[
1−

(
1− 1

2
d2
H(a, b)

)k]
≤ kd2

H(a, b).(2.6)

Using the notation d(k)(a, b) for the variational distance of the k independent trials,

i.e., of the random variables ξ
(k)
a and ξ

(k)
b , inequalities (2.3) and (2.6) imply

d(k)(a, b) ≤ 2
√
kdH(a, b).(2.7)

The nonsymmetric Kullback–Leibler distance (or relative entropy) of the random
variables ξa and ξb is defined as

dKL(a, b) =
∑
u∈U

P[ξa = u] log
P[ξa = u]

P[ξb = u]
.

We will use the inequality [4]

dKL(a, b) ≥ 1

2
d2(a, b).(2.8)
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3. MLE for inverting random functions. In this section we describe some
lower and upper bounds on the probability that MLE correctly reconstructs elements
of the set A. A classical upper bound on the average value of ra over A—or more
generally the value of

∑
a∈A raw(a) for some probability distribution w on A—is given

by “Fano’s inequality” (see, for example, [4]). Here we recall from [12] a different type
of upper bound that applies also to ra for any particular value of a and which is closely
related to the variational distance.

Theorem 3.1. Assume that we have finite sets A and U and random functions
Ξ : A → U and Γ : U → A. Suppose that there is an element b ∈ A and a subset N ,
b ∈ N ⊂ A such that for all a ∈ N

d(a, b) < δ.

Then we have

min
a∈N

ra ≤ 1

|N | + δ

(
1− 1

|N |
)
.

Now we can state the following lower bound for ra in the setting of Theorem 3.1.
Theorem 3.2. Assume that we have finite sets A and U and a random function

Ξ : A→ U . Assume that Γ∗ : U → A is the MLE, and r∗a is the return probability of
a ∈ A using Γ∗. Then we have

r∗a ≥ 1−
∑
b �=a

(
1− 1

2
d(a, b)

)
.(3.1)

If the MLE Γ∗ : Uk → A is applied to invert the random function Ξ(k) : A → Uk,
which is a sequence of k independent trials of Ξ, then

[r(k)]∗a ≥ 1−
∑
b �=a

(
1− 1

2
d2
H(a, b)

)k
.(3.2)

Proof. For y ∈ A let

Uy = {u ∈ U | ∀x ∈ A, x �= y,P[ξy = u] > P[ξx = u]}

and similarly for Vy with “≥” instead of “>” in the definition. It is clear from
independence (1.1) and the definition (1.2) that

r∗a ≥
∑
u∈Ua

P[ξa = u].(3.3)

For x, y ∈ A set pxy =
∑
u∈Vy

P[ξx = u]. Now we claim

r∗a ≥ 1−
∑
y �=a

pay.(3.4)

Note that ∑
y �=a

pay =
∑
y �=a

∑
u∈Vy

P[ξa = u] ≥ P[ξa /∈ Ua],
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since the complement of Ua is a subset of ∪y �=aVa, and

P[ξa /∈ Ua] = 1− P[ξa ∈ Ua] ≥ 1− r∗a

by (3.3). This establishes (3.4). Finally, we have

d(a, y) =
∑
u∈U
|P[ξa = u]− P[ξy = u]|

=
∑
u∈Vy

(P[ξy = u]− P[ξa = u]) +
∑
u/∈Vy

|P[ξa = u]− P[ξy = u]|

≤ pyy − pay +
∑
u/∈Vy

(P[ξa = u] + P[ξy = u]) = pyy − pay + (1− pay) + (1− pyy) = 2− 2pay.

Hence, pay ≤ 1 − 1
2d(a, y), and plugging this into (3.4) yields (3.1). To prove (3.2),

apply (3.1) to Ξ(k) and invoke (2.4).
Remarks. First, note that (3.2) immediately implies that if da = minb �=a dH(a, b),

then [r(k)]∗a > 1− |A| exp(−kd2
a/2). Consequently, if

k >
2

d2
a

log
|A|
ε
,(3.5)

then [r(k)]∗a > 1−ε. Second, note that an analogue of (3.2) also holds if, instead of k in-
dependent trials of Ξ, we take independent A→ U random functions Ξ1,Ξ2, . . . ,Ξk.
Now the lower bound on [r(k)]∗a is

1−
∑
b �=a

k∏
i=1

(
1− 1

2
d2
H((ξi)a, (ξi)b)

)
.

4. Applications.

4.1. Solving biased coin-tossing with MLE. We want to show an example
where our upper and lower bounds for reconstructing random functions are nearly
tight. Assume that U = {T,H}; i.e., we are tossing coins. Let a set A consist of
n+1 biased coins, denoted by 0, 1, 2, . . . , n. Define the random function Ξ as follows:
coin i shows H with probability i/n and shows T with probability 1− i/n. We show
the following: there is a constant c1 such that for k = c1n

2, for k independent trials
of Ξ, Ξ(k), [r(k)]i cannot be uniformly close to 1, no matter which method is used for
inverting Ξ(k). However, there is a constant c2 such that for k = c2n

2, using MLE,
we find [r(k)]∗i uniformly close to 1.

For simplicity we assume that n is odd. We are going to use Theorem 3.1 in the
following setting: b = n−1

2 , N = {n−3
2 , n−1

2 , n+1
2 }. Then,

min
a∈N

[r(k)]a ≤ 1

3
+

2

3
δ,

where δ is the largest variational distance for Ξ(k) among b and the elements of N .
Observe that for Ξ, by formula (2.5), we have

d2
H(i, j) = 2

(
1−
√
ij

n
−
√

(n− i)(n− j)

n

)
.(4.1)
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It is easy to see that, for i = b, j ∈ N , (4.1) is maximized by j0 = n+1
2 at the value

2(1−
√

1− 1
n2 ) ≤ 2/n2. By (2.7), d(k)(b, x) ≤ 2

√
kdH(b, x), for every x, and therefore

δ ≤ 2
√
kdH(b, j0) ≤ 4

√
k/n. Any choice of c1 < 1/4 suffices to keep either rn−3

2
or

rn+1
2

separated from 1.

In the other direction we use Theorem 3.2. By (3.2) and (4.1) we have

[r(k)]∗i ≥ 1−
n∑

j=0
j �=i

(
1− 1

2
d2
H(i, j)

)k
= 1−

n∑
j=0
j �=i

(√
ij

n
+

√
(n− i)(n− j)

n

)k
.(4.2)

By the classical inequality

√
a1a2 +

√
b1b2 ≤

√
a1 + b1 ·

√
a2 + b2,

the generic subtracted term in the summation (4.2) is estimated from above by

(
1− (j − i)2

n2

)k/2
.

Hence,

[r(k)]∗i ≥ 1− 2

n∑
m=1

(
1− m2

n2

)k/2
.(4.3)

Now observe that

n∑
m=1

(
1− m2

n2

)k/2
≤
(

1− 1

n2

)k/2
+ n

∫ 1

1/n

(1− x2)k/2dx(4.4)

and

n

∫ 1

1/n

(1− x2)k/2dx ≤ n

∫ 1

1/n

e−k·x
2/2dx ≤ n√

k

∫ √k
√
k/n

e−t
2/2dt ≤ n√

k
·
√

2π

2
.

Therefore, for a sufficiently large c2, selecting k = c2n
2, both terms in the right-hand

side of (4.4) will be as small as wanted, and hence in (4.3) [r(k)]∗i will be as close to 1
as wanted.

4.2. Phylogeny reconstruction. As a second application, we consider a prob-
lem arising in phylogenetic analysis. In this setting we have a model for generating
sequences at the leaves of a tree, and the question is how long such sequences need
to be in order to correctly reconstruct the tree—with high probability—from just the
generated sequences.

The simplest stochastic model, for two-state sequences, is the symmetric model,
due to Neyman [10], which we call the Neyman-2 model. (Related models also arise in
statistical physics and in the theory of noisy communication—see, for example, [6].)
Let {0, 1} denote the two states. Let us be given a binary tree T (a tree in which
each vertex has degree 1 or 3) with n labeled leaves. We describe how a single site
in the sequence develops on T , and then we assume that the sites are independently
and identically distributed (i.i.d.).

For each edge e of T we have an associated transition probability, which lies strictly
between 0 and 0.5. Let p : E(T )→ (0, 0.5) denote the associated map. Select one of
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the leaves1 and assign it state 0 or state 1 with probability 0.5. Direct all edges away
from this leaf and recursively assign random states to the vertices of T as follows:
if e = {u, v} is directed from u to v, and u (but not v) has a state assignment,
then v is assigned the same state as u with probability 1− pe or the other state with
probability pe. (In this latter case, we say there is a transition on e.) It is assumed that
all assignments are made independently, and so the pair (T, p) determines the joint
probability of any assignment of states to the vertices of T and thereby the marginal
probability of any assignment of states to the leaves of T . If we independently generate
k such assignments of states to the leaves of T , we obtain n sequences of length k.
For this model, upper bounds on the sequence length k required to reconstruct the
underlying tree were given in [5, 12]. These papers showed that, for accurate tree
reconstruction, k needs to grow only quadratically in 1/f , where f is the smallest
transition probability in the tree, when other parameters are fixed. We now show
that this rate of growth is not only sufficient but is also necessary.

Consider binary trees having four labeled leaves and two unlabeled interior ver-
tices. There are three such trees (up to equivalence), and we will denote them as
a, b, c. Each tree has four leaf edges (an edge incident to a leaf) and one interior edge.
Take A = {a, b, c}, and let U be the set of binary functions defined on the four leaves.
Assume that a, b, c are Neyman-2 trees with transition probability f on the interior
edge. (We do not care what the other transition probabilities are.) Let Ξ denote the
state assignment of the leaves of a, b, c under the Neyman-2 model.

Theorem 4.1. For the three Neyman-2 binary trees a, b, c on four leaves (as
described above), and state assignment Ξ, under any method for inverting random
function Ξ from k independent trials (i.e., from binary sequences of length k associated
with the leaves) with success probability near 1 for all three trees, k = Ω

(
1
f2

)
.

Proof. We are going to prove that for f sufficiently close to 0, for some constant
C > 0,

dH(a, b) ≤ Cf.(4.5)

Now (2.7) and (4.5) imply d(k)(a, b) ≤ 2Cf
√
k, and one similarly obtains d(k)(c, b) ≤

2Cf
√
k. So if we apply Theorem 3.1 with N = {a, b, c},

min{ra, rc} ≤ 1

3
+

4

3
Cf
√
k,(4.6)

and the right-hand side of (4.6) is well separated from 1 as k is a small constant
over f2.

To complete the proof, we have to verify (4.5). Assume that a is the tree in which
the interior edge separates leaves 1, 2 from leaves 3, 4; and b is the tree in which the
interior edge separates leaves 1, 3 from leaves 2, 4. By (2.2)

dH(a, b)2 =
∑
u∈U

(√
P[ξa = u]−

√
P[ξb = u]

)2

,(4.7)

where the summation goes for 16 terms which correspond to the 16 elements of U :
functions with domain {1, 2, 3, 4} and range {0, 1}. We are going to condition on the

1One assumes that mutations of an ancestral sequence happen in this way. However, it can be
shown that the selection of the special leaf has no effect on the reconstruction in the model considered
here.
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event Φ, denoting that there is transition on the interior edge of the tree and also for
the complement of this event. For x = a, b define

A(x, u) = P[ξx = u | ¬Φ],

B(x, u) = P[ξx = u | Φ]− P[ξx = u | ¬Φ].

Notice that A(x, u) and B(x, u) are constants that do not depend on f . Also, observe
that

P[ξx = u] = P[ξx = u| ¬Φ] · (1− f) + P[ξx = u| Φ] · f
= P[ξx = u| ¬Φ] + f · (P[ξx = u | Φ]− P[ξx = u | ¬Φ]

)
= A(x, u) + fB(x, u).

It easily follows from the geometry of the trees a and b that A(a, u) = A(b, u). Fur-
thermore, it is easily seen that A(a, u) �= 0 for all values of u, which ensures (below)
that we may divide expressions by A(a, u). Hence, by the Taylor expansion of the
square root function, we have

√
P[ξa = u]−

√
P[ξb = u] =

√
A(a, u)

(√
1 +

fB(a, u)

A(a, u)
−
√

1 +
fB(b, u)

A(a, u)

)

= f
B(a, u)−B(b, u)

2
√
A(a, u)

+O(f2),(4.8)

and summing up 16 terms like (4.8) we obtain

d2
H(a, b) = f2

∑
u∈U

(B(a, u)−B(b, u))2

4A(a, u)
+O(f3),

and this proves (4.5) for all

C >

√∑
u∈U

(B(a, u)−B(b, u))2

4A(a, u)
.

5. MLE for inverting parametric random functions. We start with an
example showing that for parametric MLE there is no counterpart of (3.2); that is,
there is no function f = f(δ, k) such that, for all δ > 0, limk→∞ f(δ, k) = 0 and

[R(k)]′(a,θ) ≥ 1−
∑
b �=a

f
(
δ((a, θ), b), k

)
,(5.1)

where

δ((a, θ), b) = inf
θ′∈Θ(b)

dH
(
(a, θ), (b, θ′)

)
.

Take A = {a1, a2}, U = {u1, u2, . . . , u2k2}, Θ(a1) = Θ(a2) = Uk. We denote a generic
element of Uk by u, and supp(u) denotes the set of elements of U which occur as
coordinates in u. Let B = ({a1} × Θ(a1)) ∪ ({a2} × Θ(a2)). Define the parametric
random function Ξ : B → U as follows. Set P[ξ(a1,u) = v] = 1/|U | for each v ∈ U . For
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u ∈ Uk and v ∈ U , set P[ξ(a2,u) = v] = i/k if v occurs at i = i(v) coordinates in u.

Now for any w,u ∈ Uk we have

d
(
(a1,w), (a2,u)

) ≥ 2− 1

k
(5.2)

by the calculation

∑
v∈supp(u)

(
i(v)

k
− 1

|U |
)

+
∑

v/∈supp(u)

1

|U | = 2− 2
∑

v∈supp(u)

1

|U | ≥ 2− 2k

|U | = 2− 1

k
.

Now consider k independent trials of Ξ, Ξ(k). We study inverting Ξ(k) with parametric
MLE. Note that, for any u ∈ Uk,

P[ξ
(k)
(a2,u) = u] =

k∏
i=1

P[ξ(a2,u) = ui] ≥
(

1

k

)k
;

and for any w ∈ Uk,

P[ξ
(k)
(a1,w) = u] =

k∏
i=1

P[ξ(a1,w) = ui] =

(
1

2k2

)k
<

(
1

k

)k
.

Therefore, one always has [R(k)]′(a1,w) = 0 (see (1.4)), while by (5.2) and (2.3) the
dH distances between the random variables corresponding to a1 and a2 are well sep-
arated from zero. This establishes our claim at the start of this section regarding the
nonexistence of an analogue of (3.2) from Theorem 3.2.

Intuitively, the reason this construction works is that we have selected range and
parameter spaces whose size depends on the sequence length k. Note that we could
have allowed |U | to grow just linearly with k and still obtained the same conclusion.
However, by allowing |U | to grow more quickly with k our construction has a further
notable property. Namely, the random variables corresponding to a1 and a2 become
maximally distant under variation distance as k →∞, as inequality (5.2) reveals.

However, with mild extra conditions we can state a positive result. This positive
result provides explicit bounds on the convergence of the MLE in the parametric
setting.

Theorem 5.1. Assume B = {(a, θ) : a ∈ A, θ ∈ Θ(a)}, and Ξ : B → U is
a parametric random function, where A and U are finite sets. Assume that for a
particular (a, θ) ∈ B there exists a d0 > 0 such that for all b ∈ A, b �= a, and
θ′ ∈ Θ(b)

d
(
(a, θ), (b, θ′)

) ≥ d0,(5.3)

where d, as usual, denotes the variational distance. If the MLE is applied to invert
the parametric random function Ξ(k) : A→ Uk, which is a sequence of k independent
trials of Ξ, then

lim
k→∞

[R(k)]′(a,θ) = 1.(5.4)

For a more precise result, set U+ = {u ∈ U : P[ξ(a,θ) = u] > 0}, and
α = minu∈U+ P[ξ(a,θ) = u]. If

k > f(α, d0) log

(
2|U+|
ε

)
,(5.5)
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then MLE estimation returns a with probability at least 1− ε, where

f(α, d0) = max

{
16

α
,
17 log2 α(1 + 2

α )2

αd4
0

}
.

Proof. For u ∈ U , define p(u) = P[ξ(a,θ) = u], and then α = minu∈U+{p(u)} > 0.
Define p̂(u) as the corresponding relative frequency, i.e.,

p̂(u) =
1

k
#{j : (ξj)(a,θ) = u},(5.6)

where ξj is the jth trial of the random function. Let δ = 4√
17

, and let

η = min

{
1

2
,

δd2
0

2| logα|(1 + 2
α )

}
.

Then,

η| logα|+ η| logα|
α(1− η)

≤ δ

2
d2
0.(5.7)

By the large deviation inequality given in formula (14) of Appendix A in [1], we have

P
[|p(u)− p̂(u)| > ηp(u)

]
< 2e−cηkp(u),(5.8)

where cη = min{− log [eη(1 + η)−(1+η)], η
2

2 }. Note that for 0 < η < 1/2 we have

− log[eη(1+η)−(1+η)] ≥ η2(1−η)
2 by Taylor expansion, and hence cη ≥ η2/4. Therefore,

formula (5.8) holds if we change cη to η2/4 in the exponent. Now suppose k satisfies
inequality (5.5). Then,

k >
4

αη2
log

(
2|U+|
ε

)

by the definition of f and η. Consequently, 2|U+|e−η2kα/4 < ε, and so, with proba-
bility at least 1− ε, we have

∀u ∈ U |p(u)− p̂(u)| ≤ ηp(u).(5.9)

(We also used the Bonferroni inequality, and the fact that, with probability 1, p(u) =
p̂(u) = 0 for all u ∈ U \ U+.) For x ∈ A,ω ∈ Θ(x), consider

L(x, ω) =
∑
u∈U

p̂(u) log P[ξx,ω = u].(5.10)

(Here, as always in this kind of calculation, we use the convention 0×(−∞) = 0, which
is supported by limx→0+ x log x = 0.) L(x, ω) is 1

k times the natural logarithm of the
probability that the observed sequence of U -elements came from (x, ω). Therefore
L(x, ω) ≤ 0 is proportional to the log-likelihood of (x, ω).

Now consider a fixed b ∈ A, b �= a and a fixed θ′ ∈ Θ(b). For u ∈ U , we use the
notation q(u) = P[ξ(b,θ′) = u].

We finish the proof conditional on the following event:

[(5.9) holds] and [u /∈ U+ implies p̂(u) = 0].(5.11)
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Note that the second part of the condition holds with probability 1, and so event (5.11)
occurs with probability at least 1− ε.

We distinguish two cases. In both cases we show

L(a, θ)− L(b, θ′) > 0.(5.12)

Since L(a, θ) (resp., L(b, θ′)) is the log-likelihood of getting the observed sequence
from (a, θ) (resp., (b, θ′)), (5.12) implies the correct reconstruction of a from the
observed data by MLE by (1.4). Since this holds (with probability 1) for all θ′,
conditional on event (5.11), and event (5.11) occurs with probability at least 1 − ε,
the probability that MLE correctly reconstructs a will be at least 1− ε, as required.

Case 1. There exists a v ∈ U+ with q(v) < exp( logα
α(1−η) ). In this case

L(b, θ′) ≤ p̂(v) log q(v) < logα, so L(b, θ′) < logα. On the other hand,

L(a, θ) =
∑
u∈U

p̂(u) log p(u) ≥
∑
u∈U

p̂(u) logα = logα.

Therefore, L(a, θ) > L(b, θ′).
Case 2. For all u ∈ U+, q(u) ≥ exp( logα

α(1−η) ). We have, for all u ∈ U+,

| log q(u)| ≤ | logα|
α(1−η) . Consider

L(a, θ)− L(b, θ′) =
∑
u∈U

p̂(u) log
p(u)

q(u)
=
∑
u∈U+

p̂(u) log
p(u)

q(u)

=
∑
u∈U

p(u) log
p(u)

q(u)
+
∑
u∈U+

(
p̂(u)− p(u)

)
log

p(u)

q(u)
.(5.13)

Notice that the first sum in (5.13) is exactly the Kullback–Leibler distance
dKL((a, θ), (b, θ′)). By formulae (2.8, 5.3) this first sum is at least 1

2d
2
0. Since we

condition on (5.9), |p̂(u)− p(u)| ≤ ηp(u). Hence, we can estimate the absolute value
of the second sum in (5.13) by

∑
u∈U

ηp(u)
(| log p(u)|+ | log q(u)|) ≤∑

u∈U
ηp(u)

(
| logα|+ | logα|

α(1− η)

)

= η| logα|+ η| logα|
α(1− η)

≤ δ

2
d2
0(5.14)

by (5.7), and so L(a, θ)− L(b, θ′) > 0.
Remarks.
1. Notice that, because |U+|α ≤ 1, inequality (5.5) will hold whenever k ≥

f(α, d0)| log( 2
αε )|. Notice that this bound on k (that suffices for parametric

MLE to reconstruct a with probability at least 1− ε) depends only on ε, d0,
and α, and it is independent of the cardinality of A and U (cf. the bound we
described for nonparametric MLE in the remark following Theorem 3.2).

2. Note also that the example described at the beginning of section 5 shows that
one cannot strengthen Theorem 5.1 by simply dropping the role of α. That
is, Theorem 5.1 fails if we replace (5.5) with the weaker condition that

k ≥ f1(d0) log

(
2|U |+
ε

)
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for some suitable function f1 (that does not depend on α), since in the ex-
ample described any such inequality will be satisfied for sufficiently large k
(|U | grows only quadratically with k), yet MLE fails to recover a1. A closer
examination of this example shows that α converges to zero sufficiently fast
with k for the bound in (5.5) to be violated.

3. Suppose that for each b ∈ A we have (i) the set Θ(b) is a compact topological
space, and (ii) the mapping from Θ(b) to the interval [0, 1] defined by (b, θ) �→
P(ξ(b,θ) = u) is continuous for each element u ∈ U . Then the separation
property (5.3) required in Theorem 5.1 becomes equivalent to the (in general
weaker) condition that for all b ∈ A, b �= a, and θ′ ∈ Θ(b)

d((a, θ), (b, θ′)) > 0.(5.15)

For example, for most models in the phylogenetic setting, assumptions (i)
and (ii) will apply, and so MLE will be statistically consistent (that is, satisfy
(5.4)), provided the model satisfies (5.15). In particular, the detailed anal-
ysis and additional assumption required by Chang [3] in order to establish
(for a general Markov model on trees) a strengthening of (5.15) to the case
b = a, θ �= θ′ is unnecessary if one wishes simply to establish the statistical
consistency of MLE in the estimation of a binary tree (and not the associ-
ated transition matrices of the model). There are also other models in use
that satisfy (5.15) and thereby justify the statistical consistency of MLE. For
example, consider a model in which sites evolve i.i.d. on a binary tree accord-
ing to a stationary, reversible Markov process (with an unknown rate matrix)
and with a rate factor (constant across the tree) drawn from a distribution D.
Such models satisfy (5.15) if D is known and therefore the same for each pos-
sible tree [14, section 3.3]; however, (5.15) may fail if D is unknown [13]. We
note that Theorem 5.1 also provides the first explicit upper bounds on the
sequence length required for MLE to accurately reconstruct a binary tree in
the phylogenetic setting.

6. Conclusion and open problems. It would be interesting to see how much
the bound on k given by Theorem 5.1 might be improved. This question applies both
for the general setting in which Theorem 5.1 is stated, and also for more particular
settings, such as arises in phylogeny.

In the general setting, observe that our upper bound on k given by Theorem 5.1
grows at the rate d−4

0 . Yet, in the nonparametric setting, if we let d0 = min{d(a, b) :
a, b ∈ A, a �= b}, then the analogous upper bound on k grows at the rate d−2

0 (by
inequalities (3.5) and (2.3)). An interesting question is whether this discrepancy is
essential in moving from the nonparametric to the parametric setting, or whether
it can be avoided by a different argument. There are other significant differences
between our results for the nonparametric and parametric setting—for example, al-
though |A| (but not |U |) enters directly into our bound on k in the nonparametric
setting (inequality (3.5)), in the parametric setting |A| is not directly mentioned but
|U+| is.

Regarding more particular parametric MLE settings (such as in phylogeny) it is
quite likely that the additional structure present in these instances may yield tighter
bounds than those given by Theorem 5.1. It would be particularly desirable to set
matching lower and upper bounds on the sequence length (the number of samples k)
required by MLE in phylogeny reconstruction. It is clear that, for certain choices of
the parameter θ, MLE may require longer sequences than other methods to correctly
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reconstruct a phylogenetic tree (as discussed in [11] and [12]). Indeed, the statistical
consistency of MLE in phylogeny was established only in 1996 by [3] in a result that,
like Wald’s earlier result [15], is based on a compactness argument that does not give
an explicit bound on k. The significance of Theorem 5.1 is that it gives the first such
explicit bounds for MLE, both in the phylogenetic setting and beyond.

6.1. Correction. Theorem 2.3 in [12], cited as Theorem 3.1 in our current paper,
tacitly assumed b ∈ N . This assumption has to be made explicit.
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